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Abstract 24 

Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a 25 

low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important 26 

indicator of information transmission in the brain. However, the neurobiological mechanisms 27 

underlying its generation remain undetermined.  A realistic, yet tractable computational model of 28 

the phenomenon is thus needed. Here we propose a neural mass model of a cortical column, 29 

comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). 30 

The conditional transfer entropies (cTE) from the phases to the amplitudes of the generated 31 

oscillations are estimated by means of the conditional mutual information.  This approach 32 

provides information regarding directionality by distinguishing PAC from APC (amplitude-33 

phase coupling), i.e. the information transfer from amplitudes to phases, and can be used to 34 

estimate other types of CFC such as amplitude-amplitude coupling (AAC) and phase-phase 35 

coupling (PPC). While experiments often only focus on one or two PAC combinations (e.g., 36 

theta-gamma or alpha-gamma), we found that a cortical column can simultaneously generate 37 

almost all possible PAC combinations, depending on connectivity parameters, time constants, 38 

and external inputs. We found that the strength of PAC between two populations was strongly 39 

correlated with the strength of the effective connections between them and, on average, did not 40 

depend upon the presence or absence of a direct (anatomical) connection. When considering a 41 

cortical column circuit as a complex network, we found that neuronal populations making 42 

indirect PAC connections had, on average, higher local clustering coefficient, efficiency, and 43 

betweenness centrality than populations making direct connections and populations not involved 44 

in PAC connections. This suggests that their interactions were more efficient when transmitting 45 

information. Since more than 60% of the obtained interactions represented indirect connections, 46 
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 3 

our results highlight the importance of the topology of cortical circuits for the generation of the 47 

PAC phenomenon. Finally, our results demonstrated that indirect PAC interactions can be 48 

explained by a cascade of direct CFC and same-frequency band interactions, suggesting that 49 

PAC analysis of experimental data should be accompanied by the estimation of other types of 50 

frequency interactions for an integrative understanding of the phenomenon.  51 

 52 

Keywords: neural mass models; phase-amplitude coupling; cross-frequency coupling; cortical 53 

column; conditional mutual information; conditional transfer entropy; complex networks 54 
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1. Introduction 71 

It has been hypothesized that phase-amplitude coupling (PAC) of neurophysiological signals 72 

plays a role in the shaping of local neuronal oscillations and in the communication between 73 

cortical areas (Canolty and Knight 2010). PAC occurs when the phase of a low frequency 74 

oscillation modulates the amplitude of a higher frequency oscillation. A classic example of this 75 

phenomenon was demonstrated in the CA1 region of the hippocampus (Bragin, Jando et al. 76 

1995), where the phase of the theta band modulated the power of the gamma-band. 77 

Computational models of the theta-gamma PAC generation in the hippocampus have been 78 

proposed (Kopell, Boergers et al. 2010) and are based on two main types of models. The first 79 

type of models consists of a network of inhibitory neurons (I-I model) (White, Banks et al. 80 

2000), whereas the second model is based on the reciprocal connections between networks of 81 

excitatory pyramidal cells and inhibitory neurons (E-I model) (Tort, Rotstein et al. 2007, Kopell, 82 

Boergers et al. 2010). In such models, fast excitation and delayed feedback inhibition alternate, 83 

and with appropriate strength of excitation and inhibition, oscillatory behavior occurs. When the 84 

gamma activity produced by the E-I or I-I models is periodically modulated by a theta rhythm 85 

imposed by either an external source or theta resonant cells within the network (White, Banks et 86 

al. 2000), a theta-gamma PAC is produced. Recently, the generation of theta-gamma PAC was 87 

studied (Onslow, Jones et al. 2014) using a neural mass model (NMM) proposed by Wilson and 88 

Cowan (Wilson and Cowan 1972). In NMMs, spatially averaged magnitudes are assumed to 89 

characterize the collective behavior of populations of neurons of a given type instead of 90 

modeling single cells and their interactions in a realistic network (Wilson and Cowan 1972, 91 

Jansen and Rit 1995). Specifically, the Wilson and Cowan model consists of excitatory and 92 

inhibitory neural populations which are mutually connected.  93 
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While the models mentioned above have improved our understanding of the physiological 94 

mechanism that gives rise to theta-gamma PAC, we lack modeling insights into the generation of 95 

PAC involving other frequency pairs (Sotero 2015). This is critical because experimental studies 96 

have shown that the PAC phenomenon is not restricted to either the hippocampus or to theta-97 

gamma interactions. In fact, PAC has been detected in pairs involving all possible combinations 98 

of low and high frequencies: delta-theta (Lakatos, Shah et al. 2005), delta-alpha (Cohen, Elger et 99 

al. 2009, Ito, Maldonado et al. 2013), delta-beta (Cohen, Elger et al. 2009, Nakatani, Raffone et 100 

al. 2014), delta-gamma (Gross, Hoogenboom et al. 2013, Lee and Jeong 2013, Nakatani, Raffone 101 

et al. 2014, Szczepanski, Crone et al. 2014, Florin and Baillet 2015), theta-alpha (Cohen, Elger et 102 

al. 2009), theta-beta (Cohen, Elger et al. 2009, Nakatani, Raffone et al. 2014), theta-gamma 103 

(Lakatos, Shah et al. 2005, Demiralp, Bayraktaroglu et al. 2007, Wang, Li et al. 2011, 104 

Durschmid, Zaehle et al. 2013, Lee and Jeong 2013, McGinn and Valiante 2014, Florin and 105 

Baillet 2015), alpha-beta (Sotero, Bortel et al. 2015), alpha-gamma (Osipova, Hermes et al. 106 

2008, Voytek, Canolty et al. 2010, Spaak, Bonnefond et al. 2012, Wang, Saalmann et al. 2012), 107 

and beta-gamma (Wang, Saalmann et al. 2012, de Hemptinne, Ryapolova-Webb et al. 2013).  108 

Furthermore, although experimental studies usually focus on one or two PAC combinations, 109 

most of the combinations mentioned above can be detected in a single experiment (Sotero, Bortel 110 

et al. 2015). This suggests a diversity and complexity of the PAC phenomenon that has not been 111 

incorporated into current computational models. Similarly, there is a need for further 112 

improvement in the mathematical methods used to detect PAC. Although a large number of 113 

methods have been proposed (Penny, Duzel et al. 2008, Tort, Komorowski et al. 2010), no gold 114 

standard has emerged.  115 
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In this work, we propose a neural mass model of a cortical column that comprises 4 cortical 116 

layers and 14 neuronal populations and study the simultaneous generation of all PAC 117 

combinations mentioned above. To estimate PAC we use a measure of the information transfer 118 

from the phase of the low frequency rhythm to the amplitude of the higher frequency oscillation, 119 

which is known as conditional transfer entropy (cTE) (Lizier, Heinzle et al. 2011). This 120 

multivariate approach provides information about the directionality of the interactions, thus 121 

distinguishing PAC from the information transfer from the amplitude to the phases (i.e. 122 

amplitude-phase coupling, or APC) which has been experimentally detected (Jiang, 123 

Bahramisharif et al. 2015). This done in contrast to previous methods which were either based on 124 

pairwise correlations between the selected phase and amplitude (Canolty, Edwards et al. 2006, 125 

Penny, Duzel et al. 2008), or provided directionality using pairwise approaches (Jiang, 126 

Bahramisharif et al. 2015), or were multivariate but did not provide directionality (Canolty, 127 

Cadieu et al. 2012). By estimating cTE from phases to amplitudes, we obtain a clearer view of 128 

the mechanisms underlying the generation of PAC in the cortical column which allows us to 129 

study the link between anatomical and effective PAC structure. In the examples shown in this 130 

paper, the neuronal populations modeled have natural frequencies in the theta, alpha and gamma 131 

bands. However, due to the effective connectivity between populations, oscillations in the delta 132 

and beta bands appear and result in PAC involving these frequencies. We focused on three 133 

combinations (delta-gamma, theta-gamma, and alpha-gamma) and explored how changes in 134 

model parameters such as the strength of the connections, time constants or external inputs 135 

strengthen or weaken the PAC phenomenon. We found that more than 60% of the obtained PAC 136 

interactions result from indirect connections and that, on average, these interactions have the 137 

same strength as direct (anatomical) connections. The cortical column circuit was analyzed as a 138 
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complex network and three different local topological measures were computed: the clustering 139 

coefficient (��), the efficiency (��) and betweenness centrality (��) which quantify how 140 

efficiently the information is transmitted within the network. According to our results, neuronal 141 

populations sending direct PAC connections had higher local ��, ��, and �� coefficients, than 142 

populations receiving the PAC connection and populations not involved in PAC interactions. 143 

