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Abstract 13 

Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an 14 
accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability 15 
to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with 16 
precision  has been constrained by technological and logistical limitations and cost. Traditional methods 17 
of forest biometrics provide only partial measurements and are labor intensive. Active remote 18 
technologies such as LiDAR operated from airborne platforms provide only partial crown 19 
reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this 20 
work we capitalized on recent improvements in the capabilities and availability of small unmanned 21 
aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining 22 
precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-23 
moving UAVs that acquire images along predefined trajectories near and around targeted trees, and 24 
computer vision-based approaches that process the images to obtain detailed tree reconstructions. 25 
After we confirmed the potential of the methodology via simulation we evaluated several UAV 26 
platforms, strategies for image acquisition, and image processing algorithms. We present an original, 27 
step-by-step workflow which utilizes open source programs and original software. We anticipate that 28 
future development and applications of our method will improve our understanding of forest self-29 
organization emerging from the competition among trees, and will lead to a refined generation of 30 
individual-tree-based forest models.  31 
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1. Introduction 32 

Understanding how macroscopic patterns of forests emerge as a result of self-organization of individual 33 
plants and how ecosystems respond to environmental gradients and disturbances that occur at different 34 
spatial and temporal scales has long been reported as a largely unresolved fundamental ecological 35 
challenge (Levin, 1998). The phenotypic plasticity of individual trees is regarded as the major biological 36 
determinant of self-organization, structure, and dynamics of forested ecosystems and their response to 37 
natural and anthropogenic disturbances (Strigul, et al., 2008; Strigul, 2012). Unique patterns of tree 38 
plasticity have been identified across ecological and species groups, for instance, in conifers (Loehle, 39 
1986; Umeki, 1995; Stoll & Schmid, 1998) and broad-leaf trees (Woods & Shanks, 1959; Brisson, 2001); 40 
and biomes, including tropical (Young & Hubbell, 1991) and temperate ecosystems (Gysel, 1951; Frelich 41 
& Martin, 1988; Webster & Lorimer, 2005). Failures to predict growth at the individual tree level with 42 
acceptable accuracy have been attributed to the heterogeneity in geomorphic and climatic phenomena 43 
affecting tree survival and growth, but primarily to inadequate information on the size, shape, and 44 
spatial distribution of interacting trees (Strigul, 2012). 45 

National Forest Inventory (NFI) systems are a major source of systematic, spatially distributed, and 46 
repeated individual tree measurements obtained during field visits of established plots. A review of NFI 47 
field protocols and data quality standards reveals that very precise measurements are prescribed for 48 
tree stem diameter at breast height, and for fixed-area field plots, distances used in determining 49 
whether a tree stem center is within the plot area. Where recorded, the relative position of tree stems 50 
within a plot and tree height is measured accurately. Some vegetation parameters such as shrub and 51 
forb percent cover, crown base height, and crown compaction ratio are assessed ocularly, and therefore 52 
should be regarded more as estimates rather than measurements. Owing to cost, complexity, and 53 
logistic constraints such as visibility, crown width and other specialized tree dimensionality 54 
measurements are obtained only during special projects. 55 
 56 
Information on individual trees over large areas is feasible only via processing of remotely sensed data. 57 
High (submeter) resolution space- or airborne spectral imagery has been used to identify and delineate 58 
individual tree crowns (Wulder et al., 2000; Leckie et al., 2005; Hirschmugl et al., 2007; Skurikhin et al., 59 
2013), and to assess parameters of crown morphology such as height, radius, and surface curvature 60 
(Gong et al., 2002; Song, 2007) using various modeling approaches. Information extracted by manual 61 
interpretation of aerial photographs has often been used as surrogate of field measurements for model 62 
development and validation (Gong et al., 2002; Coulston et al., 2012). The advent of Light Detection and 63 
Ranging (LiDAR) technology enabled 3D measurements of vegetation over forested landscapes. 64 
Operated mainly from airborne platforms, LiDAR instruments emit short pulses of light that propagate 65 
through the atmosphere as a beam of photons and are backscattered to the instrument from 66 
illuminated targets. The loci of interactions with objects or object parts along a beam’s trajectory are 67 
determined with decimeter precision and reported as points georeferenced in three dimensions. The 68 
collection of points generated across all pulses is referred to as a point cloud. A typical LiDAR data set of 69 
a forested scene comprises points from the entire volume of tree crowns and ground surfaces. Models 70 
operating on metrics that describe the spatial distribution of above-ground points have been proven 71 
useful for assessing area-based forest inventory parameters such as wood volume and biomass (Zhao et 72 
al., 2009; Sheridan et al., 2015). With high-density LiDAR data, a single mature tree can be represented 73 
by many, up to hundreds of points, conditions conducive to a precise assessment of its dimensions, 74 
including height and crown width (Popescu et al., 2003; Andersen et al., 2004). Often however, the 75 
token representation of lower canopy components and ground surfaces in LiDAR data sets caused by 76 
substantial attenuation of pulse energy in dense, multistory stands leads to less accurate estimates of 77 
tree dimensionality (Gatziolis et al., 2010; Korpela et al., 2012). Terrestrial LiDAR systems operated from 78 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2015. ; https://doi.org/10.1101/023259doi: bioRxiv preprint 

