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1. Abstract

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the
nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from
large biases and spurious contacts, making it difficult to identify true interactions.
Existing methods use complex models to account for biases and do not provide a
significance threshold for detecting interactions. Here we introduce a simple binomial
probabilistic model that resolves complex biases and distinguishes between true and
false interactions. The model corrects biases of known and unknown origin and yields a
p-value for each interaction, providing a reliable threshold based on significance. We
demonstrate this experimentally by testing the method against a random ligation
dataset. Our method outperforms previous methods and provides a statistical
framework for further data analysis, such as comparisons of Hi-C interactions between
different conditions. GOTHiIC is available as a user-friendly BioConductor package
(http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).
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2. Introduction

Hi-C is a high-throughput technique based on chromosome conformation capture to
detect the spatial proximity between pairs of genomic locil2. It is now routinely used to
study the three-dimensional folding of genomes3-7. In theory, a sequenced Hi-C read-pair
should directly represent an interaction between two loci, with the number of mapped
read-pairs corresponding to the frequency of interactions in the sample cell population.
However, two challenges must be resolved in order to extract the true signal from Hi-C
data.

The first is to identify and resolve systematic biases. Hi-C datasets present many effects
common to high-throughput sequencing experiments, for instance amplification biases
due to differences in sequence composition across the genome. There are also biases
that are specific to Hi-C. For example, variations in the density of restriction sites cause
large differences in genomic fragment sizes: longer fragments are more likely to self-
ligate, whereas very short fragments are difficult to ligate; both tend to be under-
represented in the sequencing library8. The complex combination of known and
unknown biases cause over- and under-representation of chromosomal regions when a
Hi-C dataset is mapped to the reference genome. Thus, the number of observed read-
pairs do not directly reflect the frequency of interactions between two genomic loci.

The second challenge is to distinguish between true and false interactions. As depicted
in Box 14, a Hi-C library contains three types of read-pairs. (i) The first represents real
interactions in which the ligation reaction occurs between the ends of a pair of
crosslinked DNA fragments. (ii) The second corresponds to spurious self-ligations in
which the ends of the same DNA fragment are ligated together; as the two ends of read-
pairs map to the same DNA fragment, they are easily filtered using a minimum genomic
distance between them. (iii) The third represents spurious ligations between two non-
crosslinked DNA fragments; read-pairs from these reactions are problematic as they are
indistinguishable from those arising through real interactions. The proportions of read-
pairs representing real and spurious interactions can vary widely depending on the
quality of the sample and library preparations, but it is not unusual to encounter Hi-C
datasets in which 20-40% of read-pairs originate from self-ligations.

Two main computational methods have been proposed to deal with biases. The earlier,
hicpipe, applies a multiplicative model to estimate the probabilities of interactions
between two genomic regions as a function of mappability, fragment length and GC
content; the numbers of mapped read-pairs are then normalised according to these
estimates8. A later method, hiclib, proposes that the total bias is represented in the
sequence coverage as the product of individual biases for each pair of genomic regions.
Starting with the assumption that every genomic region should have identical
coverages, the method iteratively normalises the original coverage until it becomes
uniform along the whole genome® The former method considers known sources of
biases, whereas the latter also deals with unknown ones.

Although both methods have been frequently used, they and other subsequent methods
exhibit several practical limitations!913, First, the assumptions behind the methods are
untested against experimental control data and so their success in eliminating biases is
unclear. Second, the issue of distinguishing between true and random interactions
remains unresolved. Finally, the software encoding these methods have several
dependencies that make them technically demanding to install and operate, and they
require 2-16 hours of dedicated server time to process a moderately sized Hi-C dataset.
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Here, we introduce a straightforward binomial model that corrects the complex
combination of known and unknown biases in Hi-C data (Box 1B). The model calculates
accurately the probabilities that the observed number of read-pairs are due to random
ligations, and yields a list of statistically significant interactions between pairs of
genomic loci. We tested the model using random ligation controls, demonstrating that
the method gives high levels of specificity. GOTHiC, the accompanying BioConductor
package, is fast, accurate and easy to use.