This suggests that the topology of cortical circuits plays a central role in the generation of the 144 

PAC phenomenon.  145 

Finally, although this paper focuses on the PAC phenomenon, in order to study the generation of 146 

indirect PAC connections we also estimated other types of cross-frequency coupling such as 147 

APC, amplitude-amplitude coupling (AAC), and phase-phase coupling (PPC), as well as 148 

interactions within the same frequency band (or same-frequency coupling, SFC), and used these 149 

as predictors of indirect PAC in a linear regression analysis. We demonstrated that indirect PAC 150 

connections can be predicted by a cascade of direct CFC and SFC interactions, suggesting that 151 

PAC analysis of experimental data should be accompanied by the estimation of other types of 152 

interactions for an integrative understanding of the phenomenon. 153 

A list of the abbreviations used in this paper is presented in Table 1.  154 

 155 

2. Methods 156 

2.1. A neural mass model of a cortical column 157 

Figure 1 shows the proposed model obtained by distributing four cell classes in four cortical 158 

layers (L2/3, L4, L5, and L6). This produced 14 different neuronal populations, since not all cell 159 

types are present in each layer (Neymotin, Jacobs et al. 2011). Excitatory neurons were either 160 

regular spiking (RS) or intrinsically bursting (IB), and inhibitory neurons were either fast-spiking 161 
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(FS), or low-threshold spiking (LTS) neurons. The evolution of each population dynamics rests 162 

on two mathematical operations. Post-synaptic potentials (PSP) at the axonal hillock were 163 

converted into an average firing rate using the sigmoid function:    164 

���� � ��
����������

                                                                                    (1) 165 

where the variable x represents the PSP and parameters e0, v0 and r represent the maximal firing 166 

rate, the PSP corresponding to the maximal firing rate e0, and the steepness of the sigmoid 167 

function, respectively. The second operation was the conversion of firing rate at the soma and 168 

dendrites into PSP, which was done by means of a linear convolution with an impulse response 169 

	�
� given by: 170 

            	�
� � �

����                                                                           (2) 171 

where G controls the maximum amplitude of PSP and k is the sum of the reciprocal of the 172 

average time constant (Jansen and Rit 1995). The convolution model with impulse response (2) 173 

can be transformed into a second order differential equation (Jansen and Rit 1995, Sotero, 174 

Trujillo-Barreto et al. 2007). The temporal dynamics of the average PSP in each neuronal 175 

population �� can then be obtained by solving a system of 14 second order differential 176 

equations:   177 

          �
�		
��

���
� �2
���

�		
��

��
� 
�

� ���
� � ��
���� � ∑ Γ
����
�
����

�� �                      �3� 178 

where n = 1,…,14 and m = 1,…,14. The populations are numbered from 1 to 14 following the 179 

order: [L2RS, L2IB, L2LTS, L2FS, L4RS, L4LTS, L4FS, L5RS, L5IB, L5LTS, L5FS, L6RS, 180 

L6LTS, L6FS]. Notice that layer 2/3 was simply labelled as L2. As can be seen in (3), neuronal 181 

populations interact via the connectivity matrix Γ
�. This is an ‘anatomically constrained’ 182 

effective connectivity matrix (Sotero, Bortel et al. 2010) in the sense that its elements represent 183 

anatomical (i.e., direct) connections, but their strength (except the ones set to zero) can vary with 184 
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a condition or task. Inputs from neighboring columns are accounted for via ��  , which can be any 185 

arbitrary function, including white noise (Jansen and Rit 1995). Thus, equation (3) represents a 186 

system of 14 random differential equations (Carbonell, Jimenez et al. 2005).  187 

The ‘damping’ parameter �� critically determines the behavior of the system. If the connections 188 

between the populations are set to zero �Γ
� � 0, � � ��, then for �� � 1 (overdamped 189 

oscillator) and �� � 1 (critically damped oscillator), each neuronal population will evolve to a 190 

fixed point  �		
��

��
� 0! without oscillating. If �� " 1 (underdamped oscillator), each population 191 

is capable of producing oscillations even if the inter-population coupling is set to zero. The case  192 

�� � 1 corresponds to the Jansen and Rit model (Jansen and Rit 1995), which has been 193 

extensively used in the literature (David and Friston 2003, Grimbert and Faugeras 2006, Zavaglia, 194 

Astolfi et al. 2006, Sotero, Trujillo-Barreto et al. 2007, Sotero and Trujillo-Barreto 2008, Valdes-195 

Sosa, Sanchez-Bornot et al. 2009, Ursino, Cona et al. 2010, Zavaglia, Cona et al. 2010). Thus, in 196 

this model, an individual population is not capable of oscillating, and the balance between 197 

excitation and inhibition is what produces oscillatory behavior that mimics observed 198 

Electroencephalography (EEG) signals. It should be noted that realistic models of a single 199 

inhibitory neural population are able to produce oscillations (Wang and Buzsaki 1996), but that 200 

excitatory populations were believed to only produce unstructured population bursts (Buzsáki 201 

2006). This view has been challenged recently by both experimental and computational studies 202 

(Allene, Cattani et al. 2008, Tattini, Olmi et al. 2012).  To account for the possibility of oscillatory 203 

activity in single populations, we introduced the parameter �� with values �� " 1. Tables 1 and 204 

2 present the parameters of the model and their interpretation. As shown in table 2, FS 205 

populations have the fastest time constants, followed by IB, RS, and LTS, in that order.  206 

 207 
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Table 1. List of abbreviations. 208 

Abbreviation Meaning 
AAC Amplitude-amplitude coupling 
APC Amplitude-phase coupling 
CFC Cross-frequency coupling 
cMI Conditional mutual information 
cTE Conditional transfer entropy 

ECoG Electrocorticography 
EEG Electroencephalography 
ESC Envelope-to-signal correlation 
FS Fast-spiking 
IB Intrinsically bursting 

LFP Local field potential 
LTS Low-threshold 
Midx Modulation index 
NMM Neural mass model 
PAC Phase-amplitude coupling 
PFC Phase-frequency coupling 
PPC Phase-phase coupling 
PSP Postsynaptic potential 
RS Regular spiking 

SFC Same-frequency coupling 
 209 

 210 

Table 2. Values and physiological interpretations of model parameters for the 14 neuronal 211 

populations.  212 

Parameter 
(units) 

Interpretation Value Reference 

���#� Gain �� � 3.25, �� � 3.25, �� �
30, �� � 10, �� � 3.25, 
�� � 30, �� � 10, �� � 3.25, 
�� � 3.25, ��� � 30, ��� �
10, ��� � 3.25, ��� � 30, 
��� � 10 

(Jansen and Rit 1995, 
Wendling, Bellanger et al. 
2000, Zavaglia, Astolfi et 
al. 2006) 


�&��� Reciprocal of 
time constant 


� � 60, 
� � 70, 
� � 30, 

� � 350, 
� � 60, 
� �
30, 
� � 350, 
� � 60, 

� � 70, 
 � 30, 
�� � 350, 

�� � 60, 
�� � 30, 
�� � 350 

(Jansen and Rit 1995, 
Wendling, Bellanger et al. 
2000, Zavaglia, Astolfi et 
al. 2006) 

� External input �� � 0  for  ) � *5,7+ , �� �
500,  �� � 150 

- 
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� Damping 
coefficient 

� � 0.001 for all populations - 

���&��� Maximum firing 
rate 

�� � 5 for all populations (Jansen and Rit 1995) 

,���#� Position of the 
sigmoid function 

,� � 6 for all populations (Jansen and Rit 1995) 

-��#��� Steepness of the 
sigmoid function 

- � 0.56 for all populations (Jansen and Rit 1995) 