https://doi.org/10.1101/023259


3 
 

ground or near-ground locations deliver point cloud densities orders of magnitude higher than those 79 
generated by using airborne instruments, enabling  detailed and precise reconstructions of individual 80 
trees (Côté et al., 2009). Modeling of crown morphology supported by terrestrial LiDAR data has been 81 
shown effective in assessing how trees grow in response to competition between and within crowns 82 
(Metz et al., 2013). Point clouds generated from single scanning locations always contain gaps due to 83 
partial target occlusion, either from parts of the targeted tree itself or from surrounding vegetation. As 84 
occlusion rates, gap frequency, and gap size increase with canopy height, the error levels in tree 85 
dimensionality estimates obtained by processing these point clouds also increase with height (Henning 86 
& Radtke, 2006; Maas et al., 2008). Ensuring that estimate precision meets established standards 87 
necessitates scanning targeted trees from multiple locations and then fusing the individual point clouds, 88 
a complication that often is logistically complex and costly. 89 
 90 
To date, precise tree crown dimensionality and location data supportive of a rigorous modeling of 91 
individual tree growth has been inhibited by feasibility, logistics, and cost. Measuring crown 92 
characteristics by using established inventory methods is very time consuming and hardly affordable 93 
outside special projects. Existing remote sensing methods of measuring tree crowns provide only partial 94 
crown reconstructions. Airborne LiDAR data acquisitions require prolonged planning and are costly. As 95 
an example, the minimum cost for a single airborne LiDAR acquisition with common specifications in the 96 
US Pacific Northwest exceeds $20,000 irrespectively of acquisition area size (Erdody & Moskal, 2010). 97 
Transferring to and operation of terrestrial LiDAR instruments in remote forest locations and challenging 98 
terrain is both labor intensive and time consuming. As a result, the assessment of tree growth and 99 
competition relies on numerous simplifying, albeit often unjustified, assumptions such as of trees with 100 
symmetric, vertical, perfectly geometric crowns growing on flat terrain, and illuminated by 101 
omnidirectional sunlight. These assumptions propagate through modeling efforts and ultimately reduce 102 
the validity of model predictions, thereby decreasing their utility (Munro, 1974; Strigul, 2012). 103 
 104 
Recently, unmanned aerial vehicles (UAVs) equipped with inexpensive, off-the-shelf panchromatic 105 
cameras have emerged as a flexible, economic alternative data source that supports the retrieval of tree 106 
dimensionality and location information. Flying at low altitude above the trees and with the camera 107 
oriented at a nadir view, UAVs acquire high-resolution images with a high degree of spatial overlap. In 108 
such conditions, a point on the surface of a tree crown or a small object on exposed ground is visible 109 
from many positions along the UAV trajectory and is depicted in multiple images. Automated 110 
photogrammetric systems based on computer Vision Structure from Motion (VSfM) algorithms (Snavely 111 
et al., 2008) explore this redundancy to retrieve the camera location the moment an image was 112 
acquired, calculate an orthographic rendition of each original image, and ultimately produce a precise 113 
3D point cloud that represents objects (Dandois & Ellis, 2010; Rosnell & Honkavaara, 2012). Application 114 
of VSfM techniques on UAV imagery has enabled accurate 3D modeling of manmade structures, bare 115 
ground features, and forest canopies (de Matías et al., 2009; Danbois & Ellis, 2013; Dey et al., 2012). 116 
Automated image processing is now supported by open-source and commercial software packages. 117 

