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The relationships between the core-periphery architecture of the species interaction network

and the mechanisms ensuring the stability in mutualistic ecological communities are still

unclear. In particular, most studies have focused their attention on asymptotic resilience or

persistence, neglecting how perturbations propagate through the system. Here we develop

a theoretical framework to evaluate the relationship between architecture of the interaction

networks and the impact of perturbations by studying localization, a measure describing

the ability of the perturbation to propagate through the network. We show that mutualistic

ecological communities are localized, and localization reduces perturbation propagation and

attenuates its impact on species abundance. Localization depends on the topology of the

interaction networks, and it positively correlates with the variance of the weighted degree
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distribution, a signature of the network topological hetereogenity. Our results provide a

different perspective on the interplay between the architecture of interaction networks in

mutualistic communities and their stability.

Introduction

Ecological networks may be viewed as a set of species (nodes) connected by interspecific interac-

tions (competition, predation, parasitism, and mutualism), represented by the links. Even though

interaction strengths are largely unknown, the architecture of the ecological interaction networks

has been thoroughly investigated, showing its important role in shaping and regulating community

dynamics and in structuring diversity patterns 1–8. Several studies recognized the strong impact of

the non-random structures of empirical interaction networks on both the resilience (time to return

to the steady state after a small perturbation) and the persistence (number of coexisting species at

equilibrium) of ecological communities 9–14, and much theoretical effort has been made to under-

stand the relationship between stability and complexity in ecological communities, one of the most

debated issues in ecology 15–18. In mutualistic networks, where species beneficially interact with

each other, a core-periphery structure has been observed ubiquitously 19. The network core refers

to a central and densely connected set of nodes, while the periphery denotes a sparsely connected

non-central set of nodes, which are linked to the core. It has been posited that the architecture

of mutualistic networks minimizes competition and increases biodiversity 7, community stability

(resilience) and persistence 20, but other studies have demonstrated that structured mutualistic eco-

logical networks may be less stable than their random counterparts 14, 21. It has also been shown
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that community stability decreases as community size increases, and that this result holds even for

more realistic ecological interactions with a mixing of interaction types (“hybrid communities”)

22. Most of the aforementioned studies focused either on the resilience of the system - measured

by the maximum real part of the eigenvalues of the community matrix 14, 15, 21 - or on the number

of species that persist when starting from non-stationary conditions 7, 8. However, both approaches

have important limitations. Indeed, the maximum real part of the community matrix eigenvalues

only describes the rate of recovery from perturbations in the long time limit, providing no infor-

mation on the transient response. Perturbations can grow significantly before decaying, possibly

impacting species’ fate (see Figure 1A). A system at its stable stationary state that experiences

such initial amplifications of the perturbations is called reactive 23, 24. On the other hand, persis-

tence (measured as the fraction of initial species with positive stationary population density 16) is

strongly sensitive to initial conditions, the system’s distance from stationarity and the choice of

model and parameters 8, 25, 26. To garner a better understanding of the effect of perturbations on

ecological communities, one should also study how the components of the leading eigenvectors

(i.e., the right and left eigenvectors associated with the eigenvalue having the largest real part)

are distributed, i.e., study the localization of the system. In condensed matter physics, localiza-

tion, also known as Anderson localization 27, is the absence of diffusion of waves in a disordered

medium, and it describes the ability of waves to propagate through the system. Other approaches

(e.g. Markov chain models 28, or the inverse community matrix 29) can be used to study how dis-

turbances propagate in species interaction networks and what their effects are on other species (i.e.

