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1. Abstract

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the
nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from
large biases and spurious contacts, making it difficult to identify true interactions.
Existing methods use complex models to account for biases and do not provide a
significance threshold for detecting interactions. Here we introduce a simple binomial
probabilistic model that resolves complex biases and distinguishes between true and
false interactions. The model corrects biases of known and unknown origin and yields a
p-value for each interaction, providing a reliable threshold based on significance. We
demonstrate this experimentally by testing the method against a random ligation
dataset. Our method outperforms previous methods and provides a statistical
framework for further data analysis, such as comparisons of Hi-C interactions between
different conditions. GOTHiC is available as a BioConductor package
(http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).
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2. Introduction

Hi-C is a high-throughput technique based on chromosome conformation capture to
detect the spatial proximity between pairs of genomic locil2. It is now routinely used to
study the three-dimensional folding of genomes3-7. In theory, a sequenced Hi-C read-pair
should directly represent an interaction between two loci, with the number of mapped
read-pairs corresponding to the frequency of interactions in the sample cell population.
However, two challenges must be resolved in order to extract the true signal from Hi-C
data.

The first is to identify and resolve systematic biases. Hi-C datasets present many effects
common to high-throughput sequencing experiments, for instance amplification biases
due to differences in sequence composition across the genome. There are also biases
that are specific to Hi-C. For example, variations in the density of restriction sites cause
large differences in genomic fragment sizes; since very long or very short fragments are
difficult to ligate, both tend to be under-represented in the sequencing library8. The
complex combination of known and unknown biases cause over- and under-
representation of chromosomal regions when a Hi-C dataset is mapped to the reference
genome. Thus, the number of observed read-pairs do not directly reflect the frequency
of interactions between two genomic loci.

The second challenge is to distinguish between real and artefactual interactions. As
depicted in Box 1A, a Hi-C library contains three types of read-pairs. (i) The first
represents real interactions in which the ligation reaction occurs between the ends of a
pair of crosslinked DNA fragments. (ii) The second corresponds to spurious self-
ligations in which the ends of the same DNA fragment are ligated together; as the two
ends of read-pairs map to the same DNA fragment, they are easily filtered. (iii) The third
represents spurious ligations between two non-crosslinked DNA fragments; read-pairs
from these reactions are problematic as they are indistinguishable from those arising
through real interactions. The proportions of read-pairs representing real and spurious
interactions can vary widely depending on the quality of the sample and library
preparations.

There are two main approaches to deal with biases. One approach is to identify the
known sources of biases affecting observed read counts a priori, and model these biases.
One such algorithm is hicpipe, which applies a multiplicative model to estimate the
probabilities of interactions between two genomic regions as a function of mappability,
fragment length and GC content; the numbers of mapped read-pairs are then normalised
according to these estimates8. Another method, HiCNorm, models biases at lower
resolution and uses Poisson regression for normalisation?. The other approach, used by
most recent methods as well as us, is to assume that all biases are reflected in the
observed read counts. An early example is hiclib, which proposes that the total bias is
represented in the sequence coverage as the product of individual biases for each pair of
genomic regions. Starting with the assumption that every genomic region should have
identical coverages, hiclib iteratively normalises the original coverage until it becomes
uniform along the whole genomel0. This method has been implemented in a faster
algorithm, Hi-Correctorll. ChromoR, also only uses the information encaptured in
observed read counts. For normalisation of Hi-C data it uses Haar-Fisz Transformation
to decompose the Poisson distributed read counts into Gaussian coefficients that are
subsequently de-noised by wavelet shrinkage methods?2.

Although both approaches have been frequently used, these methods exhibit several
practical limitations. First, the assumptions behind the methods are untested against
experimental control data and so their success in eliminating biases is unclear. Second,
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the issue of distinguishing between real and random interactions remains unresolved.
Finally, the software implementation of some of these methods have either several
dependencies that make them technically demanding to install and operate 813, require
extensive pre-processing 1113, or can not be applied at higher resolution 12.