Image acquisitions with nadir-oriented cameras onboard UAVs, however, face the same issues as 118 
airborne imagery; the great majority of points in derived clouds are positioned near or at the very top of 119 
tree crowns. The representation of crown sides tends to be sparse and contains sizeable gaps, especially 120 
lower in the crown, a potentially serious limitation in efforts to quantify lateral crown competition for 121 
space and resources, as in the periphery of canopy openings. In this study, we extend UAV-based image 122 
acquisition configurations to include oblique and horizontal camera views and UAV trajectories around 123 
trees or tree groups at variable above-ground heights to achieve comprehensive, gap-free 124 
representations of trees. To overcome the challenges imposed by these alternative UAV/camera 125 
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configurations, we evaluated many UAV platforms and open-source VSfM software options, and 126 
developed original, supplementary programs. To determine whether comprehensive tree 127 
representations are attainable, we initially processed synthetic imagery obtained via simulation. We 128 
finally evaluated the efficacy and performance of our workflow targeting trees of different species, 129 
shapes, sizes, and structural complexity. 130 
 131 
2. Method development and testing 132 
 133 
2.1. Image processing 134 
 135 
The procedure that uses a set of images exhibiting substantial spatial overlap to obtain a point cloud 136 
representing the objects present in the images contains three main steps: feature detection, bundle 137 
adjustment, and dense reconstruction. To implement this procedure, we have carefully examined a 138 
variety of software available for image processing. The workflow presented below was found by 139 
experimentation to be the most efficient for our project. We employed a sequence of computer 140 
programs, most of which are available as freeware or provide free licenses to academic institutions. The 141 
software used includes OpenCV libraries, VisualSFM, CMVS, SURE, OpenGL, and Mission Planner, with 142 
each of them accompanied by a comprehensive manual. Considering that the majority of the software 143 
listed above evolves rapidly, we intentionally refrained from duplicating here elements of associated 144 
manuals to which we refer a reader in addition to our presentation.  145 
 146 
Feature detection is based on the identification of image regions, often called keypoints, pertaining to 147 
structural scene elements. Thanks to image overlap, these elements are present in multiple images, but 148 
because their position relative to the focal point of the camera is image-specific, they are depicted in 149 
different scale and orientation (Figure 1). Illumination differences and image resolution can impose 150 
additional feature distortions. Algorithms used in feature detection explore principles of the scale-space 151 
theory (Lindeberg, 1998). According to this theory, a high-resolution image can be perceived as a 152 
collection of scene representations, called octaves, in Gaussian scale space. The scale space can be 153 
obtained by progressively smoothing the high-resolution image, an operation analogous to a gradual 154 
reduction of its resolution. If robust against changes in scale and orientation, the characteristics of a 155 
keypoint identified on a given octave of one image can be used to identify the same keypoint on other 156 
images. The algorithms proposed for feature detection in this context include the Scale Invariant Feature 157 
Transform (SIFT) (Lowe, 2004), the Speeded Up Robust Features (SURF) (Bay et al., 2008), and the 158 
Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011). We employed SIFT in our workflow as it is 159 
currently the reference approach in the field of computer vision. To identify keypoints, SIFT initially 160 
applies to each image octave an approximation of the Laplacian of Gaussian filter known as Difference of 161 
Gaussians, an efficient edge detector. Identified SIFT keypoints are circular image regions, each 162 
described by a set of parameters: the image coordinates at the center of the region, the radius of the 163 
region and an angle. The radius and angle of each keypoint serve as scale and orientation indicators 164 
respectively (Figure 1). Keypoints are further characterized by a descriptor of their neighborhood, 165 
determined from the values of pixels in the vicinity of the keypoint’s center and usually encoded into a 166 
vector of 128 values. By searching for keypoints at multiple scales and positions, SIFT is invariant to 167 
image translation, rotation, and rescaling, and partially invariant to affine distortion and illumination 168 
changes. It can robustly identify scene features even in images containing substantial amounts of noise 169 
or under partial occlusion. 170 
 171 
Figure 1 (about here). SIFT-based scene keypoint detection and matching on two overlapping images.  172 
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Top: Original images; Middle: 1464 (left) and 1477 (right) keypoints with arrows denoting orientation 173 
and radii scale; Bottom: 157 keypoint pairs, matched by color and number. 174 
 175 
The bundle adjustment process initially compares keypoint descriptors identified across images to 176 
determine two similar images. Then, an optimization procedure is performed to infer the positions of 177 
cameras for these two images. Remaining images are added one at a time with relative positions further 178 
adjusted, until camera locations become available for all images. The optimization often uses the 179 
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), a general purpose non-linear 180 
optimization procedure. Heuristics and prior information, such as GPS coordinates of UAV locations at 181 
the moment an image is acquired, can be included to improve convergence speed.  In the end, the 182 
spatial positions and orientations of all cameras are triangulated using the keypoints identified in the 183 
previous step. At the conclusion of bundle adjustment a so-called sparse 3D model that contains the 3D 184 
positions of all identified features becomes available. We implemented the feature detection and 185 
bundle adjustment components of our workflow in VSFM software (Wu, 2013; Wu et al, 2013). 186 
 187 
In dense reconstruction, the final processing step, all image pixels, not only keypoints, along with the 188 
positions and orientations of each camera, are merged into a single high-density structure. This is 189 
achieved by matching pixels with similar value across pictures with respect to the epipolar geometry 190 
constraints (Zhang et al., 1995) of the sparse model. The epipolar geometry is defined for each image 191 
pair. It includes a baseline connecting the locations of the two cameras that are known from the sparse 192 
model, the oriented image planes, the image locations where image plane and baseline intersect known 193 
as epipoles, and the epipolar lines connecting a camera location with a pixel on the image plane. By 194 
restricting searches for a pixel match along the epipolar lines, processing is greatly expedited. In our 195 
workflow, we considered CMVS (Furukawa & Ponce, 2010) and SURE (Rothermel et al., 2012), two state-196 
of-the-art, freely available multi-core implementations, which adopt different strategies to generating 197 
the dense model. CMVS is a patch-based method which starts from matched keypoints and generates 198 
local models of object surfaces, or patches, in the immediate neighborhood of the keypoints. These 199 
patches are then expanded until their projections on the original pictures eventually form a dense tiling. 200 
SURE’s approach is based on the computation of depth maps for a set of reference images, based on the 201 
disparity between these images and other images obtained from nearby, according to the sparse model, 202 
positions. Each depth map provides a dense model of pixels equivalent to a local reconstruction from 203 
one reference viewpoint. All partial reconstructions are eventually merged to obtain a dense 204 
reconstruction for the entire scene. 205 
 206 
The sparse and dense reconstructions obtained from a set of overlapping images are configured in the 207 
same internal coordinate system and scale. Conversion to real-world orientation and coordinate system 208 
is a prerequisite for meaningful measurements of reconstructed objects or for comparisons with 209 
ancillary spatial data. Such conversions can be performed manually on the reconstructed scene, 210 
assuming reference in-situ measurements of object dimensionality are available. In this study, we used 211 
an alternative, automated approach. The latitude, longitude, and elevation of camera locations recorded 212 
by a recreational-grade GPS device onboard the UAV were converted to orthographic Universal 213 
Transverse Mercator (UTM) coordinates using a GDAL (2015) reprojection function. The rotation/ 214 
translation matrix linking the UTM and sparse model coordinates of the camera positions was then 215 
calculated via maximum likelihood, and applied to convert the sparse model coordinates system to 216 
UTM.  All subsequent processing by CMVS and SURE were performed on the UTM version of the sparse 217 
model. 218 
 219 
2.1.1 Image calibration 220 
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 221 
All imaging systems introduce a variety of distortions onto acquired imagery. The magnitude of the 222 
distortion is usually negligible in professional systems, but it can be substantial for inexpensive, off-the-223 
shelf cameras used in structure from motion applications (Balletti et al., 2014).  Most software, including 224 
VSfM, perform internal image calibration using information on the focal length of the lens, usually 225 