 213 

Table 3. Standard values of the anatomically constrained effective connectivity matrix Γ
� 214 

(Figure 1B). All values represent anatomical (direct) connections. Nonzero values were manually 215 

tuned to produce peaks in the spectrum of ���
� in all frequencies of interest (from delta to 216 

gamma) as well as an average LFP spectrum (Figure 6) consistent with experimental results 217 

(Maier, Adams et al. 2010, Buffalo, Fries et al. 2011). Values that are zero were taken from the 218 

literature (Neymotin, Jacobs et al. 2011).  219 

  220 

 From   To 
        
  

L2/3 L4 L5 L6 
RS IB LTS FS RS LTS FS RS IB LTS FS RS LTS FS 

 
L2/3 

RS 19.23 12.53 34.17 14.07 1.61 0 0 3.82 1.61 0 0 0 0 0 

IB 12.53 12.53 27.47 14.07 1.61 0 0 3.82 1.61 0 0 0 0 0 

LTS -23.45 -23.45 -52.93 -6.70 0 0 0 -23.45 -33.50 0 -16.75 -16.75 0 -11.39 

FS -3.35 -5.36 -6.03 -20.1 0 0 0 -3.35 -6.70 0 -2.01 -3.35 0 -2.01 

 
L4 

RS 9.72 0 0 0 22.98 34.17 58.96 7.77 8.17 0 0 2.14 0 0 

LTS 0 0 0 0 -23.45 -52.93 -8.71 0 0 0 0 0 0 0 

FS 0 0 0 0 -6.03 -6.03 -61.64 0 0 0 0 0 0 0 

 
L5 

RS 1.47 0 0 0 0.47 0 0 32.89 5.36 20.77 8.71 2.14 0 0 

IB 1.21 0 0 0 0.47 0 0 1.14 46.90 20.77 8.71 4.69 0 0 

LTS -23.45 0 0 0 0 0 0 -23.45 -23.45 -52.93 -2.01 -16.75 0 -5.36 

FS 0 0 0 0 0 0 0 -2.68 -2.68 -2.68 -61.64 0 0 0 

 
L6 

RS 0 0 0 0 0 0 0 0.40 1.88 0 0 48.78 34.17 15.41 

LTS -23.45 0 0 0 0 0 0 -16.75 -16.75 0 -5.36 -23.45 -66.33 -8.71 

FS 0 0 0 0 0 0 0 0 0 0 0 -9.38 -29.48 -28.14 

 221 

2.2. Estimation of phase-amplitude coupling 222 

Several mathematical methods for detecting PAC have been proposed (Penny, Duzel et al. 2008, 223 

Canolty and Knight 2010, Tort, Komorowski et al. 2010, Canolty, Cadieu et al. 2012, Jiang, 224 

Bahramisharif et al. 2015), although each yields advantages and caveats, such that no gold 225 
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standard for the detection of PAC has emerged. Although diverse, the basis for these methods is 226 

to test the correlation between the instantaneous phase of a lower frequency rhythm and the 227 

instantaneous amplitude of the higher frequency rhythm. To compute any one of these measures, 228 

signals generated with the model (3) need to be band-pass filtered into different frequency bands. 229 

In this paper we use the following bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 230 

(12–30 Hz), and gamma (30–120 Hz). To this end, we designed FIR filters using MATLAB’s 231 

signal processing toolbox function firls.m. To remove any phase distortion, the filters were 232 

applied to the original time series in the forward and then the reverse direction using MATLAB’s 233 

function filtfilt.m (Penny, Duzel et al. 2008). The analytic representation  .���
� of each filtered 234 

signal  ��� (where m = 1,..,5 stands for the index of the frequency band, and k = 1,..,14, indexes 235 

the neuronal populations) was obtained using the Hilbert transform Hilbert� ����
��:  236 

 .���
� �  ����
� � )Hilbert� ����
�� �  6���
��� �	

��                                              (4) 237 

where  6���
� and  7���
� are the instantaneous amplitudes and phases, and i is the imaginary 238 

number. Amplitudes were normalized by subtracting the temporal mean and dividing the result by 239 

the temporal standard deviation to create the set of normalized band-passed signals. 240 

Normalization was done to facilitate comparison between different frequency bands. 241 

Two examples of PAC measures frequently used in the literature are the modulation index (Midx) 242 

(Canolty, Edwards et al. 2006) and the envelope-to-signal correlation (ESC) (Penny, Duzel et al. 243 

2008): 244 

8)9� � :∑ 6
��
��� �	

��
� :                                              (5) 245 

��� � ;<--�cos� 7���
�� , 6
��
��                                              (6) 246 

where subindexes m and n corresponds to different frequency bands and subindexes k and l 247 

correspond to different neuronal populations. However, ESC and Midx are pairwise measures of 248 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/023291doi: bioRxiv preprint 

https://doi.org/10.1101/023291
http://creativecommons.org/licenses/by/4.0/


 13

the correlation between phases and amplitudes and thus cannot detect directionality in the 249 

interaction. Measures such as cTE (Lizier, Heinzle et al. 2011) which are based on the 250 

information transmitted between signals should provide a clearer picture of the mechanisms 251 

generating PAC than correlation-based measures. cTE can be computed using the conditional 252 

mutual information (cMI) measure (MacKay 2003). First, we define the cMI between the 253 

phase 7��  and the amplitude 6
� , given all the other phases �Φ� and amplitudes �Α� as: 254 

;8B�C 7��, 6
�|M� � F�C 7�� , |M� � F�C 7�� , |6
� , M�                                                 (7) 255 

where 8 � GΦ, ΑH is a matrix comprising all phases and amplitudes in all populations, except 256 

 7��  and 6
�, and the two terms at the right side of  the equation are conditional entropies 257 

(MacKay 2003). To compute cMI we use a toolbox 258 

(http://www.cs.man.ac.uk/~pococka4/MIToolbox.html) which computes several information 259 

measures using the conditional likelihood maximization algorithm (Brown, Pocock et al. 2012). 260 

cMI does not provide information about the directionality of the coupling between phases and 261 

amplitudes, which is  a problem because both theoretical (Daffertshofer and van Wijk 2011) and 262 

experimental (Jiang, Bahramisharif et al. 2015) studies indicate the possibility of an information 263 

flow from amplitudes to phases. On the other hand, cTE provides directionality by estimating the 264 

cMI between one signal (the phase in our case) and the other signal (the amplitude) shifted I steps 265 

into the future. In this paper, to estimate cTE from the phase to the amplitude (denoted as 266 

;J� �	
����), we compute ;8B for N different Is and average the results (Palus, Komarek et al. 267 

2001, Palus and Stefanovska 2003, Lizier, Heinzle et al. 2011) : 268 

                                                 ;J� �	
���� � �

�
∑ ;8B�C 7��, 6
�

� :8K��
���                                                  269 

(8) 270 
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 where 6
�
�  is derived from the amplitude time series 6
� at I steps into the future, i.e. 6
�

� �271 

6
��
 � I�, and 8K is a matrix comprising all phases and amplitudes in all populations, except 272 

 7�� . In this paper we use L � 100. Since we use a time step of 10-4 s in all simulations, we are 273 

averaging the cMI up to a period of 10 ms into the future. 274 

A significance value can be attached to any of the above measures by means of a surrogate data 275 

approach (Canolty, Edwards et al. 2006, Penny, Duzel et al. 2008), where we offset  7��  and 6
� 276 

by a random time lag. We can thus compute 1000 surrogate Midx, ESC, cMI and cTE values. 277 

From the surrogate dataset we first compute the mean μ and standard deviation N, and then 278 

compute a z-score as: 279 

                      O� � � !�"

#


  ,     O� � � !�"�
#�

   , O� � � !�"�
#�

 ,    O� � �$%�"�
#�

                               (9) 280 

The p-value that corresponds to the standard Gaussian variate is also computed. Z values 281 

satisfying |O| � 1.96 are significant with Q � 0.05. Masks of zeros (for non-significant Z values) 282 

and ones (for significant Z-values) are created and multiplied to Midx, ESC, cMI, and cTE. 283 

Finally, a multiple comparison analysis based on the False Discovery Rate (Storey and Tibshirani 284 