how many other species do they affect and what is the magnitude of this effect). However, it has
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been shown that small variations in the interaction strengths may lead to very different model pre-

dictions 30, 31. Our theoretical framework may be considered as a complementary methodology to

gain information on the general relation patterns between the interaction network architecture and

the ability of perturbations to propagate within the system. Our goal in this work is to determine

the degree of localization of eigenvectors in mutualistic ecological networks as a function of the

network size, structure and interaction strengths, and to study the impact of localization on the

perturbation amplitude and spreading within the system. Here we show that localization may be

a useful mechanism that impacts on the stability of ecological networks. In fact, localization at-

tenuates (asymptotically) and reduces perturbation propagation through the network. We find that

mutualistic ecological networks are indeed localized and localization patterns are correlated with

some network topological properties; in particular, heterogeneity in the weighted species degrees

promotes localization in the network. Furthermore, the observed localization increases with the

size of the ecological communities, highlighting a trade-off between the asymptotic resilience of

the system and the attenuation of perturbations.

Results

Theoretical Framework

The mutualistic interactions of an ecological community can be encoded in a bipartite binary graph

represented by its adjacency matrix B containing S nodes (species) that are partitioned into two

disjoint sets, one containing the animals (insect pollinators), the other the plants. Each of the L

(undirected) edges connects two nodes, one in the set of animals (of size A) and the other in the

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2015. ; https://doi.org/10.1101/023275doi: bioRxiv preprint 

https://doi.org/10.1101/023275


set of plants (of size P ), i.e., Bkl = 1 if insect k and plant l interact. S = A + P is the total

number of species in the community. We analyze 59 bipartite binary networks available from

the interaction web database 9, and we construct the S × S community matrix Φ describing the

linearized system dynamics, by assigning to each animal-plant interaction a positive “weight” (see

Methods). Let x(t) be the S-component vector describing the abundance of the S populations at

time t. The propagation of a given small perturbation ξ=(ξ1, ξ2, ..., ξS) acting on the system at

stationarity will lead to small departures, δx(t), from the stationary state x∗ and can be studied by

the linearized system of coupled differential equations d
dt
δx(t) = Φδx(t), where δx(t) = x(t)−x∗

(with δx(0) =ξ, which in turn can be studied in terms of the eigenvectors and eigenvalues of Φ,

known as community matrix (see Methods). In particular, the asymptotic behavior of the perturbed

systems can be analyzed in terms of the largest eigenvalue λ1 and corresponding left and right

eigenvectors u1 and v1, i.e., δxj(t) ≈ eλ1tA1v1,j for large t, where A1 = (u1· ξ)/(v1 · u1) is the

amplitude associated with the asymptotic propagation of the perturbation through the ecological

network (Figure 1 and Methods).

Clearly, the relaxation of a system to its equilibrium state after a perturbation is not uniquely

controlled by the leading eigenvalue of the community matrix. All the eigenvalues contain informa-

tion on the time-scales involved in the relaxation, while the corresponding eigenvectors determine

how the perturbation spreads and relaxes in different species. The leading right eigenvector, in

particular, sets the relative vulnerability of species and how they are affected by perturbations in

the long run. If this eigenvector is localized, i.e., if only few components/species have non neg-

ligible values, then a perturbation after its propagation involves only few species. On the other
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hand, the left leading eigenvector indicates which species are most hit by the perturbation before

its propagation. It also plays an important role in modulating the amplitude of the perturbation

(that is proportional to ξ ·u1 - see Methods). Consider for example a 4 x 4 community matrix for

which, u1 = (1/
√

2, 1/
√

2, 0, 0) and v1 = (0, 1/
√

2, 1/
√

2, 0). If ξ=(0, 0, 1, 1), then u1 · ξ = 0

and the perturbation decay time will be very fast (controlled by λ2, rather than λ1 - see Eq.(1) in

the Methods section). On the other hand, if ξ= (1, 1, 0, 0), then the system asymptotic recovery

time will be longer (proportional to 1/λ1), but only species 2 and 3 will be affected at these time

scales. As a general trend, we will show that localization mainly depends on the heterogeneity

of the network weighted degrees (or strengths s = (s1, s2, ..., sS)): in the case of high variability

in these strengths, the system display localization (see Figure 1B-C). The behavior immediately