stored in the header of the image, and a generic rectification process, or undistortion as it is commonly 226 
called. Departures between the actual distortion and the one anticipated by the generic rectification 227 
process reduce the spatial accuracy of reconstructed objects. Using simulated and UAV-based, nadir 228 
looking imagery featuring sparse and low vegetation on flat land, Wu (2014), the author of the VSfM 229 
software, documented that scene reconstructions obtained by using the generic image calibration 230 
model present in VSfM produced a macroscopically concave ground surface, an artifact attributed to 231 
imprecise image calibration. To avoid artifacts, we first calibrated all cameras used in this study with the 232 
efficient procedure described in the OpenCV image processing library (Bradski, 2000), and then 233 
instructed VSfM to skip the generic image calibration process. Separate calibrations were performed for 234 
each operating mode of each camera. As expected, and evident in Figure 2, calibration effects were 235 
more discernible near the periphery of the image. The convex scene horizon in the original image 236 
appears flat and horizontal after calibration and the local road pavement on the lower left part of the 237 
original image is excluded from the calibrated version. 238 
 239 
Figure 2 (about here). Removal of lens distortion. 240 
Demonstration of a. original, vs. b. OpenCV-calibrated lateral tree image obtained with a UAV-based 241 
GoPro camera at an above-ground altitude of 18 meters. Horizontal red line drawn to illustrate form of 242 
horizon in each version of the image.   243 
 244 
2.2. Simulation-based assessment of image-based tree reconstruction accuracy 245 
 246 
Upon initial consideration, the accurate and detailed reconstruction of objects characterized by complex 247 
structure and geometry, such as trees, using image-based techniques may be deemed an ill-fated effort. 248 
The main reason for pessimistic prognoses is that the aforementioned methods and algorithms used in 249 
processing the imagery anticipate planar surfaces as structural elements of the objects and well-defined 250 
edges at object surface intersections. Except for the lower part of the main stem of large trees, sizeable 251 
and homogeneous surfaces separated by crisp boundaries are absent in trees. A second reason is that 252 
trees are not opaque objects. Even in high foliage and branch density conditions, portions of scene 253 
background are clearly visible through the tree crowns. The see-through-crown phenomenon can be 254 
overlooked in nadir-oriented imagery where the forest floor is acting as tree background, but it is often 255 
rather pronounced in lateral imagery where the depth of the part of the scene situated behind the trees 256 
can be large. The term ‘lateral’ is used here to describe images acquired with the UAV positioned to the 257 
side of the tree and lower than the tree top. The effects of substantial differences in parallax between 258 
tree components and background depicted only pixels apart in lateral tree imagery, and high rates of 259 
component occlusion, are likely analogous to image distortion, a condition to which the SIFT algorithm is 260 
only partially invariant. Furthermore, the upper parts of tree crowns depicted in lateral imagery can 261 
have the sky as background instead of the typically darker vegetation or terrain background present in 262 
nadir-oriented imagery. Drastic changes in background brightness, for instance, from sky to vegetation 263 
and back to sky, behind a given part of a tree crown that appears across multiple overlapping lateral 264 
images, influence the red, green, and blue (RGB) values of image pixels corresponding to that crown 265 
part. The ensuing variability in pixel values often mimics effects induced by differences in diurnal solar 266 
illumination regimes. Illumination variability is another condition to which SIFT is only partially invariant. 267 
 268 
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We used simulation and synthetic images to evaluate the robustness of our standard workflow to the 269 
idiosyncrasies of lateral tree imagery described above. We relied on terrestrial LiDAR data representing 270 
a collection of free-standing trees, each scanned from multiple near-ground locations. The scanning was 271 
performed in high-density mode with the laser beams distributed in fine horizontal and vertical angular 272 
increments (0.4 mrad). Each point in the generated clouds was furnished with RGB values extracted 273 
from panchromatic imagery captured by the LiDAR instrument during the scanning. Details on the data 274 
acquisition are available in Gatziolis et al. (2010). The RGB-colored point cloud of each tree was then 275 
visualized in an OpenGL interface (Shreiner, 2009) with perspective rendering (Figure 3a). In this virtual 276 
visualization environment, RGB-colored snapshots of each scene, henceforth referred to as synthetic 277 
images, can be obtained without limitations on image number, resolution, amount of spatial overlap, 278 
and format type. By specifying the trajectory, orientation, snapshot frequency, and field of view of the 279 
virtual camera and also the pixel dimensionality of the OpenGL interface, we can control the scale at 280 
which targeted trees, or parts of trees, are represented in the synthetic imagery. The background can be 281 
adjusted to resemble the overall scene illumination conditions effective during the acquisition of the 282 
terrestrial imagery, including illumination adjustments along azimuth and sun elevation angle gradients. 283 
Synthetic images generated by exercising combinations of these options yield very realistic 284 
approximations of imagery obtained onboard the UAVs, with the additional advantage that the 285 
dimensionality of the objects depicted in the imagery is precisely known. Point clouds generated by 286 
processing the synthetic imagery can then be compared to the original terrestrial LiDAR point cloud to 287 
evaluate the accuracy and precision of object reconstructions. 288 
 289 
Figure 3 (about here). 3D reconstruction in simulation.  290 
a. Perspective view of point cloud acquired with terrestrial LiDAR and camera locations (red spheres) 291 
used to obtain virtual images of the scene. b. Scene reconstruction obtained by processing of the images. 292 
 293 
For our simulations we employed a 2500 by 2000 pixel (5 Mp) virtual camera. The camera was 294 
positioned on a circular trajectory centered on the crown of each of the trees depicted in the terrestrial 295 
LiDAR point clouds. The camera trajectory was either aligned to a horizontal plane elevated to 296 
approximately the vertical middle of the crown, or along a spiral ascent from the 15th to the 85th 297 
percentile of tree height (Figure 3a). Camera distance to the nearest part of a crown was between 10 298 
and 15m and scene background was set to black. Between 100 and 250 synthetic images were acquired 299 
for each tree and trajectory combination, initially in BMP (bitmap) format and subsequently converted 300 
to the Joint Photographic Experts Group (JPEG) format, required by VSFM, using a maximum quality 301 
setting in ImageMagick, an open-source software suite (http://www.imagemagick.org). The synthetic 302 
imagery for each tree was processed with VSFM using standard settings, and the coordinates of the 303 
resulting point clouds generated at the sparse reconstruction stage were converted to the coordinate 304 
system of the terrestrial LiDAR data using the locations of the virtual camera known from the simulation 305 
settings. Dense reconstructions were obtained by using SURE with standard setting plus an option to 306 
ignore synthetic image regions with very low variability in pixel values, as those representing the scene 307 
background. 308 
 309 
The original Terrestrial LiDAR and dense reconstruction point clouds for each tree were compared in 310 
voxel space (Popescu & Zhao, 2008; Gatziolis, 2012). In this setting, the bounding box of a point cloud is 311 
exhaustively partitioned into discrete, equally-sized cubical elements, called voxels.  Those voxels 312 
containing one or more points are labeled ‘filled’, all others remain empty. By ensuring that the 313 
terrestrial and reconstruction voxel spaces have the same origin and voxel size, we were able to 314 
calculate the spatial correspondence of filled voxels between the two clouds and the rates of omission 315 
and commission, and identify parts of the voxel space where correspondence is better or worse than in 316 
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other parts.  The size, or resolution, of the voxels was set to 2cm, in response to the angular resolution 317 
of the terrestrial LiDAR beams at the mean distance between trees and LiDAR instrument. 318 
 319 
2.3. UAV platform characteristics and image acquisition procedures 320 
 321 
After a preliminary evaluation of several commercially available UAV platforms, we focused on an 322 
APM:Copter (http://copter.ardupilot.com), a hexacopter rotorcraft (Figure 4), because of its easily 323 
modifiable  architecture and open source software for flight control. We also used a commercial IRIS 324 
quadcopter developed by 3DRobotics (http://3drobotics.com). The components of the customized 325 
hexacopter and their purchasing prices are shown in Table 1. Both systems feature gyroscopes and GPS 326 
receivers. Compared to systems available in the market, our hexacopter is an inexpensive but versatile 327 
configuration whose component acquisition cost is expected to drop substantially in the future as UAV 328 
technology evolves and its popularity continues to increase. 329 
 330 
Table 1. Specifications and prices of customized UAV platform used in this study at the time of writing. 331 