2003) is  performed using the computed p-values. 285 

2.3. Nonlinear correlation coefficient 286 

Given the nonlinear nature of the PAC phenomenon, studying the link between the parameters of 287 

the model and the strength of PAC cannot be done with the Pearson correlation coefficient, 288 

which measures the linear correlation between two variables and is therefore not appropriate. 289 

Nonlinear measures are thus required. The underlying idea is that if the value of the variable X is 290 

considered as a nonlinear function of the variable Y, the value of Y given X can be predicted 291 

according to a nonlinear regression (Pereda, Quiroga et al. 2005). In this paper, we computed the 292 

nonlinear regression by fitting .�
� with a Fourier series: 293 
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                            .R�
� � 6� � ∑ 6�&)������
� � ;���
���                                                                 294 

(10) 295 

where we used L � 10. The nonlinear correlation coefficient -
� is then the value of the linear 296 

correlation between .�
� and the predicted signal .R�
�. 297 

2.4. Topological properties of the cortical column network 298 

Complex network analysis have proven useful for studying the relationship between structure 299 

and function in brain networks (Honey, Kotter et al. 2007). In this paper we are interested in 300 

studying how the topology of the connectivity matrix Γ
� influences the PAC phenomenon. 301 

Specifically, we want to answer the question of whether the populations involved in direct and 302 

indirect PAC interactions present the same topological properties. This means we need to focus 303 

on local properties of the network instead of global ones. In this paper we are going to compute 304 

three such properties: the local clustering coefficient, the local efficiency, and the local 305 

betweenness centrality, for the sending and receiving nodes involved in each direct or indirect 306 

PAC interaction.  307 

In this section we are not going to distinguish between inhibitory and excitatory connections, and 308 

the analysis will be done to the absolute value of the connectivity matrix: S � |Γ
�|. 309 

Nodes of a network can be characterized by the structure of their local neighborhood. The 310 

concept of clustering of a network refers to the tendency to form cliques in the neighborhood of 311 

any given node (Watts and Strogatz 1998). This means that if node m is connected to node n, 312 

while at the same time node n is connected to node s, there is a high probability that node m is 313 

also connected to node s.  314 

Let T � *6�
+ be the directed adjacency matrix (Albert and Barabasi 2002) of the network 315 

(6�
 � 1 when there is a connection from m to n, 6�
 � 0 otherwise). Let also  9�
�&� be the 316 
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total degree of node m, and 9�
' � ∑ 6�
6
��(
 . The local clustering coefficient of node m for 317 

weighted networks is (Fagiolo 2007): 318 

                                                            �� � )*+ �*+ �,
		

�

�-�	
���)�	

�����,���	
�.

                                                  (11) 319 

where SW �  S�/�, and  �SW � SW $�
��

�
 is the mth element of the main diagonal of �SW � SW $��

.  320 

The second measure we are going to compute is the local efficiency, calculated as (Latora and 321 

Marchiori 2001, Rubinov and Sporns 2010): 322 

                                                             �� � �

���
∑ �XY�0���

0,0(�                                                  (12) 323 

where XY�0  is the shortest weighted path length from m to j. Thus, �� is inversely related to the 324 

path length, and measures how efficiently the network exchanges information on a local scale.  325 

To account quantitatively for the role of nodes that can be crucial for connecting different 326 

regions of the network by acting as bridges, the concept of betweenness centrality was 327 

introduced (Newman, Barabási et al. 2006). The local weighted betweenness centrality of node m 328 

is computed as (Rubinov and Sporns 2010) : 329 

                                                           �� � �

����
����

∑ 2��
��

2��
3,0

0(�,3(�,0(3
                                                  330 

(13) 331 

where Z30 is the number of shortest paths between h and j that pass through m. A node with high 332 

centrality is thus crucial to efficient communication.  333 

To compute the ��, ��, and �� measures we use Matlab functions provided in the brain 334 

connectivity toolbox (https://sites.google.com/site/bctnet/). 335 

 336 

3. Results 337 

3.1. Detecting PAC: control analysis 338 
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We connected three excitatory neuronal populations, labeled 1, 2 and 3 (Figure 2A and 2B). The 339 

temporal dynamics of the three populations are described by a system of random differential 340 

equations identical to (3), but with n=1:3 and m=1:3. As shown in Figure 2A, there is no 341 

connection between populations 1 and 3 and both are driven by population 2. The parameters 342 

used in this simulation were: �� � 3.25, �� � 4, �� � 3.25, �� � 4, 
� � 330, 
� � 30, 343 


� � 400. Inputs ��, ��, and  �� were white noise processes with mean 0 and standard 344 

deviations: N� � N� � N� � 3. Simulated data were generated by numerically integrating system 345 

(3). To do this, the local linearization method for random systems was used (Carbonell, Jimenez 346 

et al. 2005) with an integration step of 10-4 s.  347 

Figure 2C shows the temporal dynamics of the three populations and Figure 2D displays the 348 

corresponding spectral density. Population 2 oscillates at 4.40 Hz (theta band), whereas 349 

populations 1 and 3 have peaks at 50 and 57.8 Hz, respectively (gamma band). Because of the 350 

connections 2�1 and 2�3, there are peaks at 4.40 Hz in populations 1 and 3, and more 351 

importantly, there are secondary peaks at frequencies 50F\ ] 4.40 F\ and 57.8F\ ] 4.40 F\ 352 

on both sides of these main peaks. This shows that the low frequency (4.40 Hz) is modulating the 353 

higher frequencies (50 and 57.8 Hz) and that there is theta-gamma PAC. According to the 354 

connections shown in Figure 2A, phases in populations 1 and 3 cannot modulate the amplitudes 355 

in populations 3 and 1, respectively. Thus, an appropriate method to study the generation of PAC 356 

should not detect any modulation between populations 1 and 3. We found that when the sigmoid 357 

function is replaced by the linear function S(x)=x, no modulation is obtained (Figure 2E). 358 

Figure 3A shows the PAC computed using the four measures presented in section 2.2. Non-359 

significant values are plotted in white. The four methods correctly detect that there is no PAC 360 

involving amplitudes in the gamma band in population 2 (there is no significant spectral peak at 361 
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the gamma band, only white noise). However, according to ESC and Midx, there is significant 362 

PAC between the phases of the theta band in neuronal population 1 and the amplitudes of the 363 

gamma band in neuronal population 3, as well as PAC between the phases of the theta band in 364 

neuronal population 3 and the amplitudes of the gamma band in neuronal population 1. These 365 

results are expected because the signals in populations 1 and 3 are correlated, despite the fact that 366 

there is no connection between these populations. Regardless, cMI and cTE distinguished the 367 

correct effective interactions between the three populations.  368 

There are cases where cMI fails to estimate the correct connections. For instance, Figure 3B 369 

shows the results of increasing the noise (N� � N� � N� � 10�, which caused the measures ESC, 370 

Midx and cMI to yield similar results and estimate a significant effective connection between 371 

populations 1 and 3 that did not exist. Regardless, cTE was still able to distinguish the correct 372 

pattern of connections despite the increase in the noise level. When we further increased the 373 

noise (N� � N� � N� � 30�, no significant results were obtained for any of the four measures 374 

(not shown in the figure).  375 

3.2. Generation of multiple PAC combinations 376 

In this section, we study the generation of PAC in the cortical column circuit depicted in Figure 377 

1. Since we are interested in the interaction between the rhythms produced by the nonlinear 378 

dynamics of the neuronal populations (not their correlation) and in the directionality of that 379 

interaction (from phases to amplitudes), we only compute cTE.  380 

The values of the parameters used are shown in tables 2 and 3. White noise with a mean of zero 381 

and standard deviation N � 1 was added to the external inputs. Five seconds of data were 382 

simulated and the first two seconds were discarded to avoid transient behavior. Thus, subsequent 383 

steps were carried out with the remaining three seconds.  384 
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Figure 4 presents the temporal evolution of the average PSP in each neuronal population. Time 385 

series coloured in red correspond to excitatory populations (L2RS, L2IB, L4RS, L5RS, L5IB, 386 