Here, we introduce a straightforward binomial model that corrects the complex
combination of known and unknown biases in Hi-C data (Box 1B). The model calculates
accurately the probabilities that the observed number of read-pairs are due to random
ligations, and yields a list of statistically significant interactions between pairs of
genomic loci. We challenged the model using random ligation controls, demonstrating
that the method gives high levels of specificity. GOTHiC, the accompanying
BioConductor package, is fast, accurate and easy to use.

3. A binomial model for Hi-C data

For a given pair of genomic loci, GOTHiC calculates: (i) the probability of observing a
given number of read-pairs between two loci through random ligations; and (ii) the
effect size, "strength” or “frequency”, of interaction measured as the ratio of observed-
over-expected numbers of interactions. GOTHiC assumes that the observed sequence
coverage varies as a function of multiple known and unknown biases, including the
density of restriction sites, cleavage efficiency, ligation efficiency, amplification and
sequencing biases, and mappability. It assumes that the biases affect each end of read-
pairs independently; thus the probability of observing a randomly occuring read-pair
between two loci is modelled as the product of the relative coverages of the interacting
loci. This is a reasonable assumption given our understanding of known biases810; the
advantage of modelling the combined effect of biases is that it incorporates unknown
sources and that it is robust against future variants of Hi-C methods.

First, self-ligations, dangling ends, re-ligations and incomplete digestion products are
removed by filtering read-pairs mapping to the same fragment and within a specified
distance of each other on the genome (default=10kb). Given the relative coverage of two
genomic loci, j and h, the probability of a spurious read-pair linking the two loci can be
calculated as:

Pjn = QTjThf'I‘aTLdOm
rj, the relative coverage of a locus, is calculated as:

reads;
"I TTON

where reads; is the mapped read count for genomic locus j, and N is the total number of
read-pairs in the filtered dataset. frandom is the fraction of read-pairs in the Hi-C library
arising from spurious ligations. Although fradom could be estimated experimentally or
computationally, in practise this may often be difficult and a conservative upperbound
for p;» can be obtained by excluding this term.

Given the probability of a read linking the two loci, the probability of observing n or
more read-pairs between them by chance in a dataset of N reads, is given by the
binomial cumulative density:
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This yields a p-value for each interaction as a function of the coverage of both loci and
the total number of reads in the experiment. Using the Benjamini-Hochberg multiple-
testing correction (with L*(L-1)/2 tests, where L is the number of loci investigated), we
obtain a g-value that can be used directly to identify statistically significant interactions
at a pre-defined false discovery rate.

The log of the observed-over-expected ratio (R) can be used as a measure of effect size
or as a normalised measure of interaction frequency.

n]7h
pj,hN

Rjp = logs

4. How well does GOTHiC perform?

4.1 Assessing performance using a Hi-C dataset and random ligation control

To assess performance, we applied GOTHiC at 1Mb resolution to two datasets generated
from the same mouse fetal liver cell sample: (i) one produced using the standard Hi-C
protocol and (ii) another containing only randomly ligated read-pairs with HindlIIl. The
latter was produced by reversing the cross-links before the ligation step and it is
analogous to an "input" control that is commonly used for background correction in
ChIP-seq studies. As expected in a random control, 93-95% of read-pairs occur between
loci on different chromosomes, in contrast to 20-40% of read-pairs in Hi-C datasets.

Read coverage is highly variable across the genome (Figure 1A): it correlates well with
previously reported effects of GC content, mappability and restriction-site density,
though not all variation is captured by these factors. The raw contact maps in Figure 1B
emphasise how variations in sequence coverage affect the interpretation of
unnormalised Hi-C data, in which regions of higher coverage ostensibly show stronger
interactions and vice versa. Strikingly, the trend is apparent even in the random ligation
control (blue arrow, right panel), which does not contain any true interactions. The high
correlation in coverages between the real and random datasets (Pearson’s r=0.99)
indicates that virtually all of the variation in coverage observed in a Hi-C sample is
explained by experimental biases.