Component description March 2015 
price ($) 

DIJ F550 Hexacopter Frame with 6 motor controllers and brushless motors 200 
3D Robotics Pixhawk flight controller 
Microprocessor: 32-bit STM32F427 Cortex M4 core with FPU, 168 MHz/256 

KB RAM/2 MB Flash, 32 bit STM32F103 failsafe co-processor 
Sensors: ST Micro L3GD20 3-axis 16-bit gyroscope, ST Micro LSM303D 3-axis 

14-bit accelerometer / magnetometer, Invensense MPU 6000 3-axis 
accelerometer/gyroscope, MEAS MS5611 barometer 

200 

3D Robotics GPS with compass  90 
915 Mhz telemetry radio and transmitter to controller 30 
FrSky receiver 30 
Spectrum DX7 transmitter 200 
Tarot T-2D brushless camera gimbal 150 
GOPRO 3+ Black Edition sport camera 350 
LIPO batteries  60 

 332 
 333 
Figure 4 (about here). Custom built UAV hexacopter used to collect imagery data in this study. 334 
 335 
Both UAVs used in this study can be operated either autonomously along a predefined trajectory or 336 
manually. The manual flight control requires expertise and continuous line of sight between the system 337 
and the operator. Maintaining nearly constant planar and vertical speed and orientation of the onboard 338 
camera towards the target is challenging, even for operators with years of experience. Experimentation 339 
confirmed that imagery acquired with manual flight control exhibits variable rates of overlap between 340 
frames captured sequentially. Smaller components of the targets are sometimes depicted in too few 341 
frames or are missing completely, while others appear in an excessive number of frames. For these 342 
reasons, it was decided to rely on autonomous flights configured by prior mission planning, and reserve 343 
the manual mode only for intervention in the event of an emergency. 344 
 345 
2.3.1. Characteristics of the imaging system 346 
 347 
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We conducted extended trials with several cameras, including the sport GOPRO 3+ Black Edition 348 
(http://gopro.com/), Ilook Walkera (http://www.walkera.com/en/) and Canon PowerShot 349 
(http://www.canon.com). The evaluations involved all operating modes offered by each camera, 350 
including normal, wide, and superwide zoom settings, as well as acquiring video and then extracting 351 
individual frames with post-processing. At the conclusion of the trials, we selected the GOPRO 3+ Black 352 
Edition operated in photography mode, and normal, 5 Mp resolution. Acquired frames were stored in 353 
JPEG format to the camera’s flash card.  We rarely achieved event partial tree reconstruction using the 354 
alternative settings, likely because of the magnitude of distortion embedded into the imagery. 355 
 356 
2.3.2. Mission planning 357 
 358 
The objective of the mission planning phase is to optimize the UAV trajectory, attitude, speed, and were 359 
applicable, the view angle of the camera gimbal for image acquisition. The gimbal is a hardware 360 
component which allows the orientation of the camera to be modified during the flight relative to the 361 
platform. Dynamic, trajectory-location-specific adjustments of camera orientation can be used to ensure 362 
that the target is centered on the images, especially when the UAV trajectory is not along a horizontal 363 
plane. During mission planning the image acquisition frequency is also considered. After rigorous 364 
evaluation of various UAV trajectory templates (Figure 5), we determined that the optimal 365 
reconstructions of trees are achieved when sequential images have a field-of-view overlap of 366 
approximately 70%. In this configuration, the nominal mean number of images where a part of a 367 
targeted tree would be present in is 3.4. Once determined, a trajectory template is centered on the 368 
target and scaled so that during the actual flight the mean camera-tree distance, platform speed, and 369 
image acquisition frequency will generate images exhibiting the targeted field-of-view overlap. The 370 
process is perceptually simple, but technically complex considering that all directional and attitudinal 371 
vectors of the UAV have to be converted to instructions passed to the UAV controller. Thankfully, it can 372 
be streamlined by using Mission Planner, an open-source software suite developed by Michael Osborne 373 
(http://planner.ardupilot.com). Mission Planner relies on user input and georeferenced imagery of the 374 
targeted area and tree(s), to establish the geographic (latitude and longitude) coordinates of the UAV’s 375 
starting and ending position and trajectory. A small set of high-level Mission Planner commands can 376 
accomplish even complex trajectory templates. All templates shown in Figure 5 require only 5 377 
commands (Table 2). Our typical setup uses a location positioned in the middle of an open area for both 378 
the start and end of the flight. The UAV would initially ascend vertically above its starting location to a 379 
pre-specified height, then move horizontally to the beginning of the trajectory, complete it, and finally 380 
return to the starting location. In the present development state of our system, it is the user’s 381 
responsibility to ensure that the designed flight path is free of other objects, an easy to achieve 382 
requirement considering the wealth of georeferenced, high resolution, publicly available aerial 383 
photographs (Figure 6). The Mission Planer is also used to convert telemetry data of camera locations 384 
the moment images were acquired, provided by the GPS receiver stored to the onboard flash memory 385 
card, to an accessible format. As detailed in Section 2.1, these locations are later paired to those 386 
calculated during the sparse reconstruction processing phase to adjust the scale and georeference of 387 
reconstructed objects.  388 
 389 
Table 2. Mission Planner commands used for autonomous UAV flights 390 

Command Code Description 

WAYPOINT 16 Latitude, longitude (in degrees) and altitude vector (in 
meters) of locations visited during a flight  
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DO_CHANGE_SPEED 178 Speed, in meters per second. Calculated considering distance 
to target and image acquisition frequency, usually 2Hz. 
Typical speed value is 4 meters per second 

DO_SET_ROI 201 Vector of UAV heading planar azimuth and gimbal angle (in 
degrees) that orients the camera towards relative to a 
specified point of interest. 

RETURN_TO_LAUNCH 20 Return to launch location after flight completion 

DO_SET_HOME 179 Latitude and longitude vector (in degrees) of return UAV 
location to use in the event of an emergency, or system 
anomaly 

 391 
 392 
Figure 5 (about here). Different UAV trajectories tested for image acquisition.  393 
a. circular, at constant height; b. ‘stacked circles’, each at different above-ground height, for tall trees 394 
(height more than 20 m); c. spiral, for trees with complex geometry; d. vertical meandering, targeting 395 
tree sectors; e. clover, for trees with wide, ellipsoidal tree crowns; f. ‘spring-hemisphere’, designed for 396 
trees with flat-top, asymmetrical crowns; g. ‘nested circles’, centered on the tree; and h. ’jagged saucer’, 397 
designed for trees with dense foliage but low crown compaction ratio. 398 