L6RS), whereas inhibitory populations (L2LTS, L4LTS, L5LTS, L6LTS) are represented in 387 

green. As seen in the figure, the generated signals show the characteristic ‘waxing and waning’ 388 

(i.e, amplitude modulation) observed in real EEG signals.  389 

Figure 5 presents the normalized spectrum of the signals displayed in Figure 4. Excitatory 390 

populations are depicted in red and inhibitory populations are depicted in green. The six 391 

excitatory populations have their main spectrum peak in the alpha band, but they also present 392 

energy in the delta and theta bands. Slow inhibitory populations have the highest peak in the 393 

theta band, but also have energy in delta, alpha bands. Fast inhibitory populations were set to 394 

yield a peak in the gamma band, but due to the interaction with other populations they yield 395 

significant peaks in other frequencies as well, especially in the theta and alpha bands. This is 396 

evident when compared to the spectrum (in black) of the population when interactions between 397 

different populations are set to zero (Γ
� � 0, � � �). Peaks in black correspond to the natural 398 

frequency of oscillation for the populations L2RS (9.00 Hz), L2IB (10.67 Hz), L2LTS (7.00 Hz), 399 

L2FS (58.67 Hz), L4RS (9.33 Hz), L4LTS (7.00 Hz), L4FS (87.00 Hz), L5RS (8.67 Hz), L5IB 400 

(9.67 Hz), L5LTS (7.00 Hz), L5FS (63.99 Hz), L6RS (7.67 Hz), L6LTS (7.33 Hz), and L6FS 401 

(59.67 Hz). 402 

To compare our simulated data with actual local field potential (LFP) data, we computed an 403 

approximation of the average LFP as the difference between the sum of excitatory and inhibitory 404 

activities in each layer.  405 

Figure 6A displays the temporal dynamics of the LFP in each cortical layer and Figure 6B shows 406 

the corresponding spectral density. Thus, parameter values presented in tables 2 and 3 result in 407 
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low frequency oscillations (delta, theta and alpha) with highest power in layers 5 and 6 while 408 

gamma oscillations have its main power in layer 2/3. This is in agreement with recent findings 409 

suggesting that gamma activity is predominant in superficial layers while lower frequencies are 410 

predominant in deep layers (Maier, Adams et al. 2010, Buffalo, Fries et al. 2011).  411 

To test the existence of PAC, we filtered each time series in Figure 4 into five frequency bands 412 

from delta to gamma (see section 2.2) and applied the Hilbert transform to obtain instantaneous 413 

phases and amplitudes for each frequency band and each neuronal population.  414 

Ten different PAC combinations between a low-frequency phase and a higher-frequency 415 

amplitude were computed using the cTE measure: delta-theta, delta-alpha, delta-beta, delta-416 

gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. Each 417 

PAC combination consisted of a matrix of 14x14 cTE values representing all possible 418 

interactions between the 14 neuronal populations. To test the significance of these values, 419 

surrogate data was computed, followed by a multiple comparison analysis as described in section 420 

2.2.  421 

Results include nine out of the ten PAC combinations (Figure 7). The delta-beta PAC 422 

combination was not included since no significant values were obtained for the set of parameters 423 

used.  424 

The strongest PAC value found was between the phase of the alpha band in L2IB and the 425 

amplitude of the gamma band in L4FS, which we will denote as L2IB� L4FS. Other strong 426 

values found were theta-gamma (L6RS�L4FS, L4RS�L4FS, L2IB�L4FS, L6RS�L5FS), 427 

and alpha-gamma (L2IB�L5FS, L4FS�L4FS, L2FS�L4FS). Some of these values do not 428 

represent direct connections between the populations. For example, the strongest causal 429 

connection (L2IB� L4FS) does not correspond to an anatomical (direct) connection (see Figure 430 
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1). Thus, we emphasize that PAC matrices (Figure 7) represent effective connections, which can 431 

correspond or not correspond with anatomical connections. To make this clearer, anatomical 432 

connections in Figure 7 are represented with black dots. 433 

3.3. Parameter sensitivity analysis 434 

Some of the parameters presented in table 2 were taken from the neural mass literature (Jansen 435 

and Rit 1995, Wendling, Bellanger et al. 2000), and parameters with no equivalent in the 436 

literature were assigned physiologically reasonable values. Thus, it is necessary to explore how 437 

changes in these parameters can affect PAC values. In this section, for the sake of simplicity, we 438 

focus on three PAC combinations which involve the gamma rhythm and have been of great 439 

interest in the literature: delta-gamma, theta-gamma, and alpha-gamma. 440 

3.3.1 Controlling the strength of PAC 441 

We selected nine different parameters and explored how their change affected the strength of the 442 

PAC phenomenon. For each parameter we considered 100 different values and thus performed 443 

100 different simulations. The parameters were: 1) a multiplying factor � � 0.3: 0.3: 3 444 

controlling the global strength of the connectivity matrix �Γ�� � �Γ��	 , 2) the reciprocal of the 445 

time constant of RS populations �
�� � 5: 5: 500���	, 3) the reciprocal of the time constant of 446 

IB populations �
�� � 5: 5: 500���	, 4) the reciprocal of the time constant of LTS populations 447 

�
	
� � 5: 5: 500���	, 5) the reciprocal of the time constant of FS populations �
�� �448 

5: 5: 500���	, 6) the external input to the L4RS population  (
� � 10: 10: 1000	, 7) the external 449 

input to the L4FS population (

 � 10: 10: 1000	, 8) the gains of the six excitatory populations 450 

��� � �� � �� � �� � �� � �� � ��� � 0.2: 0.2: 20	, and 9) the gains of the eight inhibitory 451 

populations ��� � �� � �� � �� � �
 � ��� � ��� � ��� � ��� � 0.3: 0.3: 30	.  452 
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Then, for each PAC combination we obtained 14x14x100= 19600 cTE values (although many of 453 

them are zero). We summarized that information by taking the strongest value found in each 454 

simulation, which results in a series of 100 values for each PAC combination. Figure 8A displays 455 

the mean and standard deviation of the 100-point series of the strongest PAC values for the three 456 

PAC combinations considered. In the figure, Delta-gamma PAC is depicted in orange, theta-457 

gamma PAC in green, and alpha-gamma PAC in blue. Our results shows that for the three PAC 458 

combinations, the highest increase in cTE was obtained when changing the reciprocal time 459 

constants of LTS populations.  460 

The exploration of the parameter space is important because PAC has been suggested to be the 461 

carrier mechanism for the interaction of local and global processes in the brain, and is thus 462 

directly related to the integration of distributed information in the brain (Canolty and Knight 463 

2010). Neuronal circuits can thus control the amount of information transmitted in the PAC 464 

phenomenon by changing the values of physiological parameters of specific populations.  465 

3.3.2 On the influence of the connectivity matrix ��� on PAC strength 466 

An important problem in neuroscience is the link between structural and functional brain 467 

networks (Honey, Sporns et al. 2009, Stam, van Straaten et al. 2015). In the context of this work, 468 

it is of interest to study the influence of the connectivity matrix Γ�� on the generated PAC 469 

phenomenon.  470 

For each of the 100 simulations we also computed the fraction ��	 of PAC connections that 471 

corresponded to anatomical connections. The obtained ratios for delta-gamma, theta-gamma, and 472 

alpha-gamma, were 0.45 � 0.12, 0.36 � 0.04, and 0.35 � 0.04, respectively. Figure 8B shows 473 

the plot of the ratios � versus the factor �, and the corresponding linear model fit. The linear 474 
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correlation values ���	  between � and � for delta-gamma, theta-gamma, and alpha-gamma PAC 475 

were 0.17, 0.08, and 0.15, respectively. The values were significant with � � 0.05. 476 

Figure 8C displays the series of 100 PAC values versus �. The solid line corresponds to the fit of 477 

a linear model. The linear correlation values between delta-gamma, theta-gamma, alpha-gamma 478 

and � were 0.16, 0.13, and 0.11, respectively.  As expected, the linear correlation between the 479 

strength of the PAC phenomenon and the global strength of the connectivity matrix Γ�� was 480 

weak, although significant (with � � 0.05).  We then performed a nonlinear regression analysis 481 

(equation 10) with � as the regressor and computed the nonlinear correlation coefficient (section 482 