The processed contact maps in Figure 1C show how effectively GOTHiC deals with these
biases, as the patterns influenced by underlying variations in coverage are removed (left
panel). GOTHIC also identifies statistically significant interactions with high specificity
(red squares, left panel). There is good separation in log (observed/expected) values
between real and random interactions (Figure 1D, top), which is also reflected in the
distribution of p-values (middle panel). GOTHiC identified ~90,000 statistically
significant interactions in the Hi-C dataset (FDR <5%). In contrast, GOTHIC calls almost
no interactions in the random ligation experiment (Figure 1C, right panel). This dataset
confirms the specificity of the binomial model and the accuracy of FDR estimates, as
violations of the underlying assumptions should lead to a large number of false
positives. In fact, GOTHIC calls just 22 false positive interactions in the random ligation
dataset from more than 3 million tests; this means that the p-values accurately reflect
the probability of observing a given number of reads between any two loci as a result of
experimental biases. This was also true at higher resolutions (500kb and 100kb bins)
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for these medium sized Hi-C experiments (~35M reads), as shown in Figure S1 and
Supplementary Tablel.

In addition to calling statistically significant interactions, GOTHiC removes much of the
underlying bias. Figure 1E demonstrates that the detection of significant interactions as
well as the general ranking of interactions by their g-value is largely independent of
coverage, as the proportion of significant interactions is stable across different coverage
bins, and in each coverage bin the proportion of interactions falling into the different
quartiles is near a quarter.

Alternatively to the g-value, the log-ratio, R, between the observed number of reads and
the expected number of reads (log observed/expected) may be used as a normalised
measure of interaction frequency. This value is similar to the log fold-change measure in
differential expression analyses, and it would tend to show a high variance in regions of
low coverage due to the low expected values, and the integer read counts, similarly to
log fold-change of lowly expressed genes. However, the R value can be used for a dual
cut-off to identify significant interactions above a desired effect size (as in volcano
plots).

The output from GOTHiIC can also be used to flag poor quality Hi-C libraries. We have
observed that inadequate dilution or cross-linking can yield libraries with a high
fraction of spurious read-pairs (i.e., ligations between non-crosslinked fragments). As
shown in the control dataset (Figure 1D), this will lead to a more uniform distribution of
p-values, as expected by chance, and GOTHiC will successfully control the false discovery
rate, yielding a small number of significant interactions.

4.2 Reproducibility between replicates using different restriction enzymes

It has been shown that treating the same biological sample with different restriction
enzymes can cause large differences in coverage along the genome3. To evaluate the
performance of GOTHIC in these conditions, we applied it at 1Mb resolution to
previously published Hi-C datasets produced using HindIll and Ncol on a human
lymphoblastoid cell line. These enzymes target distinct restriction motifs that are
distributed differently along the genome; this results in different fragment densities, GC
contents and mappability biases. Figure 2A highlights their remarkable impact on the
coverage profiles and the raw contact maps (left and right panels, yellow highlighted
boxes).

Despite these strong biases, GOTHiC produces very consistent contact maps and
statistically significant interactions (Figure 2B). Loci with very different numbers of
read-pairs in the raw data are identified as interacting at similar significance levels after
processing (Figure 2A and 2B, highlighted regions). We find 92,464 and 102,567
significant interactions in HindIIl and Ncol experiments respectively, of which 80,090
overlap (Figure 2C), and the interaction rankings obtained from the two experiments
show high correlation (Spearman's r=0.79) (Figure 2D). The high overlap was
maintained at higher resolutions (500kb, 100kb bins) (Figure S2, Supplementary
Tablel).

5. Comparison with existing methods

Finally, in order to benchmark GOTHiC's performance, we applied hicpipe and hiclib,
which represent different normalisation approaches, to the mouse fetal liver and human
lymphoblastoid Hi-C datasets (Figure 3, S3).
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As previously observed from the contact maps, the number of reads between two loci is
strongly affected by the coverage of these loci (Figure 3C, boxplots in the top panel).
Although the normalised interaction strength values from hicpipe and hiclib do not
appear to show obvious biases in the contact maps (Figure 3A,B, S3A,B), more detailed
assessment reveals that the outputs from both methods continue to suffer from
coverage-dependent biases (Figure 3C, middle and bottom panels). The interaction
strength measures are inversely correlated with coverage, suggesting overcorrection of
the raw data - in other words, interactions in the 1st and 2nd quartiles for strength are
enriched in the low coverage bins. In contrast, for GOTHIiC both the significant
interactions and the interactions ranked by g-values appear less affected by coverage
(Figure 1E, Figure S3Cb).