after the perturbation (i.e., in the limit t → 0+) can be analyzed by studying its reactivity 23, de-

fined as the maximum amplification rate over all initial perturbations, and immediately after the

perturbation. It can be shown 23 that the reactivity λH can be computed as the maximum eigen-

value of H = (Φ + ΦT )/2, the symmetric part of Φ. If λ1 < 0 and λH > 0 then the equilibrium

point is stable but reactive. Because λH ≥ λ1
23, the reactivity can also be used to develop an

early warning signal for systems approaching a non stable stationary state 24. If the eigenvector

wH corresponding to λH , is also localized, then it means that the perturbation magnitude on these

localized species will tend to grow (see Figure 1A), i.e. in the short time, these species will be the

most affected by the perturbation.

Localization Patterns

We compare localization patterns of 59 empirical mutualistic networks, and two corresponding
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random null models. In the first null model, we randomize the interactions while keeping the

networks connected. In the second null model, we randomize the interactions, but we also constrain

the network degrees sequence {k1, k2, ..., kS} to be as in the corresponding empirical networks (see

Methods). To measure localization, we use the inverse participation ratio (IPR) 27, the classical

way to quantify how many relevant components are observed in the leading eigenvectors (see

Methods). The degree of localization increases as IPR increases. If IPR is one, then only one

component of the eigenvector is non-zero. We quantify the presence of localization by computing

the rIPR defined as the ratio between the IPR of each real empirical network and the IPR of

the corresponding random null model.

As Figure 2A-B shows, most of the empirical networks are significantly more localized in

both the right and left leading eigenvectors with respect to null model 1, while they have the same

level of localization of null model 2 (Figure 2D-E,I and Table 1). These results suggest that it

is the core-periphery network structure of empirical systems (a manifestation of heterogeneous

degree distributions) that is responsible for their higher localization: once we constrain the de-

gree distributions to be fixed (that in the case of mutualistic networks are most likely approximate

truncated power laws 2), then null model 2 generates localization patterns very similar to those

observed in empirical mutualistic networks (see Table 1). Nodes strength si (or weighted degrees)

also play a crucial role. In fact, an adjacency network with core-periphery structure, but having

’anti-nested’ distributed weights 13, will not be localized because, contrary to its degree distribu-

tions, the weighted degree distribution will be homogeneous (see also Supplementary Information,

section 5). The localization of wH displays the same patterns (Figure 2C,F), and we found that
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species that are the most affected by the perturbation at short time scales are also those that absorb

most of the perturbation asymptotically - indicating a limiting capability of the the perturbation to

propagate through the network. In fact, the position of the localized components for wH is most

likely to be the same of those for v1 and u1 (see Figure 3 and Supplementary Information, section

7).

Relation between Localization and Network Topological Properties

Localization patterns in empirical mutualistic communities depend on both the size and the con-

nectance of the species interaction network (Figures 2G and 4). While the leading eigenvalue

λ1—the one with the largest real part which controls the relaxation time—increases for increas-

ing community size 15 (assuming that γ0 does not scale 22 with S ), we observe (Figure 4A) an

interesting strong positive correlation between community diversity (network size) and localiza-

tion (rIPR). We also note that in empirical pollination communities, networks size is negatively

correlated with network connectance 14. Network connectance, in turn, is negatively correlated

with localization (Figure 4B): the higher the connectance, the higher is the ability of perturba-

tions to propagate through the network (a general property observed also in financial networks 32,

and socio-environmental interdependent systems 33, 34), and thus the lower the level of localiza-

tion. The strong positive correlation between network size and localization leads to a trade-off

between localization and asymptotic resilience (in terms of λ1 - see Table 2). This result may

shed light on the celebrated complexity-diversity paradox 15, 17: the less an ecological community

is resilient, the more it is localized, and asymptotic perturbation is attenuated (see Figure 5). We

finally note that localization is positively correlated with the variance of the weighted degree dis-
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tribution, see Figure 4C). This correlation reflects the fact the localization is a manifestation of

the heterogeneity of the network topology. In the Supplementary Tables S1-S3, we also calculate

the correlations between localization (rIPR) and the topological properties of the networks un-

der different parametrizations and with respect to null model 2. We found that in this latter case

the correlations are not significant. We can thus conclude that it is indeed the heterogeneity in

the weighted degree distribution, which is the key structural aspect of ecological networks that is

related to localization.