2.3). The nonlinear correlation values between delta-gamma, theta-gamma, alpha-gamma and � 483 

were 0.44, 0.53, and 0.58, respectively, showing that there is a strong nonlinear relationship 484 

between the strength of PAC and effective connectivity between the populations involved. The 485 

values were significant as tested with the surrogate data approach (section 2.2). 486 

We also counted all significant PAC connections obtained in the 100 simulations. The vectors of 487 

significant connections for delta-gamma, theta-gamma, and alpha-gamma PAC comprised 595, 488 

1464, and 1499, cTE values, respectively, for the PAC interactions that have a corresponding 489 

anatomical connection (direct interactions), and 740, 2656, and 2788 for the interactions without 490 

an anatomical equivalent (indirect interactions). The mean and standard deviations of these 491 

connections are presented in Figure 8D. Our results showed that for the three PAC combinations, 492 

the average strength of direct PAC interactions was slightly higher than indirect PAC 493 

interactions, but this difference was not statistically significant (as tested with a t-test, p<0.05).  494 

Finally, we computed three local topological measures (section 2.4) for the network of 14 495 

coupled neuronal populations (Fig 1A): ��, ��, and ��. The edges of the network were the 496 

absolute values of the connections between the populations (Figure 1B). We found that on 497 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2016. ; https://doi.org/10.1101/023291doi: bioRxiv preprint 

https://doi.org/10.1101/023291
http://creativecommons.org/licenses/by/4.0/


 24

average, indirect PAC interactions are made by populations with higher �� (Figure 9A), �� 498 

(Figure 9B), and �� (Figure 9C) than populations making direct connections, and populations 499 

not involved in PAC connections. Populations receiving indirect PAC connections had also on 500 

average higher topological measures than populations receiving direct interactions.  501 

3.4. Generation of other types of CFC 502 

The neural mass model presented in this paper can generate rich temporal dynamics. Studies of 503 

the dynamics generated by the Jansen and Rit model, which is the basis for our model, can be 504 

found elsewhere (Grimbert and Faugeras 2006, Faugeras, Veltz et al. 2009, Spiegler, Kiebel et 505 

al. 2010). In this paper we focused on PAC, but this is only one type of the general phenomenon 506 

of CFC which results from nonlinearities in brain dynamics. It is thus not unexpected to find 507 

other types of CFC in the signals generated by our model (for example, the temporal dynamics of 508 

L5RS in Figure 4 correspond to frequency modulation). In addition to PAC, other types of CFC 509 

such as AAC, PPC, and phase-frequency coupling (PFC) have been explored in the literature 510 

(Jirsa and Muller 2013, Hyafil, Giraud et al. 2015) and could all be calculated using equation (8) 511 

after replacing �����	 and  �����	 with the appropriate time series.  512 

Recently, the analysis of resting state electrocorticography (ECoG) data revealed that the 513 

amplitude of gamma oscillations can drive the phase of alpha oscillations, i.e, APC (Jiang, 514 

Bahramisharif et al. 2015). Although this experimental result may seem surprising, it is consistent 515 

with theoretical results in the NMM literature. Specifically, starting with a network of Wilson and 516 

Cowan oscillators, equations for the instantaneous phases were obtained which depended on the 517 

instantaneous amplitudes of the oscillators in the network (Daffertshofer and van Wijk 2011). 518 

Thus, by setting different natural frequencies for the oscillators in the network, it is possible to 519 

obtain not only PAC but other types of CFC.  To test the existence of APC we computed: 520 
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 !� �������
� �

�
∑  #$%& ��� , ���

� (#)*�
� �                                                  (14) 521 

where ���
�  is derived from the phase time series ���  at + steps into the future, i.e. 522 

���
� � ����� , +	, and #)  is a matrix comprising all phases and amplitudes in all 523 

populations, except  ���. Figure 10 shows the APC estimated from the simulated data shown in 524 

Figures 4 and 5, with the strongest values corresponding to the gamma-delta and gamma-theta 525 

APC combinations. Our simulation supports the existence of APC as recently proposed (Jiang, 526 

Bahramisharif et al. 2015).  527 

3.5. Mechanisms mediating indirect PAC interactions 528 

Due to the prevalence of indirect PAC interactions (Figure 7) it is necessary to investigate the 529 

mechanisms generating them. As mentioned in section 3.4, theoretical results have shown that 530 

amplitudes and phases are coupled even under weak coupling (Guckenheimer and Holmes 1997, 531 

Daffertshofer and van Wijk 2011). Thus, we expect that indirect information transfer from the 532 

phase of one population to the amplitude of the receiving population is mediated by direct 533 

interactions between phases and amplitudes via the connectivity matrix Γ��. It should be noted 534 

that although PAC typically refers to the interaction between the phase of a low frequency 535 

rhythm and the amplitude of a higher frequency rhythm, interactions between phases and 536 

amplitudes of the same frequency or between the phase of a high frequency and the amplitude of 537 

a low frequency are also possible.  538 

In this section, to explore the mechanism mediating indirect PAC interactions, we focused on 539 

three populations labelled from 1 to 3 (Figures 11 and 12) and connected in such a way that there 540 

was not a direct connection between populations 1 and 3:1�2�3. Population 1 oscillated in the 541 

theta band and population 3 oscillated in the gamma band. Two different cases were considered 542 

for population 2. Case I (Figure 11): Population 2 oscillated with a frequency lower (delta band) 543 
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than population 1, and Case II (Figure 12): population 2 oscillated with a frequency higher (beta 544 

band) than population 1.  Five different types of CFC were computed between the three 545 

populations (PAC, APC, PPC, AAC, and PFC) while varying the connectivity parameters 546 

between populations 1 and 2 � ��	 and between populations 2 and 3 � ��	. SFC was also 547 

considered and labelled in the same way as the CFC interactions. For example, --�!�!�
, is the 548 

cTE from the phase of theta in population 1 to the phase of theta in population 2. To test the 549 

significance of these values, surrogate data was computed, followed by a multiple comparison 550 

analysis (section 2.2). As a control, we computed the cTE from populations 2 and 3 to population 551 

1 for all possible types of interactions (such as --�!�!�
	, and confirmed they were not 552 

statistically significant.  553 

There are several pathways that could transfer information from the phase of the theta oscillation 554 

in population 1 to the amplitude of the gamma oscillation in population 3 (-.�!�"�
). For 555 

example, a simple model could involve --�!�!�
 followed by PAC between the theta rhythm in 556 

population 2 and the gamma rhythm in population 3: -.�!�"�
� --�!�!�

, -.�!�"�
. A more 557 

complicated one is: -.�!�"�
� --�!���

, --�����
, -.���"�

.  558 

To compare different models (Table 4), we fitted a linear regression to -.�!�"�
 and computed 559 

the coefficient of determination (R2) as a function of parameter  ��. For Case I we found that the 560 

three best models were Model 1 (-.�!�"�
� --�!�!�

, -.�!�"�
), Model 7 (-.�!�"�

�561 

--�!���
, --�����

, -.���"�
), and Model 3 (-.�!�"�

� --�!���
, -.���"�

), with Model 1 562 

being the best model for low values of  ��, and Model 7 for the high values. On the other hand, 563 

we obtained the opposite behavior for Case II, i.e, Model 7 was the best model for low  �� 564 

values, whereas Model 1 was better at explaining -.�!�"�
 for high  �� values. The correlation 565 

between the 16 CFC and SFC variables involved in the ten models is displayed in the last panel 566 
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for both cases (Figures 11 and 12). Although we found significant PFC combinations, models 567 

involving these combinations were very weak predictors of -.�!�"�
 (with R2 <0.08 in all cases) 568 

and were thus not included in Table 3 and Figures 11 and 12.  569 

 570 

Table 4. Indirect PAC modeled as a cascade of direct CFC and SFC in a three population 571 

network. Two cases were considered: population 2 oscillates in the beta (/) band (Case I), and 572 

population 2 oscillates in the delta (+) band (Case II). Populations 1 and 3 always oscillate in the 573 