When comparing the overlap of significant or top-ranked interactions as detected by the
three methods on both datasets, GOTHIC yielded the highest overlap and rank
correlation, indicating a better removal of technical biases (Figures 2C,D, S3,D,E)

Finally, we examined the overlap of interaction scores between the three methods
(Figure 3D, Figure S3F). Interactions identified as significant by GOTHiC tend to be
highly ranked by hiclib and hicpipe, evidencing good agreement. Moreover, using the
number of significant interactions returned by the binomial test of GOTHiC as a cut-off
to select the top-ranked interactions returned by the other methods, revealed a very
high overlap between all three methods (Figure S4A). However, we observed
overcorrection of low coverage regions by hicpipe and hiclib. When comparing the
coverage of interactions that were top-ranked by either of these methods but were not
among the significant interactions by GOTHiC to those that were also called significant,
we found that non-significant interactions had significantly lower coverage (two-tailed t
test :p-value < 2.2e-16 for both hicpipe and hiclib) (Figure S4B). Thus, GOTHiC is at least
as successful as existing methods in removing biases, but also provides significance
values and a statistical framework for further analyses.

6. Discussion

Sequencing libraries produced by Hi-C experiments are noisy because of technical
artifacts (self-ligations and random ligations) and complex biases caused by the intrinsic
characteristics of the genome sequence (GC content, unequal distribution of restriction
sites, uniqueness and mappability of the sequences). Here, we have proposed a simple
solution to analyze Hi-C data using a simple binomial test, which successfully removes
artifacts and sequencing biases to detect real genomic interactions even in the noisiest
Hi-C datasets.

GOTHIiC’s approach is simpler than existing methods, which require the identification
and separate modeling of individual biases89, an iterative correction of biases!011, or
variance stabilisation 12. It yields similar rankings to previous methods, with comparable
or even slightly improved bias removal and reproducibility between replicates. Most
importantly, unlike any other method, GOTHiC calculates p-values that allow the
identification of real genomic interactions and the removal of artefactual interactions
with a well-controlled false discovery rate.

GOTHIC is implemented as an R package, which requires a mapped read file as input and
returns a list of significant interactions. This implementation can analyze a whole-
genome Hi-C dataset of 30 million uniquely mapped reads at 1Mb resolution in ~2
hours using a single core machine with ~200Mb memory, and can be several fold faster
if run with the parallel option on more cores.
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The sensitivity of the method could be further improved by estimating the fraction of
inter-molecular ligations (frandom). Our use of an upperbound (frandom=1) provides a
conservative estimate, ensures high specificity and should be preferred unless accurate
information on the noise fraction across the genome is available.

Hi-C, as all 3C-type assays, captures both ‘regulatory/functional’ interactions (such as
promoter-enhancer interactions) and ‘structural’ interactions, which are a consequence of
overall higher-order folding of the chromatin fibre. Owing to structural reasons, neighbouring
DNA regions are known to interact often, and HiC datasets typically show a near power-law
decrease in interaction frequencies with increasing genomic distance. It is still a major
challenge in chromatin biology to disentangle functional, structural, and functionally
redundant interactions. One approach is to correct interaction frequencies by the expected
frequency for a given genomic distance. This distance-correction assumes that functional
interactions are stronger than other interactions at a given distance; however, the generality of
this assumption is unclear. For example, it is likely that the strong structural interactions at
close genomic distances ‘saturate’ the possible ligation-products in 3C-based assays, which
would hinder the detection of regulatory interactions at short distances. Importantly, many
enhancer-promoter interactions have been shown to act at relatively short distances'. To
avoid relying on strong assumptions, GOTHiC does not perform a distance-correction,
instead yielding a comprehensive list of biological interactions not explained by experimental
noise. However, GOTHIC’s statistical framework can be modified such that the expected
interaction frequencies are corrected for genomic distance, or alternatively q and R values can
be adjusltsed after the identification of significant interactions as implemented by other
methods .