3. A binomial model for Hi-C data

For a given pair of genomic loci, GOTHiC calculates: (i) the probability of observing a
given number of read-pairs between two loci through random ligations; and (ii) the
effect size or "strength"” of interaction measured as the ratio of observed-over-expected
numbers of interactions. GOTHiC assumes that the observed sequence coverage varies
as a function of multiple known and unknown biases, including the density of restriction
sites, cleavage efficiency, ligation efficiency, amplification and sequencing biases, and
mappability. It assumes that the biases affect each end of read-pairs independently; thus
the probability of observing a randomly occuring read-pair between two loci is
modelled as the product of the relative coverages in the interacting loci. This is a
reasonable assumption given our understanding of known biases89; the advantage of
modelling the combined effect of biases is that it incorporates unknown sources and
that it is robust against future variants of Hi-C methods.

First, self-ligations and incomplete digestion products are removed by filtering read-
pairs mapping to the same fragment and within a specified distance of each other on the

genome (default=10kb). Given the relative coverage of two genomic loci, j and h, the
probability of a spurious read-pair linking the two loci can be calculated as:

Pin = QTjThfrandom
r;, the relative coverage of a locus, is calculated as:

reads;
T TN

where reads; is the mapped read count for genomic locus j and N is the total number of
read-pairs in the dataset. frandom is the fraction of read-pairs in the Hi-C library arising
from spurious ligations. Although frandom could be estimated experimentally or
computationally, in practise this may often be difficult and a conservative upperbound
for p;» can be obtained by excluding this term.

Given the probability of a read linking the two loci, the probability of observing n or
more read-pairs between them by chance in a dataset of N reads, is given by the
binomial cumulative density:

njh—1

N 4 .
pualin = Pz >njp) =1— ) ( )(Pj,h)z(l —pin)"
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=0

This yields a p-value for each interaction as a function of the coverage of both loci and
the total number of reads in the experiment. Using the Benjamini-Hochberg multiple-
testing correction (with L*(L-1)/2 tests, where L is the number of loci investigated), we
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obtain a g-value that can be used directly to identify statistically significant interactions
at a pre-defined false discovery rate.

The log of observed-over-expected ratio (R) can be used as a measure of effect size or as
anormalised measure of interaction frequency.

"h
PN

Rj,h = lOgg

4. How well does GOTHiC perform?

4.1 Assessing performance using a Hi-C dataset and random ligation control

To assess performance, we applied GOTHIC to two datasets generated from the same
mouse fetal liver cell sample: (i) one produced using the standard Hi-C protocol and (ii)
another containing only randomly ligated read-pairs. The latter was produced by
reversing the cross-links before the ligation step and it is analogous to an "input” control
that is commonly used for background correction in ChIP-seq studies. As expected in a
random control, 93-95% of read-pairs occur between loci on different chromosomes, in
contrast to 20-40% of read-pairs in Hi-C datasets.

Read coverage is highly variable across the genome (Figure 1A): it correlates well with
previously reported effects of GC content, mappability and restriction-site density,
though not all variation is captured by these factors. The raw contact maps in Figure 1B
emphasise how variations in sequence coverage affect the interpretation of
unnormalised Hi-C data, in which regions of higher coverage ostensibly show stronger
interactions and vice versa. Strikingly, the trend is apparent even in the random ligation
control (blue arrow, right panel), which does not contain any true interactions. The high
correlation in coverages between the real and random datasets (Pearson’s r=0.99)
indicates that virtually all of the variation in coverage observed in a Hi-C sample is
explained by experimental biases.

The processed contact maps in Figure 1C show how effectively GOTHiC deals with these
biases, as the patterns influenced by underlying variations in coverage are removed (left
panel). GOTHIC also identifies statistically significant interactions with high specificity
(red squares, left panel). There is good separation in log (observed/expected) values
between "true" and "false" interactions (Figure 1D, top), which is also reflected in the
distribution of p-values (middle panel). GOTHiC identified ~90,000 statistically
significant interactions in the Hi-C dataset (FDR <5%). In contrast, GOTHiC calls almost
no interactions in the random ligation experiment (Figure 1C, right panel). This dataset
confirms the specificity of the binomial model and the accuracy of FDR estimates, as
violations of the underlying assumptions should lead to a large number of false
positives. In fact, GOTHIC calls just 22 false positive interactions in the random ligation
dataset from more than 3 million tests; this means that the p-values accurately reflect
the probability of observing a given number of reads between any two loci as a result of
experimental biases.