Attenuation of Perturbation Propagation and Amplitude due to Localization

In order to make analytical progress and to better understand the impact of the localization on the

amplitude of the perturbation spreading throughout the network, we analyze the mean field case

(δ = 0), and we assume that the perturbation vector is a constant, i.e., ξ= ξ01 (a S vector of unit

components) and v1 ≈ u1. Under this assumption, we are able to prove that A1 = |ξ0|(
∑
j |v1,j|)2

and thus A1 is maximum when v1,j = 1/
√
S ∀j which corresponds to a state of minimum local-

ization of Φ, while A1 is minimum when v1,j = δj,i for some i, which corresponds to the fully

localized case. Thus, the mean-field approximation with constant perturbation suggests that local-

ization in the system reduces the amplitude of the principal mode of the perturbation wave. Indeed,

our numerical simulations (Figures 2H and 5A and Supplementary Information, section 4.1) con-

firm that a localized structure leads to a decrease in the principal amplitude A1 of the perturbation

also beyond the mean-field case (i.e. δ 6= 0). Moreover, following the localization trend, the

perturbation damping increases with the size of the system: the larger the ecological network, the

stronger is the attenuation due to the system localization (Figure 2D). Also the reverse is true: if a
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network is not significantly more localized than its corresponding null model, then no attenuation

is observed (see Figure 5B, Table 1 and Supplementary Information, section 4.2).

Discussion

We have developed a comprehensive theoretical framework to evaluate the relationship between the

species interaction network architecture and the impact of a given perturbation on ecological mutu-

alistic networks. Localization has thus two beneficial effects on ecological network robustness: a)

only a very low proportion of species in the community are significantly affected by a perturbation

spreading throughout the network, and b) localization leads to an attenuation of the perturbation

effects on the system. These results are robust with respect to variation of the parameters (see Sup-

plementary Information, sections 2 and 4) and thus hold for very general parametrization of the

interaction strengths (that in general are unknown - see Supplementary Information, section 1.1).

We thus have shown that the eigenvectors of the community matrix play a crucial role in deter-

mining the impact and the propagation of the perturbation through the system. We found that the

positions of the localized components of the principal eigenvectors strongly correlates with nodes

degree centrality, species strength si, eigenvector centrality and page-rank centrality (Table 2 and

Supplementary Information, section 7): the proposed framework thus allows one to identify those

species which are affected the most by a given perturbation. Interestingly, these are species with

many mutualistic interactions, and on average with higher population abundances with respect to

specialist species 14. For example, in Figure 3 we show the eigenvectors components of the leading

eigenvectors for the community and reactivity matrix associated with the insect-grasslands eco-
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logical community in Norfolk 35. For each of the 61 insects and the 17 plants, we can calculate

the corresponding values of v1, u1 and wH . Species within each class (pollinators and flowers)

are then sorted according to their degree (number of interacting partners they have). We note that

the flower species Leucanthemum vulgare, the species with the highest species degree and a high

density, is the most localized species in the community for both v1,u1, and wH , and it is the one

that is likely to absorb most of a potential perturbation affecting the whole community.

A general emerging pattern observed for the mutualistic communities analyzed in this work

is that, while these systems are less resilient for increasing biodiversity (May’s result 15), localiza-

tion and the corresponding perturbation attenuation increase with increasing species diversity. In

other words, these mutualistic systems experience a trade-off between resilience and localization:

small communities are faster in recovering their stable state after a perturbation, but they are less

localized and the perturbation will have an impact on most of the species. On the other hand,

large communities are less resilient (i.e., need larger time to return to a stable state), but only few

species will be affected by the perturbation, and amplitude of the perturbation will be attenuated

while spreading through the network. The proposed theoretical analysis can be easily applied to

networks with other interaction types, and it is illustrative of the potential of this new metric.