Finally, we envisage that the simple probabilistic framework introduced here could be
further expanded to other applications in Hi-C, such as combining replicates, or
identifying interaction changes between conditions. Significance levels and
observed/exptected ratios obtained from GOTHiC can be used as the basis for
algorithms predicting the 3D structure of genomes!6 or those finding topologically
associated domains?7.

7. Materials and methods

Tissue isolation

Fetal livers were dissected from C57BL/6 mouse embryos at day 14.5 (E14.5) of
development. Fetal liver cells were filtered through a cell strainer (70 mm) and directly
fixed in formaldehyde.

Hi-C

Hi-C was performed essentially as described in Lieberman-Aiden et al3, with some
modifications. 30 to 50 million cells were fixed in 2 % formaldehyde for 10 min,
quenched with 0.125 M glycine, spun down (400 x g, 5 min) and washed once with PBS.
The cells were incubated in 50 ml permeabilisation buffer (10 mM Tris-HCI pH 8, 10
mM NaCl, 0.2 % Igepal CA- 630, Complete EDTA-free protease inhibitor cocktail
[Roche]) for 30 min on ice with occasional agitation, spun down (650 x g, 5 min, 4 °C),
and the cell pellets were resuspended in 358 pl of 1.25 x NEBuffer2 (NEB) per 5 million
cell aliquot. Eleven pl of 10 % SDS was added to each aliquot, followed by an incubation
at 37 °C for 60 min with continuous agitation (950 rpm). To quench the SDS, 75 pl of 10
% Triton X-100 was then added per aliquot, followed by an incubation at 37 °C for 60
min with continuous agitation (950 rpm). To digest chromatin, 1500 U of Hind III (NEB)
was added per aliquot and incubated at 37 °C overnight with continuous agitation (950
rpm). After digestion, restriction sites were filled in with Klenow (NEB) in the presence
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of biotin-14-dATP (Life Technologies), dCTP, dGTP and dTTP (all 30 uM) for 60 min at
37 °C. 86 pul of 10 % SDS was added per aliquot and incubated at 65 °C for 30 min with
continuous agitation (950 rpm), followed by addition of 7.61 ml of ligation mix (745 pl
of 10 % Triton X-100, 820 pl of 10 x T4 DNA ligase reaction buffer [NEB], 82 ul of 10
mg/ml BSA [NEB] and 5.965 ml water) per aliquot and incubation at 37 °C for 60 min
with occasional agitation. For the ligation reaction 50 ul of 1 U/ul T4 DNA ligase (Life
Technologies) was added per aliquot, followed by incubation at 16 °C for 4 h.
The cross-links were reversed by adding 60 pl of 10 mg/ml proteinase K (Roche) per
aliquot and incubating at 65 °C overnight. After overnight incubation, another 60 pl of
proteinase K per aliquot was added, followed by incubation at 65 °C for an additional
two hours. RNA was removed by adding 12.5 pl of 10 mg/ml RNase A (Roche) per
aliquot and incubating at 37 °C for 60 min. DNA was isolated by a phenol (Sigma)
extraction, followed by a phenol/chloroform/isoamylalcohol (Sigma) extraction and
standard ethanol precipitation. The precipitated DNA was washed three times with 70
% ethanol, and dissolved in 25 pl TE per aliquot. Subsequently all aliquots were pooled
and the Hi-C DNA was quantified (Quant-iT Pico Green, Life Technologies). Biotin was
removed from non-ligated restriction fragment ends by incubating 30 to 40 pg of Hi-C
library DNA with T4 DNA polymerase (NEB) for 4 h at 20 °C in the presence of dATP.
After DNA purification (QIAquick PCR purification kit [Qiagen]) and sonication (Covaris
E220), the sonicated DNA was end-repaired with T4 DNA polymerase, T4 DNA
polynucleotide kinase, Klenow (all NEB) and dNTPs in 1 x T4 DNA ligase reaction buffer
(NEB). Double size selection of DNA was performed using AMPure XP beads (Beckman
Coulter), before dATP-addition with Klenow exo- (NEB). Biotin- marked ligation
products were isolated with MyOne Streptavidin C1 Dynabeads (Life Technologies) in
binding buffer (5 mM Tris pH8, 0.5 mM EDTA, 1 M NaCl) for 30 min at room
temperature, followed by two washes in binding buffer, and one wash in 1 x T4 DNA
ligase reaction buffer (NEB). PE adapters (Illumina) were ligated onto Hi-C ligation
products bound to streptavidin beads for 2 h at room temperature (T4 DNA ligase in 1 x
T4 DNA ligase reaction buffer [NEB], slowly rotating). After washes in wash buffer (5
mM Tris, 0.5 mM EDTA, 1 M NaCl, 0.05 % Tween-20) and binding buffer, the DNA-bound
beads were resuspended in NEBuffer 2. Bead-bound Hi-C DNA was amplified with 12
PCR amplification cycles using PE PCR 1.0 and PE PCR 2.0 primers (Illumina). The
concentration and size distribution of Hi-C library DNA after PCR amplification was
determined by Bioanalyzer profiles (Agilent Technologies) and quantitative PCR, and
the Hi-C libraries were paired-end sequenced on Illumina Genome Analyzer lIx.