In addition to calling statistically significant interactions, GOTHiC removes much of the
underlying bias. Figure 1E demonstrates that the detection of significant interactions as
well as the general ranking of interactions by their g-value is largely independent of
coverage, as the proportion of significant interactions is stable across different coverage
bins, and in each coverage bin the proportion of interactions falling into the different
quartiles is near a quarter.
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Alternatively to the g-value, the log-ratio, R, between the observed number of reads and
the expected number of reads (log observed/expected) may be used as a normalised
measure of interaction frequency. This value is similar to the log fold-change measure in
differential expression analyses, and it would tend to show a high variance in regions of
low coverage due to the low expected values, and the integer read counts, similarly to
log fold-change of lowly expressed genes. However, the R value can be used for a dual
cut-off to identify significant interactions above a desired effect size (as in volcano
plots).

The output from GOTHIC can also be used to flag poor quality Hi-C libraries. We have
observed that inadequate dilution or cross-linking can yield libraries with a high
fraction of spurious read-pairs (i.e., self-ligations and ligations between non-crosslinked
fragments). As shown in the control dataset (Figure 1D), this will lead to more uniform
distribution of p-values, as expected by chance, and GOTHiC will successfully control the
false discovery rate, yielding a small number of significant interactions.

4.2 Reproducibility between replicates using different restriction enzymes

It has been shown that treating the same biological sample with different restriction
enzymes can cause large differences in coverage3. To evaluate the performance of
GOTHIC in these conditions, we applied it to previously published Hi-C datasets
produced using HindIIl and Ncol on a human lymphoblastoid cell line. These enzymes
target distinct restriction motifs that are distributed differently along the genome; this
results in different fragment densities, GC contents and mappability biases. Figure 2A
highlights the remarkable impact on the coverage profiles and the raw contact maps
(left and right panels, yellow highlighted boxes).

Despite these strong biases, GOTHiC outputs very consistent contact maps and
statistically significant interactions (Figure 2B). Loci with very different numbers of
read-pairs in the raw data are identified as interacting at similar significance levels after
processing (Figure 2A and 2B, highlighted regions). We find 92,892 and 103,117
significant interactions in HindIIl and Ncol experiments respectively, of which 80,500
overlap (Figure 2C), and the interaction rankings obtained from the two experiments
show high correlation (Spearman's r=0.79) (Figure 2D).

5. Comparison with existing methods

Finally, in order to benchmark GOTHiC's performance, we applied the two main
published methods, hicpipe and hiclib, to the mouse fetal liver and human
lymphoblastoid Hi-C datasets (Figure 3).

As previously observed from the contact maps, the number of reads between two loci is
strongly affected by the coverage of these loci (Figure 3C, boxplots in the top panel).
Although the normalised interaction strength values from hicpipe and hiclib do not
appear to show obvious biases in the contact maps (Figure 3A,B, S1A,B), more detailed
assessment reveals that the outputs from both methods continue to suffer from
coverage-dependent biases (Figure 3C, middle and bottom panels). The interaction
strength measures are inversely correlated with coverage, suggesting overcorrection of
the raw data - in other words, interactions in the 1st and 2nd quartiles for strength are
enriched in the low coverage bins. In contrast for GOTHiC, both the significant
interactions and the interactions ranked by g-values are are much less affected by
coverage (Figure 1E, Figure S1C b).
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Finally, we examined the overlap in interaction scores between the three methods
(Figure 3D, Figure S1F). Interactions identified as significant by GOTHiC tend to be
highly ranked by hiclib and hicpipe, indicating good agreement. Moreover, using the
number of significant interactions returned by the binomial test of GOTHiC as a cut-off
to select the top-ranked interactions returned by the other methods, revealed a very
high overlap between all three methods (Figure S2). Thus, GOTHIiC is at least as
successful as existing methods in removing biases, but also provides significance values
and a statistical framework for further analyses.