Methods

Data Parametrization

In order to be able to describe different ecological scenarios, and following recent models in the

literature 26, 36, we parameterize the weighted interaction matrix as Wij = γ0Bij/k
δ
i for i 6= j
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and Wii = −di (see Supplementary Information, section 1), where B is the adjacency matrix

of the species interaction matrix, indicating presence (Bij=1) or absence (Bij=0) of interactions

among species, ki =
∑
j Bij is the number of mutualistic partners of species i (species degree),

si =
∑
jWij is the species strength (or weighted degree) and γ0 is a parameter describing the basal

mutualistic strength, while δ a trade-off parameter controlling the relation between mutualistic

interaction strength and species degree. Following a Holling Type I population dynamics model,

we then build the community matrix Φ as φij = x∗
i ·Wij , where x∗

i denotes the stationary population

abundance of species i, and we model it as random variable drawn from a Gamma distribution so

to have an average species population abundance 〈x∗〉 = 1 and of standard deviation σx∗ = 0.158

(see Supplementary Information - section 1). By varying the parameter δ we investigate: a) The

architecture with constant interaction strength (“mean-field” case 7, 14, δ = 0); b) The architecture

with interaction strength-degree trade-off (δ > 0), e.g. specialist species interact stronger than

the generalists one) 37, 38. c) Architecture where generalist species interact stronger than specialist

species (δ < 0). Using this parametrization, for a fixed δ the stability and reactivity of ecological

communities can be controlled by the value of the basal mutualistic strength γ0, and the intra-

specific competition di.

Null Models

We generate two different random null models (NM) for Φ (Φ− ran). NM1) We assign the L links

in the adjacency matrix at random while keeping the network connected, and then parametrize

it in the same way we do for empirical networks. NM2) We assign the L links at random, but

constraining the degree sequence (k1, k2, ..., kS) to be the same of the corresponding adjacency
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matrix B and then parametrize it in the same way we do for empirical networks. Our results are

compared with 1000 realizations of each of the null models. For all other details we refer to the

Supplementary Information, section 3.

Perturbation Analysis

The effect of a given perturbation ξ= (ξ1, ξ2, ..., ξS) acting on the system at time t = 0 will

propagate in time obeying d
dt
δx(t) = Φδx(t) with initial condition x(0) =ξ. The solution of the

latter equation can be written in terms of the eigenvectors and eigenvalues of Φ:

δx(t) =
S∑
α=1

ξ · uα
uα · vα

eλαtvα, (1)

where uα, vα and λ(α) are respectively the left, the right eigenvectors and the corresponding eigen-

values of the linearization matrix Φ. We ordered the eigenvalues so that 0 > λ1 > Re
[
λ(2)

]
>

... > Re
[
λ(n)

]
(we note that in our case, as φij ≥ 0, the Perron-Frobenius theorem holds and

λ1 = Re
[
λ(1)

]
). For simplicity, we will denote by Aα = (ξ · uα)/(uα · vα) the amplitude associ-

ated with the α-th mode of the perturbation.