Publicly available data
Mouse random ligation sample: GSM1718028.
Human HindlIII and Ncol lymphoblastoid Hi-C: GSE18199.

Data access
Raw data have been submitted to the EBI ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-3891.
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8. Figures

Box 1. Schematic overview of the binomial model

(A) After crosslinking and digesting the chromatin, the DNA is ligated resulting in three
types of ligation products. In order to detect real interactions, we first filter out self-
ligations. With the remaining paired-reads, we then calculate the relative coverage
across the genome in order to estimate the random interaction probability. (B) We
finally apply the binomial test to distinguish between random and real interactions.

Figure 1. GOTHIiC applied to mouse fetal liver Hi-C experiments.

(A) From the top, distributions of the relative coverage, the GC content percentage, the
mappability score and the number of fragments per 1Mb (y-axis) across mouse
Chromosome 10 (x-axis in Mb) (GC content and mappability scores are as in8).

(B-C) Contact maps of mouse Chromosome 10 containing raw read counts (interactions
with at least 3 reads) and binomial significances respectively resulting from classic Hi-C
experiment (left panel) and random ligation experiment (right panel) in fetal liver cells.
The intensity of the signal is summarized by the gradient above each contact map.
Significant interactions are colored with a red gradient in C. Arrows pinpoint a region of
high coverage and its impact on the observed number of interactions (B, right panel).
The coverage is represented at the left side of each contact map.

(D) The top panel represents the distribution of observed/expected log ratio of
significant (red) and non-significant (blue) interactions in the fetal liver cell sample.
Middle and bottom panels represent the distribution of binomial p-values in the fetal
liver cell and random samples respectively.

(E) Influence of the relative coverage on the distribution of interaction significance.
GOTHIC interaction ranking in the Hi-C (upper panel) and random ligation (lower panel)
samples. The ranked lists were divided into quartiles, the first quartiles correspond to
the top ranked interactions. Significant interactions are shown in red.

Figure 2. GOTHIiC applied to human lymphoblastoid Hi-C experiments.

(A-B) Contact maps of human Chromosome 3 containing raw read counts (interactions
with at least 3 reads) and binomial significances respectively resulting from HindlIII Hi-C
experiment (left panel) and Ncol Hi-C experiment (right panel). The intensity of the
signal is summarized by the gradient above each contact map. Significant interactions
are colored with a red gradient in B. The coverage is represented at the left side of each
contact map. (C) Venn diagram representing the overlap between significant
interactions detected in HindIII (orange percentage) and Ncol (blue percentage)
samples.

(D) Correlation between the HindlIl (x-axis)/Ncol (y-axis) common significant
interactions (80,448 interactions) according to their rank. Spearman’s correlations are
indicated above the plot.

Figure 3. Comparison of mouse the fetal liver Hi-C data after processing by hiclib,
hicpipe and GOTHiC.

(A-B) Contact maps of mouse Chromosome 10 containing relative probability computed
by hiclib and observed/expected log ratio obtained with hicpipe respectively resulting
from classic Hi-C experiment (left panel) and random ligation experiment (right panel)
in fetal liver. The intensity of the signal is summarized by the gradient above each
contact map.