 399 
Figure 6 (about here). Visualization of designed and accomplished UAV trajectories.  400 
a. and c. circular and clover templates as seen in Mission Planner with yellow lines showing the flight 401 
paths, green balloons indicating waypoints, and red balloons the center of targeted trees.  b. and d. 402 
perspective scene view in Google Earth, with yellow pins indicating camera locations along each 403 
trajectory at the moment images were captured. 404 
 405 
2.4 Evaluation of tree reconstructions 406 
 407 
Processing of the synthetic imagery always produced complete tree reconstructions. The number of 408 
points in the reconstruction ranged between 20 and 25 percent of those present in the original 409 
terrestrial LiDAR point cloud (Figure 3b). Larger percentages could be achieved by increasing the 410 
resolution of the virtual camera, at the expense of prolonged processing time in both VSfM and SURE. 411 
Volumetric comparisons in voxel space revealed excellent agreement between LiDAR and reconstructed 412 
point clouds, with a mean of 94 percent of filled voxels collocated. Omnidirectional jittering of the voxel-413 
rendered tree reconstructions relative to the terrestrial LiDAR equivalent always resulted in a 414 
substantial, 30 to 40 percent reduction in collocation rates, even when the jittering was limited to a 415 
single voxel. The rapid reduction in the collocation rates caused by jittering limited to one voxel suggests 416 
that the scaling and translation of the derived point cloud relative to the original terrestrial LiDAR cloud 417 
is accurate and precise. It also implies that the coordinates of the virtual camera positions deduced by 418 
VSfM during the processing of the synthetic imagery and those used in the simulation are identical up to 419 
the scale difference. Once calculated, scaling and translation of the reconstructed point cloud 420 
performed by using this relationship rendered the derived tree point cloud a thinned copy of the original 421 
terrestrial point cloud. Our simulation results suggest that the absence of planar surfaces and lack of 422 
opacity in tree crowns do not impose systemic restrictions to the surface-from-motion approach we 423 
used to obtain the 3D tree representations. 424 
 425 
By exploring several virtual camera trajectory patterns while altering the image acquisition frequency in 426 
each of them, we were able to quantify the effects that different patterns and image field-of-view 427 
overlap percentages have on tree reconstruction accuracy (Figure 7). Even in the ideal, noise-free 428 
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environment of the simulations, a minimum 30 percent image overlap was required for complete target 429 
reconstructions. For patterns involving camera locations at variable above-ground heights the minimum 430 
percentage was higher, between 35 and 40 percent. Below a mean 45 percent overlap, all simulations 431 
were susceptible to failure, pending on the image pair selected for initiating the matching process 432 
described in section 2.1. For the circular trajectory pattern, the level of volumetric correspondence 433 
between the terrestrial LiDAR and imagery-derived point clouds would increase rapidly at low field-of-434 
view overlap percentages and then progressively decline until reaching an asymptote, usually at 90 435 
percent volumetric correspondence or higher (Figure 7). Complete reconstructions obtained with the 436 
spiral trajectory usually required at least 35 percent image overlap. The observed volumetric 437 
correspondence to the LiDAR point cloud showed a sigmoidal increase with higher image overlap 438 
percentages until reaching an asymptote level, sometimes as high as 94 percent. 439 
 440 
Figure 7 (about here). Accuracy and completeness of reconstruction for a Pinus ponderosa tree.  441 
This analysis is based on synthetic imagery simulated using visualization of terrestrial LiDAR point clouds 442 
and two camera trajectories. Percentage of collocated filled voxels is used as reconstruction 443 
completeness criterion. 444 
 445 
In a spiral acquisition trajectory yielding the same number of images of a targeted tree as a circular 446 
trajectory, the horizontal overlap percentage between two sequential images is lower.  Unlike the 447 
circular trajectory, though, in the spiral there is vertical overlap with images obtained after the UAV has 448 
completed a rotation around the tree. While the overall mean overlap between the two trajectory 449 
patterns was the same in our simulations, the spiral had lower overlap percentage between any two 450 
images selected for the initiation of the matching process, and therefore more likely to fail to yield a 451 
complete reconstruction when the overall overlap image rate was low. Owing to the vertical image 452 
overlap present in spiral UAV missions, selected parts of the tree are visible from more than one vertical 453 
viewing angles, an arrangement that reduces target occlusion rates. For tree species with dense, 454 
uniform distribution of foliage and deeply shaded crown centers, the variability in vertical view angles 455 
offered by the spiral trajectory pattern may be unimportant. For species with predominantly horizontal 456 
or angular branch arrangement and lower crown compaction rates, vertical viewing variability allows 457 
internal crown components to be represented adequately in the derived point cloud. Three out of four 458 
of the voxels accounting for the approximately 4 percent difference in reconstruction completeness 459 
between the spiral and circular UAV trajectories around a Red Pine (Pinus ponderosa) tree at 70 percent 460 
image overlap rates or higher (Figure 7) were located in the internal half of the crown.  461 
 462 
Most UAV flights also produced complete tree reconstructions (Figures 8 and 9). In the absence of 463 
detailed crown dimensionality measurements, we relied on ocular assessment of reconstruction 464 
accuracy and precision. The typical example shown on Figure 8, obtained with the spiral UAV trajectory 465 
(Figure 5c), among our most reliable for complete target reconstruction, shows that even the shaded 466 
components of the tree crown interior are represented. Many parts on the upper quarter of the crown 467 
have a light blue hue inherited from the sky background in corresponding UAV images. Although less 468 
evident, selected parts of the lower crown exhibit similar ground-influenced coloring. The coloring 469 
artifacts shown in Figure 8 appear where the image area occupied by an identified keypoint is 470 
dominated by a uniformly colored background. Sometimes these anomalies are limited to the RGB 471 
values assigned to points and can be overlooked if the main objective of the UAV mission is the retrieval 472 
of tree dimensionality. Often though they represent an overestimation of tree crown volume and must 473 
be removed (Figure 10). Accomplishing this task with manual intervention is laborious and subjective. 474 
The task can be easily automated for points pertaining to a sky background thanks to their markedly 475 
different RGB values compared to those of vegetation. Where suitable RGB value thresholds cannot be 476 
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safely identified, as it is usually the case for the lower parts of trees, we found it useful to trim the depth 477 
of the part of the overall reconstructions that is derived from each image, so that only the portion 478 
nearer the camera position is retained. SURE facilitates this procedure by providing a separate dense 479 
reconstruction for each processed image organized in a common coordinate system. The complete 480 
reconstruction can be obtained by merging the trimmed parts. In the absence of precise reference data, 481 
we were unable to determine quantitatively the significance of these artifacts.  482 
 483 
Figure 8 (about here). Orthographic horizontal view of reconstructed point cloud and UAV-based 484 
oblique perspective image. Colored arrows denote corresponding tree crown components. 485 
 486 
Figure 9 (about here). Illustration of comprehensive tree reconstructions (right column) and reference 487 
UAV-based images (left column). 488 