Localization and Effect on Stability

We measure the localization using the inverse participation ratio IPR 27, i.e., IPR =
∑S
i=1 q1(i)

4/(
∑S
i=1 q1(i)

2)2,

where q1 = v1, u1 or wH . In particular, we identify localization patterns by computing the rIPR,

i.e. the ratio between the IPR of each real empirical network and the IPR of the corresponding

random null model: rIPRi = IPRi/〈IPRran
i 〉. The average 〈·〉 is taken among different realiza-

tions of Φ− ran. If rIPR is significantly larger than one, then the system is localized. Otherwise

we say that the system is not localized. We can also quantify the number of localized species by
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setting a threshold θ and count the fraction of species with a leading eigenvector component larger

than that threshold, i.e v1(i) > θ or u1(i) > θ. We set θ = 1.5/
√
S (v1(i) ∼ u1(i) = 1/

√
S would

correspond to the extended, non localized case). We quantify how the architecture of the ecological

networks affects the impact of a simulated perturbation on the system by comparing the outputs

A1, λ1, λH ,v,u,wH and ρ with respect to the corresponding random null models. We consider

different type of perturbations. In Supplementary Information (section 6), we present results for a)

A noise ξD which is independent of species characteristics, i.e. ξD drawn from a normal distribu-

tion N (1, ζ) of mean 1 and variance ζ2; b) A noise ξE that is species dependent, i.e., proportional

to the degree of each species (ξE(i) ∝ kiξD(i)). In the main text we show results for a perturba-

tion combining both types of noise, i.e., ξall =ξD+ξE . A link to the Mathematica notebook with

main functions needed to compute localizations and effect on stability of mutualistic ecological

communities is here provided: https://github.com/suweis/Effect-of-Localization-on-the-Stability-

of-Mutualistic-Ecological-Networks
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Figure 1: Propagation of the perturbation through the network. A) Trajectory of a perturbation

through time. Reactivity (λH) measures whether perturbations grow before decaying; Asymptotic

resilience λ1 indicates whether perturbations eventually decay; and the asymptotic perturbation

amplitude A1 describes the intensity of the perturbation for large time. The principal right eigen-

vector determines which species will be affected most by the perturbation after its propagation,

while the left principal eigenvector controls which species are the most sensitive to the initial per-

turbation (i.e. before its propagation - see Methods). The weighted degree heterogeneity affects the

localization pattern in the network: B) is a regular graph where each node is connected to 6 other

nodes, while C) is a power-law scale-free graph 2 of the same size and with similar connectance.

In both cases, edge weights are randomly extracted from a Gamma distribution. The size and the

color of the nodes indicate the absolute values of the corresponding component of the leading right

eigenvector. In B, all species are equally perturbed. In contrast, in C, only few species are affected.
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Figure 2: Localization Patterns and Effect on the Asymptotic Amplitude. A-C) Localization

(IPR see Methods) of the leading eigenvectors for null model 1 versus empirical mutualistic net-

works (right eigenvector v1 in red, left eigenvector u1 in blue and reactive eigenvector in green).

Points represent average value of 1000 randomizations, bars indicate the standard deviation. 1:1

line represents the value of the empirical mutualistic networks. D-F) Same for null model 2 (see

Methods). G) Number of (localized) components as a function of the community size: a signif-

icant correlation is observed (Spearman Rank Test = 0.715). H) Effect of the localization on the

asymptotic amplitudeA1 for the simulated perturbation ξall on empirical mutualistic networks with

respect to null model 1 A− ran. In ≈ 85% of the cases, the perturbation amplitude is significantly

attenuated (P − value ≤ 0.05 - see also Table 1). I) P − values of the observed values of local-

ization and asymptotic amplitudes in empirical networks with respect to null model 1. Parameters

here are δ = 0.5 and γ0 = 1 (see Methods). For robustness of the results with respect to the

parametrization see Supplementary Information, section 4.
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Figure 3: Localization in Norfolk mutualistic insect-grasslands community. Example of local-

ization in a real mutualistic community 35 with S = 78 species. The 61 insects and the 17 plants

species are sorted according to degree. The flower species Leucanthemum vulgare is the most lo-

calized in each of the three eigenvectors, v1, u1 and wH and corresponds to the species with the

highest species degree and strength. The parameters are δ = 0.5 and γ0 = 1, yielding a stable but

reactive equilibrium (λ1 < 0, λH > 0).
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A CB

Figure 4: Relation between localization and network topological properties. Relation between

localization (rIPR calculated through null model 1 - see Methods) and A) networks size (S); B)

network connectance measured as the fraction of observed and possible links (C = L/(S(S − 1))

with L=number of links); C) network heterogeneity (variance of the weighted degree distribution).