(C) Influence of the relative coverage on the distribution of number of observed
interactions (top panel), hiclib and hicpipe interaction ranking (middle and bottom
panels), in the HiC (left) and random ligation (right) samples. The ranked lists were
divided into quartiles, the first quartiles correspond to the top ranked interactions. The
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distribution of the number of reads per interaction is represented in the top panel with
green box plots (corresponding y-axis is placed on the right of the plot).

(D) Correspondence between binomial significant interactions (88292) and hiclib and
hicpipe ranking. Blue bar corresponds to non-significant interactions from GOTHiC, red
bar to significant ones. The green gradients represent the ranking of the interaction
resulting from hiclib (left) and hicpipe (right) processing. Red bars indicate the
significant interactions detected with GOTHiC.

Supplementary Figure S1. GOTHiC applied to mouse fetal liver Hi-C experiments at
500kb and 100kb resolutions.

Contact maps of mouse Chromosome 10 representing binomial significances resulting
from classic Hi-C experiment (upper panels) and random ligation experiment (lower
panels) in fetal liver cells. Significant interactions are colored with a red gradient as on
top.

Supplementary Figure S2. GOTHiC applied to human lymphoblastoid Hi-C
experiments at 500kb and 100kb resolutions.

Contact maps of human Chromosome 3 containing raw read counts representing
binomial significances resulting from HindlIII Hi-C experiment (left panels) and Ncol Hi-
C experiment (right panels) at 500kb resolution (upper panels), 100kb resolution
(middle and lower panels). The lower panels show a zoom in to chr3 1-10Mb. Significant
interactions are colored with a red gradient as on top.

Supplementary Figure S3. Comparison of human lymphoblastoid Hi-C data after
processing by hiclib, hicpipe and the GOTHiC.

(A-B) Contact maps of human Chromosome 3 containing relative probability computed
by hiclib and observed/expected log ratio obtained with hicpipe respectively resulting
from HindlIIl experiment (left panel) and Ncol experiment (right panel). The intensity of
the signal is summarized by the gradient above each contact map.

(C) Influence of the relative coverage on the distribution of (a) number of observed
interactions, (b) GOTHIC, (c) hiclib and (d) hicpipe interaction ranking in the HindIII
(left) and Ncol (right) samples. The ranked lists were divided into quartiles, the first
quartiles correspond to the top ranked interactions. The distribution of the number of
reads per interaction is represented in the top panel with green box plots
(corresponding y-axis is placed on the right of the plot). 92,897 and 103,114
interactions were called significant using GOTHiC in the HindIIl and Ncol samples
respectively. In order to compare with the predictions of (D) hiclib and (E) hicpipe, we
selected the 92,897 and 103,114 top ranked interactions of these methods and first
computed the overlap (top) and correlation (bottom) between the two samples.

(F) Correspondence between binomial significant interactions and hiclib and hicpipe
ranking. The green-to-blue gradients represent the ranking of the interaction resulting
from hiclib (left) and hicpipe (right) processing. Red bars indicate the significant
interactions detected by GOTHiC in both HindIII and Ncol experiments. Orange bars
indicate the significant interactions detected only in the HindIII experiment and blue
bars indicate the significant interactions detected only in the Ncol experiment.

Supplementary Figure S4. Overlap of top-ranked interactions from hiclib and
hicpipe with significant interactions from GOTHiC.

GOTHIC identified 88,292 significant interactions in the mouse fetal liver cell Hi-C
dataset. (A) Venn diagram showing the overlap between the significant interactions
identified by GOTHiC and the top 88,292 interactions from the hiclib and hicpipe
outputs. (B) There were 80,448 significant interactions detected by GOTHiC that
overlapped between the HindlIIl and Ncol experiments in the human lymphoblastoid cell
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line. The Venn diagram shows the overlap of between the GOTHIC, hiclib and hicpipe
outputs.

Supplementary Table1l. Number of significant interactions in mouse fetal liver and
human lymphoblastoid cells identified by GOTHiC at higher resolutions.
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# of significant interactions
input

fetal liver

# of significant interactions
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100kb
745
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295378
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1Mb
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