6. Discussion

Sequencing libraries produced by Hi-C experiments are noisy because of technical
artifacts (self-ligations and random ligations) and complex biases caused by the intrinsic
characteristics of the genome sequence (GC content, unequal distribution of restriction
enzyme sites, uniqueness and mappability of the sequences). Here, we proposed a
simple solution to analyze Hi-C data using a simple binomial test, which successfully
removes artifacts and sequencing biases to detect true genomic interactions even in the
noisiest Hi-C datasets.

GOTHiC’s approach is simpler than existing methods, which require the identification
and separate modeling of individual biases8 or an iterative correction of biases%10. It
yields similar rankings to previous methods, with comparable or even slightly improved
bias removal and reproducibility between replicates. Most importantly, unlike any othe
method, GOTHiC calculates p-values that allows the identification of true genomic
interactions and the removal of artefactual interactions with a well-controlled false
discovery rate.

GOTHIC is implemented as an R package, which requires a mapped read file as input and
returns a list of significant interactions. This implementation can analyze a whole-
genome Hi-C dataset of 30 million uniquely mapped reads at 1Mb resolution in ~2
hours using a single core machine with ~200Mb memory, and can be several fold faster
if run with the parallel option on more cores.

The sensitivity of the method could be further improved by estimating the fraction of
inter-molecular ligations (frandom). Our use of an upperbound (frandom=1) provides a
conservative estimate, ensures high specificity and should be preferred unless accurate
information on the noise fraction across the genome is available.

Finally, we envisage that the simple probabilistic framework introduced here could be
further expanded to other applications in Hi-C, such as combining replicates, or
identifying interaction changes between conditions. Significance levels and
observed/exptected ratios obtained from GOTHiC can be used as the basis for
algorithms predicting the 3D structure of genomes!l, those finding topologically
associated domains!? or for those that estimate the confidence for an interaction as a
function of the genomic distance separating two interacting regions13.
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8. Figures

Box 1. Schematic overview of the binomial model

(A) After crosslinking and digesting the chromatin, the DNA is ligated resulting in three
types of ligation products. In order to detect real interactions, we first filter out self-
ligations. With the remaining paired-reads, we then calculate the relative coverage
across the genome in order to estimate the random interaction probability. (B) We
finally apply the binomial test to distinguish between random and real interactions.

Figure 1. GOTHIC applied to mouse fetal liver Hi-C experiments.

(A) From the top, distributions of the relative coverage, the GC content percentage, the
mappability score and the number of fragments per 1Mb (y-axis) across mouse
Chromosome 10 (x-axis in Mb) (GC content and mappability scores are as in8).

(B-C) Contact maps of mouse Chromosome 10 containing raw read counts (interactions
with at least 3 reads) and binomial significances respectively resulting from classic Hi-C
experiment (left panel) and random ligation experiment (right panel) in fetal liver cells.
The intensity of the signal is summarized by the gradient above each contact map.
Significant interactions are colored with a red gradient in C. Arrows pinpoint a region of
high coverage and its impact on the observed number of interactions (B, right panel).
The coverage is represented at the left side of each contact map.

(D) The top panel represents the distribution of observed/expected log ratio of
significant (red) and non-significant (blue) interactions in the fetal liver cell sample.
Middle and bottom panels represent the distribution of binomial p-values in the fetal
liver cell and random samples respectively.

(E) Influence of the relative coverage on the distribution of interaction significance.
GOTHIC interaction ranking in the Hi-C (upper panel) and random ligation (lower panel)
samples. The ranked lists were divided into quartiles, the first quartiles correspond to
the top ranked interactions. Significant interactions are shown in red.

Figure 2. GOTHiC applied to human lymphoblastoid Hi-C experiments.