 489 
Figure 10 (about here). Demonstration of artifacts in the 3D tree reconstruction pertaining to a single 490 
UAV image. a. Initial reconstruction, positioned facing the camera with a band of white-colored points 491 
belonging to sky background near the top, and light colored points to the sides belonging to fallow land 492 
background, b. Side view, with camera position to the left  and sky points in oval and land points in 493 
rectangle, and c. Trimmed reconstruction positioned facing the camera. 494 
 495 
The ‘nested circle’ and ‘jagged saucer’ trajectories (Figure 5g and 5h) produced only partial 496 
reconstructions and several disjointed models in VSfM and are, therefore, not recommended, while the 497 
altitude variability in the ‘meandering’ trajectory (Figure 5d) was often responsible for premature 498 
mission termination owing to rapid depletion of the UAV batteries. Partial reconstructions were the 499 
norm, rather than the exception, when for a portion of the mission the camera was positioned directly 500 
against the sun. In such conditions the shaded portion of the crown would either not be reconstructed 501 
at all, or it would be organized in separate 3D models with much lower point density and sizable gaps. In 502 
the example shown in Figure 11, the GPS recorded and process-derived positions of the camera on 503 
board the UAV show a nearly perfect correspondence for three quarters of the circular UAV trajectory. 504 
GPS recordings are half as many as the camera positions because of limitations in the recording 505 
frequency of the GPS device. Is should be noted that pending on the hardware configuration of the UAV 506 
and the number of peripheral devices connected to it, it is sometimes necessary to operate below the 507 
capacity of a particular device to either conserve energy, or to avoid overwhelming the UAV controller. 508 
Based on our experience, a close fit between recorded and derived camera positions practically 509 
guarantees that a complete target representation will be obtained during the dense reconstruction 510 
phase. The remaining part of the trajectory, where the camera is positioned against the sun, was 511 
actually derived from a separate model and shows a poor fit, resembling more of a linear transect than a 512 
circular arc. As the camera moves from partially to completely against the sun, image contrast is 513 
reduced, and the radii of identified keypoints become smaller. Radius reductions increase the 514 
uncertainty associated with keypoints orientation and descriptor. We suspect that changes in the 515 
magnitude of the mean image keypoint radius are manifested as variability in the distance between the 516 
tree and calculated camera locations, evident in the misfit part of the VSfM-derived camera trajectory 517 
shown in Figure 11. 518 
 519 
Figure 11 (about here). Comparison between real and reconstructed trajectory. Nadir view of 520 
reconstructed tree with camera GPS locations at image frame acquisition moments (yellow circles) and 521 
VSfM-calculated locations (red dots). Frame frequency 2Hz, GPS fixes at 1Hz. Inset at the lower left 522 
shows lateral view of the reconstructed tree. 523 
 524 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2015. ; https://doi.org/10.1101/023259doi: bioRxiv preprint 

