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ABSTRACT
Summary: Diffusion maps are a spectral method for non-linear
dimension reduction and have recently been adapted for the visu-
alization of single cell expression data. Here we present destiny , an
efficient R implementation of the diffusion map algorithm. Our pack-
age includes a single-cell specific noise model allowing for missing
and censored values. In contrast to previous implementations, we fur-
ther present an efficient nearest-neighbour approximation that allows
for the processing of hundreds of thousands of cells and a functional-
ity for projecting new data on existing diffusion maps. We exemplarily
apply destiny to a recent time-resolved mass cytometry dataset of
cellular reprogramming.
Availability and implementation: destiny is an open-source
R/Bioconductor package http://bioconductor.org/packages/
destiny also available at https://www.helmholtz-muenchen.
de/icb/destiny. A detailed vignette describing functions and
workflows is provided with the package.
Contact: carsten.marr@helmholtz-muenchen.de, f.buettner@
helmholtz-muenchen.de

1 INTRODUCTION
Recent technological advances allow for the profiling of individual
cells, using methods such as single-cell RNA-seq, single-cell RT
qPCRqPCR or cyTOF (Vargas Roditi and Claassen, 2015) These
techniques have been used successfully to study stem cell differen-
tiation with time-resolved single-cell experiments, where individual
cells are collected at different absolute times within the differen-
tiation process and profiled. While differentiation is a smooth but
nonlinear process (Buettner and Theis, 2012; Haghverdi, Buettner,
and Theis, 2015) involving continuous changes of the overall tran-
scriptional state, standard methods for visualizing such data are
either based on linear methods such as Principal Component Anal-
ysis and Independent Components Analysis or they use clustering
techniques not accounting for the smooth nature of the data.

In contrast, diffusion maps – initially designed by Coifman, La-
fon, et al. (2005) for dimensionality reduction in image processing –
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recover a distance measure between each pair of data points (cells)
in a low dimensional space that is based on the transition proba-
bility from one cell to the other through several paths of a random
walk. Diffusion maps are especially suited for analyzing single-cell
gene expression data from differentiation experiments (such as time-
course experiments) for three reasons. First, they preserve the global
relations between data points. This feature makes it possible to re-
construct developmental traces by re-ordering the asynchronously
differentiating cells according to their internal differentiation state.
Second, the notion of diffusion distance is robust to noise, which is
ubiquitous in single-cell data. Third, by normalizing for sampling
density, diffusion maps become insensitive to the distribution of the
data points (i. e. sampling density), which aids the detection of rare
cell populations.

Here, we present a user friendly R implementation of diffusion
maps including previously proposed adaptations to single cell data
(Haghverdi, Buettner, and Theis, 2015) as well as novel functional-
ity. The latter includes approximations allowing for the visualisation
of large data sets and the projection of new data on existing maps.

2 DESCRIPTION: THE DESTINY PACKAGE
2.1 Algorithm
As input, destiny accepts an expression matrix or data structure ex-
tended with annotation columns. Gene expression data should be
pre-processed and normalized using standard workflows (see Sup-
plementary text S1) before generating the diffusion map. destiny
calculates cell-to-cell transition probabilities based on a Gaussian
kernel with width σ to create a sparse transition probability matrix
M . If the user does not specify σ, destiny employs an estimation
heuristic to derive this parameter (see Supplementary Text S2). In
contrast to other implementations, destiny allows for the visualisa-
tion of hundreds of thousands of cells by only using distances to
the k nearest neighbors of each cell for the estimation of M (see
Supplementary Text S2). Optionally destiny uses an application-
specific noise model for censored and missing values in the dataset
(see Figure S1). An eigendecomposition is performed on M after
density normalization, considering only transition probabilities be-
tween different cells. By rotating M , a symmetric adjoint matrix
can be used for a faster and more robust eigendecomposition (Coif-
man, Kevrekidis, et al., 2008) The resulting data-structure contains
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the eigenvectors with decreasing eigenvalues as numbered diffusion
components, the input parameters and a reference to the data.

Figure 1. destiny applied to the mass cytometry reprogramming dataset
of Zunder et al. (2015) with 36 markers and 256,000 cells. A) The opti-
mal Gaussian kernel width σ. B) The Eigenvalues of the first 100 diffusion
components decrease smoothly, indicating a large intrinsic dimensionality of
the data. C) The initial population of mouse embryonic fibroblasts (MEFs,
blue) is reprogrammed and profiled over 20 days. While a final cell popula-
tion expressing stem cell markers is clearly separated, cells that revert to the
MEF state are found proximal to the initial population in the diffusion map.
(inset:) destiny code to generate the diffusion map

2.2 Visualization and projection of new data
This data-structure can be easily plotted and colored using the
parameters of provided plot methods. An automatic color leg-
end integrated into R’s palette system facilitates the generation of
publication-quality plots. A further new feature in destiny is the
ability to integrate new experimental data in an already computed
diffusion map. destiny provides a projection function to generate
the coordinates for the new data without recalculating the diffusion
map by computing the transition probabilities from new data points
to the existing data points (see Supplementary Text S3).

3 APPLICATION
We applied destiny to four single-cell datasets of different size
(hundreds to hundreds of thousands of cells) and characteristics
(qRT-PCR, RNA-Seq and mass cytometry, see Supplementary Ta-
ble S1). We first estimate the optimal σ that matches the intrinsic
dimensionality of the data (Fig. 1A and Supplementary Figs. S2A
and S3A). Using a scree plot (Fig. 1B and Supplementary Figs. S2B,
S3B, and S4A), the relevant diffusion components can be identified.
However, for big datasets as the mass cytometry data from Zun-
der et al. (2015) with 256,000 cells and 36 markers, corresponding
Eigenvalues decrease smoothly. Although only a part of the intrin-
sic dimensionality can be represented in a 3D plot, the diffustion

map reveals interesting properties of the reprogramming dynamics
(Fig. 1C and Supplementary Fig. S5). We compared destiny’s per-
formance to other implementations, including our own in MATLAB
(based on Maggioni code1, published with Haghverdi, Buettner, and
Theis, 2015) and the diffusionMap R package (Richards, 2014) des-
tiny performs similarly well for small datasets, while outperforming
other implementations for large datasets (see Supplementary Table
S1).

4 DISCUSSION AND CONCLUSION
We present a user-friendly R package of the diffusion map algorithm
adapted to single-cell gene expression data and include new features
for efficient handling of large datasets and a projection functionality
for new data. We illustrate the capabilities of our package by vi-
sualizing gene expression data of 250,000 cells and show that our
package is able to reveal continuous state transitions. Together with
an easy to use interface this facilitates the application of diffusion
map as new analysis tool for single-cell gene expression data.
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