(A-B) Contact maps of human Chromosome 3 containing raw read counts (interactions
with at least 3 reads) and binomial significances respectively resulting from HindIII Hi-C
experiment (left panel) and Ncol Hi-C experiment (right panel). The intensity of the
signal is summarized by the gradient above each contact map. Significant interactions
are colored with a red gradient in B. The coverage is represented at the left side of each
contact map. (C) Venn diagram representing the overlap between significant
interactions detected in HindlIII (orange percentage) and Ncol (blue percentage)
samples.

(D) Correlation between the HindlIII (x-axis)/Ncol (y-axis) common significant
interactions (80,448 interactions) according to their rank. Spearman’s correlations are
indicated above the plot.

Figure 3. Comparison of mouse the fetal liver Hi-C data after processing by hiclib,
hicpipe and GOTHiC.

(A-B) Contact maps of mouse Chromosome 10 containing relative probability computed
by hiclib and observed/expected log ratio obtained with hicpipe respectively resulting
from classic Hi-C experiment (left panel) and random ligation experiment (right panel)
in fetal liver. The intensity of the signal is summarized by the gradient above each
contact map.

(C) Influence of the relative coverage on the distribution of number of observed
interactions (top panel), hiclib and hicpipe interaction ranking (middle and bottom
panels), in the HiC (left) and random ligation (right) samples. The ranked lists were
divided into quartiles, the first quartiles correspond to the top ranked interactions. The


https://doi.org/10.1101/023317
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/023317; this version posted July 27, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

distribution of the number of reads per interaction is represented in the top panel with
green box plots (corresponding y-axis is placed on the right of the plot).

(D) Correspondence between binomial significant interactions (88292) and hiclib and
hicpipe ranking. Blue bar corresponds to non-significant interactions from GOTHiC, red
bar to significant ones. The green gradients represent the ranking of the interaction
resulting from hiclib (left) and hicpipe (right) processing. Red bars indicate the
significant interactions detected with GOTHiC.

Supplementary Figure S1. Comparison of human lymphoblastoid Hi-C data after
processing by hiclib, hicpipe and the GOTHiC.

(A-B) Contact maps of human Chromosome 3 containing relative probability computed
by hiclib and observed/expected log ratio obtained with hicpipe respectively resulting
from HindlIII experiment (left panel) and Ncol experiment (right panel). The intensity of
the signal is summarized by the gradient above each contact map.

(C) Influence of the relative coverage on the distribution of (a) number of observed
interactions, (b) GOTHIC, (c) hiclib and (d) hicpipe interaction ranking in the HindIII
(left) and Ncol (right) samples. The ranked lists were divided into quartiles, the first
quartiles correspond to the top ranked interactions. The distribution of the number of
reads per interaction is represented in the top panel with green box plots
(corresponding y-axis is placed on the right of the plot). 92,897 and 103,114
interactions were called significant using GOTHiC in the HindIIl and Ncol samples
respectively. In order to compare with the predictions of (D) hiclib and (E) hicpipe, we
selected the 92,897 and 103,114 top ranked interactions of these methods and first
computed the overlap (top) and correlation (bottom) between the two samples.

(F) Correspondence between binomial significant interactions and hiclib and hicpipe
ranking. The green-to-blue gradients represent the ranking of the interaction resulting
from hiclib (left) and hicpipe (right) processing. Red bars indicate the significant
interactions detected by GOTHiC in both HindIII and Ncol experiments. Orange bars
indicate the significant interactions detected only in the HindIII experiment and blue
bars indicate the significant interactions detected only in the Ncol experiment.

Supplementary Figure S2: Overlap of top-ranked interactions from hiclib and
hicpipe with significant interactions from GOTHiC.

GOTHIC identified 88,292 significant interactions in the mouse fetal liver cell Hi-C
dataset. (A) Venn diagram showing the overlap between the significant interactions
identified by GOTHiC and the top 88,292 interactions from the hiclib and hicpipe
outputs. (B) There were 80,448 significant interactions detected by GOTHiC that
overlapped between the HindIIl and Ncol experiments in the human lymphoblastoid cell
line. The Venn diagram shows the overlap of between the GOTHIC, hiclib and hicpipe
outputs.
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