theta (0) and gamma (1) bands, respectively.  574 

 575 

Model Case I Case II 
1 -.�!�"�

� --�!�!�
, -.�!�"�

 -.�!�"�
� --�!�!�

, -.�!�"�
 

2 -.�!�"�
� -.�!�!�

, ..�!�"�
 -.�!�"�

� -.�!�!�
, ..�!�"�

 
3 -.�!�"�

� --�!�#�
, -.�#�"�

 -.�!�"�
� --�!���

, -.���"�
 

4 -.�!�"�
� -.�!�#�

, ..�#�"�
 -.�!�"�

� -.�!���
, ..���"�

 
5 -.�!�"�

� --�!�!�
, --�!�!�

, -.�!�"�
 -.�!�"�

� --�!�!�
, --�!�!�

, -.�!�"�
 

6 -.�!�"�
� --�!�#�

, --�#�!�
, -.�!�"�

 -.�!�"�
� --�!���

, --���!�
, -.�!�"�

 
7 -.�!�"�

� --�!�#�
, --�#�#�

, -.�#�"�
 -.�!�"�

� --�!���
, .-�����

, -.���"�
 

8 -.�!�"�
� -.�!�!�

, .-�!�!�
, -.�!�"�

 -.�!�"�
� -.�!�!�

, .-�!�!�
, -.�!�"�

 
9 -.�!�"�

� -.�!�#�
, .-�#�!�

, -.�!�"�
 -.�!�"�

� -.�!���
, .-���!�

, -.�!�"�
 

10 -.�!�"�
� -.�!�#�

, .-�#�#�
, -.�#�"�

 -.�!�"�
� -.�!���

, .-�����
, -.���"�

 
 576 

4. Discussion 577 

We have proposed a neural mass model that captures the phase-amplitude coupling between 578 

layers in a cortical column. The model comprises fourteen interconnected neuronal populations 579 

distributed across four cortical layers (L2/3, L4, L5 and L6). We omitted layer 1, because it does 580 

not include somas (Binzegger, Douglas et al. 2004). Based on experimental reports on the 581 

strength of the inputs to each layer (Binzegger, Douglas et al. 2004, Jellema, Brunia et al. 2004), 582 
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we only considered external inputs to the RS and FS populations in layer 4, thus neglecting 583 

possible external inputs to other layers.  584 

According to our results, the parameters with the strongest influence on the strength of PAC 585 

were the time constants (especially the ones for LTS, FS, and IB populations). As expected, in 586 

order to generate PAC, nonlinearities in the model are essential. As was shown in Figure 2E, 587 

when the sigmoid function was substituted with a linear function, no modulation was obtained. 588 

Additionally, the strength of PAC was best modeled by a nonlinear regression of the connectivity 589 

values instead of a linear regression.   Thus, our results show that the nonlinear interaction of 590 

neuronal populations (via the sigmoid function and the connectivity matrix) can produce PAC 591 

combinations with frequencies different from the natural frequencies of the oscillators involved. 592 

Our model of oscillators with natural frequencies in the theta, alpha and gamma bands was able 593 

to produce significant PAC involving delta and beta rhythms, including delta-alpha, delta-beta, 594 

delta-gamma, theta-beta, alpha-beta, and beta-gamma. Interestingly, some peaks in the beta band 595 

are harmonics of theta and alpha oscillations, such as the beta peak at 19 Hz in the spectrum of 596 

L4FS in Figure 5. Due to the interaction between the populations, there is a statistically 597 

significant PAC from the phase of beta in L4FS to the amplitude of gamma in L2FS, L4FS, 598 

L5FS and L6FS. Note that of these PAC interactions, only L4FS�L4FS corresponds to an 599 

anatomical connection (Figure 1B and table 3). If we take into account all PAC combinations in 600 

Figure 7, less than 40% of all significant PAC values (60/160=37.50%) corresponded to 601 

anatomical connections. This suggests that although effective connections are constrained by 602 

direct (anatomical) connections (Sotero, Bortel et al. 2010) additional factors are needed to fully 603 

explain the link between anatomical and effective connectivity.  Interestingly, our numerical 604 

simulations showed that on average the strength of the PAC phenomenon mediated by direct and 605 
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indirect connections is approximately the same. However, local topological measures such as 606 

clustering coefficient, efficiency, and betweenness centrality were the highest for populations 607 

making indirect connections when compared to populations making direct PAC connections, to 608 

populations receiving PAC connections, and to populations not involved on the generation of 609 

PAC. This suggest that the topology of cortical circuits shapes the generation of the PAC 610 

phenomenon. This is another factor to consider when studying the origin of PAC during 611 

neurodegenerative disorders known to affect both local and global brain circuitry.  612 

One limitation of the present approach is that model parameters are loosely constrained from 613 

existing neurophysiological data. Thus, although our model provides insight about the 614 

emergence of PAC in a complex network whose spectral and connectivity properties resemble 615 

that of a cortical column, specific conclusions should await to more knowledge of these data. 616 

4.1. Comparison with previous models of PAC generation 617 

The first computational models of PAC generation were realistic models of the theta-gamma 618 

coupling in the hippocampus (Kopell, Boergers et al. 2010). These models considered networks 619 

of hundreds of interconnected neurons which were individually modeled by either a single 620 

compartment (White, Banks et al. 2000) or realistically represented by multiple compartments 621 

for the soma, axon, and dendrites (Tort, Rotstein et al. 2007). A practical disadvantage of this 622 

approach is that it needs high computational power, but more importantly, the use of such 623 

realistic models produces hundreds or thousands of variables and parameters, making it difficult 624 

to determine their influence on the generated average network characteristics. This is especially 625 

critical if we are interested in analyzing the link of PAC and mesoscopic phenomena like 626 

functional magnetic resonance signals (Wang, Saalmann et al. 2012). The analysis of multiple 627 

PAC combinations as done in this paper would be even more difficult with realistic networks. By 628 
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comparison, our model of one cortical column comprised only 14 second-order (or 28 first-order) 629 

differential equations, which can be easily solved using any modern personal computer.   630 

Additionally, previous models of PAC generation, both the ones based on realistic networks 631 

(Kopell, Boergers et al. 2010) and the ones based on neural mass models (Onslow, Jones et al. 632 

2014) studied the phenomenon in a qualitative way, such that they did not actually compute a 633 

PAC measure but limited their analysis to the generation of temporal dynamics resembling PAC. 634 

This makes it difficult to compare their results with our quantitative approach based on 635 

information theory. 636 

4.2. Indirect PAC connections can be predicted by a cascade of direct CFC and 637 

interactions within the same frequency band 638 

As a unifying theory of EEG organization, it has been proposed that the EEG is hierarchically 639 

organized such that the delta phase modulates the theta amplitude, and the theta phase modulates 640 

the gamma amplitude (Lakatos, Shah et al. 2005). It was also proposed that this oscillatory 641 

hierarchy controls baseline excitability and that the hierarchical organization of ambient 642 

oscillatory activity allows the auditory cortex to structure its temporal activity pattern to optimize 643 

the processing of rhythmic inputs. Recent findings suggest a somewhat different hierarchy of 644 

oscillatory activity with regard to these frequency bands (Sotero, Bortel et al. 2015). Sotero et al. 645 

did not observe PAC between the delta and theta bands in rat area S1FL: PAC was statistically 646 

significant between the phases of the delta and theta bands and the amplitudes of the beta and 647 

gamma bands, but not between the phase of the delta band and the amplitude of the theta band. 648 

Their data support specific PAC interactions, but not a clear hierarchical PAC structure. The 649 

differences between Lakatos et al.’s findings and Sotero et al.’s findings are consistent with their 650 

proposal that the hierarchical structure found in the auditory cortex may support processing of 651 
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rhythmic auditory stimuli, which are less common in natural somatosensory stimuli to the 652 

forepaw. Both studies were restricted to PAC and did not explore whether the oscillatory 653 

hierarchy might involve other types of CFC.  While historically PAC and PPC have been the 654 

subject of most experimental and modeling studies, other types of CFC are attracting increasing 655 

interest (Jirsa and Muller 2013, Hyafil, Giraud et al. 2015, Jiang, Bahramisharif et al. 2015). Our 656 

results show that indirect PAC is better understood if analyzed along with direct PAC and other 657 

types of direct CFC and SFC connections.  Our simulations do not suggest a specific oscillatory 658 

hierarchy like the one proposed by Lakatos et al., but multiple contributing cascades of CFC and 659 