The parametrization used here is δ = 0.5 and γ0 = 1. Results are reported for both right (in red)

and left (in blue) leading eigenvectors (v1 and u1).
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A B

Figure 5: Relation between Size and Relative Asymptotic Amplitude. A) Relationship between

the relative asymptotic amplitude (with respect to null model 1) and network size: attenuation

increases for increasing community size (i.e., A1/Aran1 decreases with S). B) Asymptotic ampli-

tude for perturbed empirical communities is compatible with that one generated by null model 2

(A1/Aran1 ≈ 1). Indeed null model 2 generates networks with the same level of localization of

the empirical pollinator networks (rIPR ≈ 1 - see Figure 2 D-F) , and thus attenuation is not ob-

served. Red points correspond to the parametrization δ = 0.5 and γ0 = 0.025, while blue squares

represent the mean field case (δ = 0, γ0 = 1).
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IPR/IPR− ran < 1 δ = 0.5 δ = 0 δ = −0.5 NM #

u1 ≈ 86% ≈ 76% ≈ 39% 1

v1 ≈ 61% ≈ 64% ≈ 42% 1

wH ≈ 83% ≈ 72% ≈ 50% 1

u1 ≈ 20% ≈ 20% ≈ 19% 2

v1 ≈ 27% ≈ 27% ≈ 11% 2

wH ≈ 24% ≈ 20% ≈ 19% 2

A1/Aran1 < 1 δ = 0.5 δ = 0 δ = −0.5 NM #

≈ 81% ≈ 81% ≈ 70% 1

≈ 17% ≈ 15% ≈ 14% 2

Table 1: Statistics of Localization Patterns. Statistics of localization patterns for three different

ecological scenarios (described by δ - see Methods) given by the fraction of localized empirical

networks with respect to generated null models (NM) for different parametrization (rIPR > 1 and

P -value < 0.05) and corresponding asymptotic attenuation of the perturbation (A1/Aran1 < 1 and

P -value< 0.05). We found that most of the empirical networks are indeed localized with respect

to NM1, but not with respect to NM2.

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2015. ; https://doi.org/10.1101/023275doi: bioRxiv preprint 

https://doi.org/10.1101/023275


ρ(x, y) x y P − value

≈ 0.760 S rIPR[v1] < 10−4

≈ 0.754 S rIPR[u1] < 10−4

≈ 0.800 S rIPR[wH ] < 10−4

≈ −0.662 C rIPR[v1] < 10−4

≈ −0.754 C rIPR[u1] < 10−4

≈ −0.749 C rIPR[wH ] < 10−4

≈ −0.769 S A1 < 10−4

≈ 0.806 C A1 < 10−4

≈ −0.477 λ1 A1 < 10−4

≈ 0.578 λ1 rIPR[v1] < 10−4

≈ 0.390 λ1 rIPR[u1] < 10−4

≈ 0.468 λ1 rIPR[wH ] < 10−4

≈ 0.460 σ2
s rIPR[u1] < 10−4

≈ 0.535 σ2
s rIPR[v1] < 10−4

≈ 0.45 Degree [k] v1 < 10−4

≈ 0.46 Strength [s] v1 < 10−4

≈ 0.67 Degree [k] u1 < 10−4

≈ 0.61 Strength [s] u1 < 10−4

≈ 076 Page Rank v1 < 10−4

≈ 0.94 Eig. Centrality v1 < 10−4

Table 2: Correlations between network topological and spectral properties. Correlations

ρ(x, y) measured using Spearman Rank Test (parametrization δ = 0.5) using Holling Type I model

with a=40 and b=0.05 - see Methods). rIPR refers to null model 1.
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