SFC. Future analysis of experimental data will need to determine the functional importance of 660 

these different possible pathways.  661 

4.3. cTE as a unified approach to estimate CFC  662 

In this work, we used the average cTE, computed using the conditional mutual information 663 

(Palus, Komarek et al. 2001, Palus and Stefanovska 2003) to measure the influence of the phase 664 

of a low frequency rhythm on the amplitude of a higher frequency rhythm, and used it as an index 665 

of PAC. A known limitation of the cTE approach is that it requires long time series (Hlavackova-666 

Schindler, Palus et al. 2007). For this reason, we used time series comprising of 30,000 time 667 

instants. Recent studies have shown that cTE is biased as its values depend on the 668 

autodependency coefficient in a dynamical system (Runge, Heitzig et al. 2012). Conditional TE 669 

was chosen over pairwise mutual information (MacKay 2003) or the pairwise information flow 670 

(Liang 2014) because pairwise analysis cannot distinguish between connectivity configurations 671 

such as [X�Y, X�Z, Z�Y] and [X�Z, Z�Y] (Ding 2006).  672 

An advantage of measures based on information theory is that they are model-free. This is in 673 

contrast to other measures like Granger causality, which are based on autoregressive models 674 
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(Seth, Barrett et al. 2015). Furthermore, Granger causality should not be applied to band-passed 675 

signals because the filtering process produces a large increase in the empirical model order, 676 

which often results in spurious results (Barnett and Seth 2011). Another advantage of the cTE 677 

measure is that it can be used to estimate any type of CFC, not just PAC. Thus, it provides a 678 

unified measure to study the CFC phenomenon.  679 

cTE has often been given a causal interpretation, however a more recent point of view (Lizier 680 

and Prokopenko 2010) suggests that cTE should be interpreted as predictive information transfer, 681 

i.e. the amount of information that a source variable adds to the next state of the destination 682 

variable. Ultimately, interventions are required to detect causal interactions (Pearl 2000). This 683 

formalism is used in a causal measure called information flow (Ay and Polani 2008), which is 684 

also based on the cMI .   685 

 686 
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 1073 

Figure 1. Proposed neural mass model of the cortical column. A) Layer distribution of the four 1074 

neuronal types. The excitatory populations are the intrinsically bursting (IB), and the regulatory 1075 

spiking (RS). The inhibitory populations are low-threshold spiking (LTS) and fast spiking (FS).  1076 

B) Connectivity matrix values used for coupling the 14 populations modeled. Negative values 1077 

correspond to inhibitory connections.  1078 

 1079 

Figure 2. Three population toy model. A) The model comprises three neuronal populations 1080 

labelled as ‘1’, ‘2’, and ‘3’, coloured in blue, red and green, respectively. This color legend is 1081 

used across all panels in the figure. B) Connectivity matrix. C) Temporal dynamics of the three 1082 

neuronal populations. D) Spectral density. E) Spectral density when substituting the sigmoid 1083 

function with the linear function 2�3	 � 3. 1084 

 1085 

Figure 3. Causality vs correlation measures of PAC. A) Midx, ESC, cMI and TE. B) Midx, ESC, 1086 

cMI and cTE when the noise is increased (4� � 4� � 4� � 10	.  1087 

 1088 

Figure 4. Simulated temporal evolution of the postsynaptic potentials for all populations for one 1089 

realization of the model. Excitatory populations are depicted in red and inhibitory ones in green.  1090 

 1091 

Figure 5. Normalized spectral density (nSD) of the postsynaptic potentials shown in Figure 3 1092 

obtained by subtracting the mean of the spectral density vector and dividing by the standard 1093 

deviation. Excitatory populations are depicted in red and inhibitory ones in green. nSD coloured 1094 

in black show the results when the connections between populations are set to zero.  1095 
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 1096 

Figure 6. Laminar distribution of average LFP. A) Temporal dynamics in layers 2/3 (L2/3), 1097 

4(L4), 5(L5) and 6(L6). B) Spectral density (SD).  1098 

 1099 

Figure 7. Phase-amplitude coupling (PAC) corresponding to the simulation presented in Figure 1100 

4. Non-significant values were set to zero and are depicted in white. Black dots indicate existing 1101 

anatomical connections (see figure 1). 1102 

 1103 

Figure 8.  Exploring the parameter space for three different PAC combinations. A) Average cTE 1104 

values for delta-gamma (orange), theta-gamma (green), and alpha-gamma (blue) PAC when 1105 

considered 100 different values for nine different parameters: 1) a multiplying factor � �1106 

0.3: 0.3: 3 controlling the global strength of the connectivity matrix �Γ�� � �Γ��	 , 2) the 1107 

reciprocal of the time constant of RS populations �
�� � 5: 5: 500���	, 3) the reciprocal of the 1108 

time constant of IB populations �
�� � 5: 5: 500���	, 4) the reciprocal of the time constant of 1109 

LTS populations �
	
� � 5: 5: 500���	, 5) the reciprocal of the time constant of FS populations 1110 

�
�� � 5: 5: 500���	, 6) the external input to the L4RS population  (
� � 10: 10: 1000	, 7) the 1111 

external input to the L4FS population (

 � 10: 10: 1000	, 8) the gains of the six excitatory 1112 

populations ��� � �� � �� � �� � �� � �� � ��� � 0.2: 0.2: 20	, and 9) the gains of the eight 1113 

inhibitory populations ��� � �� � �� � �� � �
 � ��� � ��� � ��� � ��� � 0.3: 0.3: 30	. B) 1114 

Plot of the fraction ��	 of PAC connections that corresponded to anatomical connections versus 1115 

�. C) Plot of cTE versus �. D) Average cTE values for direct and indirect PAC connections. 1116 

Labels ‘d’, and ‘i’ correspond to direct and indirect PAC connections 1117 

 1118 
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Figure 9. The link between local topological measures and PAC. A) local clustering coefficient 1119 

(��),  B) local efficiency (��), C) local betweenness centrality ���	. In all panels, labels ‘d’, 1120 

and ‘i’ correspond to direct and indirect PAC connections, respectively. Populations can send 1121 

and/or receive PAC interactions, or they can be not involved in the generation of PAC.  1122 

 1123 

Figure 10. Amplitude-phase coupling (APC) corresponding to the simulation presented in 1124 

Figures 4 and 5. Non-significant values were set to zero and are depicted in white. Black dots 1125 

indicate existing anatomical connections (see figure 1). 1126 

 1127 

 1128 

Figure 11. Mechanisms mediating indirect PAC connections (Case I). A) Three population toy 1129 

model comprising three neuronal populations labelled as ‘1’, ‘2’, and ‘3’, oscillating in the theta 1130 

(0) , delta (+), and gamma (1)  bands. B) PAC involving the phase of theta in population 1 and 1131 

the amplitude of gamma in population 3 (-.�!�"�
) obtained when varying the connectivity 1132 

parameters between populations 1 and 2 � �� � 30: 4: 1000	 and between populations 2 and 3 1133 

� �� � 30: 4: 1000	. Panels C to   R, displays the 16 predictors used in the ten models explored 1134 

(table 4). S) Coefficient of determination (R2) for the ten models explored (table 4). T) Correlation 1135 

coefficient between the 16 predictors.   1136 

Figure 12. Mechanisms mediating indirect PAC connections (Case II). A) Three population toy 1137 

model comprising three neuronal populations labelled as ‘1’, ‘2’, and ‘3’, oscillating in the theta 1138 

(0) , beta (/), and gamma (1)  bands. B) PAC involving the phase of theta in population 1 and 1139 

the amplitude of gamma in population 3 (-.�!�"�
) obtained when varying the connectivity 1140 

parameters between populations 1 and 2 � �� � 30: 4: 1000	 and between populations 2 and 3 1141 
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� �� � 30: 4: 1000	. Panels C to   R, display the 16 predictors used in the ten models explored 1142 

(table 4). S) Coefficient of determination (R2) for the ten models explored (table 4). T) 1143 

Correlation coefficient between the 16 predictors.  1144 

 1145 
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