https://doi.org/10.1101/023259


13 
 

On a few occasions, we observed more than one, nearly parallel, and closely stacked layers of points 525 
representing the ground, likely an artifact of texture uniformity in those parts of the scene. The use of 526 
calibrated imagery has expedited the computations for identifying camera positions and for generating 527 
the sparse reconstructions in VSfM and has reduced the rate of partial reconstruction occurrence.  528 
However, its effect on the accuracy of the reconstruction obtained using SURE was unclear.  529 
 530 
3. Discussion 531 
 532 
Our results indicate that a meticulously planned image acquisition mission, namely a judicious selection 533 
of flight trajectory, UAV speed, and image acquisition frequency, will deliver a comprehensive dense 534 
reconstruction of targeted vegetation, except perhaps in unfavorable sun illumination and wind 535 
conditions. As explained in section 2.1, our workflow relies on keypoints, most of which are identified 536 
along image discontinuities. A smooth flight trajectory around the target ensures that sequential images 537 
contain an adequate number of similar keypoints from which the camera location effective for each 538 
image capture can be calculated with adequate precision. Where the smooth change in the field of view 539 
between two sequential images is interrupted, the offending image becomes the first in a separate 540 
model. Bundle adjustments can reduce the frequency of separate model emergence but they cannot 541 
eliminate it. The often advocated practice of adding to a model image frames originally put by VSfM to a 542 
separate model without performing bundle adjustment after each frame addition may be warranted for 543 
manmade objects but is not recommended for trees because it leads to obvious reconstruction artifacts. 544 
Mission plans for flights expected to occur during bright solar illumination conditions using gimbal-545 
equipped UAVs could be adjusted to avoid camera positioning directly against the sun. This can be 546 
accomplished by specifying a slightly downward, oblique camera orientation. The precise solar elevation 547 
angle and azimuth for any location can be obtained from the NOAA Solar Position Calculator 548 
(http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html), or can be computed as described in Reda & 549 
Andreas (2008). 550 
 551 
GPS-equipped UAV platforms not only enable preprogrammed navigation, but also, and perhaps equally 552 
importantly, can be used for a precise scaling of reconstructed tree point clouds to actual dimensions. 553 
The GPS receivers placed on the two UAVs employed in this study offer recreational grade precision, and 554 
as such, their individual position recordings may contain an absolute error of a few meters. In our trials, 555 
however, the relative error between trajectory recordings appeared to always be less than a meter, in 556 
most cases about half a meter. This is based on the observation that our UAVs, initially placed on a 557 
launch pad measuring about 60 cm on each side, would return at the completion of the mission with 558 
their landing gear partially on the launch pad. Fitting the VSfM-calculated camera locations to 559 
corresponding GPS recordings containing a relative positional error of such magnitude, would yield point 560 
cloud scaling errors of 0.5 percent or lower, a level deemed adequate for UAV imagery and structure 561 
from motion based assessment of yearly tree growth. In the absence of GPS recordings, the scaling of 562 
the point cloud would have to be performed manually using georeferenced imagery. 563 
 564 
Except for extremes in solar illumination conditions such as sun facing camera exposures or at dusk, 565 
disparities in light distribution may actually be beneficial for structure-from-motion-based applications 566 
in natural environments because they accentuate feature edges. As it is evident in the tree portion 567 
between the red and purple colored arrows shown in Figure 8, crown parts in the penumbra are still 568 
represented, albeit with reduced point density. Image enhancements focusing on shaded or very bright 569 
parts could perhaps be used to ameliorate the direct sunlight effects or improve the reconstruction 570 
density for shaded areas. 571 
 572 
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To account for absolute GPS receiver and ancillary imagery registration errors, current UAV missions 573 
must be planned with adequate clearance from any scene objects. We were able to comply with this 574 
requirement in our trials because we mostly targeted individual trees or small groups of trees growing in 575 
open space. Extending our operations to confined areas, for instance descending into and proceeding 576 
near and along the periphery of forest openings, would require much higher navigation precision. 577 
Thankfully, obstacle avoidance has been actively researched and several solutions specific to forested 578 
environments have been proposed (Frew et al., 2006; Karaman and Frazzoli, 2012; Mori and Scherer, 579 
2013; Roberts et al., 2012; Ross et al., 2013). In particular, Ross et al. (2013) demonstrated full flight 580 
control in forested environments using an UAV platform similar to ours. They used a low-resolution 581 
camera mounted on a quadcopter that was outsourcing via a wireless connection all computationally 582 
intensive image processing to a ground station, a standard laptop computer. Using this setup, they were 583 
able to achieve a constant speed of 1.5 meters per second while avoiding trees. The rapidly expanding 584 
onboard processing capabilities of UAVs suggest the possibility, in the near future, of coupling the 3D 585 
reconstruction methodology proposed here with autonomous flight, thereby eliminating the need for 586 
meticulous mission planning.  587 
 588 
It is often tempting to acquire images with the highest possible frequency and maximum overlap. Action 589 
cameras similar to those used in this study support high frame rates and carry ample image storage 590 
space without affecting the payload and thus compromising the UAV’s flight duration or mission 591 
flexibility anyway. Large number of images though requires prolonged processing. Our simulations 592 
indicate that image field-of-view overlap higher than 70 percent, does not improve the accuracy or 593 
completeness of tree reconstructions. Visual assessments suggest that this is also true for actual UAV 594 
imagery. Mission planning designed so that target features are represented in three to four images likely 595 
maximizes the information content present in an acquisition and it is therefore recommended as an 596 
initial mission configuration. 597 
 598 
4. Conclusion 599 
 600 
Rapid developments in UAV technology and enhancements in structure from motion software have 601 
enabled detailed representation of manmade objects. In this paper, we describe how this technology 602 
can inexpensively be extended to representations of natural objects, such as trees or groups of trees.  603 
After extensive experimentation that involved several UAV platforms, cameras, mission planning 604 
alternatives, processing software, and numerous procedural modifications and adjustments, our 605 
workflow has been proven capable of handling most conditions encountered in practice to deliver 606 
detailed reconstruction of trees. In addition to robust performance, our imaging system can be 607 
employed rapidly in support of time-sensitive monitoring operations as, for instance, the assessment of 608 
forest fire damage or progress of forest recovery from disturbance. It is also well suited to providing tree 609 
dimensionality data through time, a prerequisite for improved models of tree growth and for an 610 
accurate assessment of tree competition and morphological plasticity. 611 
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Figure 1. SIFT-based scene keypoint detection and matching on two overlapping images.  
Top: Original images; Middle: 1464 (left) and 1477 (right) keypoints with arrows denoting 
orientation and radii scale; Bottom: 157 keypoint pairs, matched by color and number. 
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Figure 2. Removal of lens distortion. 
Demonstration of a. original, vs. b. OpenCV-calibrated lateral tree image obtained with a UAV-based 
GoPro camera at an above-ground altitude of 18 meters. Horizontal red line drawn to illustrate form 
of horizon in each version of the image.   
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Figure 3. 3D reconstruction in simulation.  
a. Perspective view of point cloud acquired with terrestrial LiDAR and camera locations (red spheres) 
used to obtain virtual images of the scene. b. Scene reconstruction obtained by processing of the 
images. 
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Figure 4. Custom built UAV hexacopter used to collect imagery data in this study. 
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Figure 5. Different UAV trajectories tested for image acquisition.  
a. circular, at constant height; b. ‘stacked circles’, each at different above-ground height, for tall trees 
(height more than 20 m); c. spiral, for trees with complex geometry; d. vertical meandering, targeting 
tree sectors; e. clover, for trees with wide, ellipsoidal tree crowns; f. ‘spring-hemisphere’, designed for 
trees with flat-top, asymmetrical crowns; g. ‘nested circles’, centered on the tree; and h. ’jagged saucer’, 
designed for trees with dense foliage but low crown compaction ratio. 
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Figure 6. Visualization of designed and accomplished UAV trajectories.  
a. and c. circular and clover templates as seen in Mission Planner with yellow lines showing the flight 
paths, green balloons indicating waypoints, and red balloons the center of targeted trees.  b. and d. 
perspective scene view in Google Earth, with yellow pins indicating camera locations along each 
trajectory at the moment images were captured. 
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Figure 7. Accuracy and completeness of reconstruction for a Pinus ponderosa tree. 
This analysis is based on synthetic imagery simulated using visualization of terrestrial LiDAR point clouds 
and two camera trajectories. Percentage of collocated filled voxels is used as reconstruction 
completeness criterion. 
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Figure 8. Orthographic horizontal view of reconstructed point cloud and UAV-based oblique 
perspective image. Colored arrows denote corresponding tree crown components. 
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Figure 9. Illustration of comprehensive tree reconstructions (right column) and reference UAV-based 
images (left column). 
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Figure 10. Demonstration of artifacts in the 3D tree reconstruction pertaining to a single UAV image. 
a. Initial reconstruction, positioned facing the camera with a band of white-colored points belonging to 
sky background near the top, and light colored points to the sides belonging to fallow land background, 
b. Side view, with camera position to the left  and sky points in oval and land points in rectangle, and c. 
Trimmed reconstruction positioned facing the camera. 
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Figure 11. Comparison between real and reconstructed trajectory. Nadir view of reconstructed tree 
with camera GPS locations at image frame acquisition moments (yellow circles) and VSfM-calculated 
locations (red dots). Frame frequency 2Hz, GPS fixes at 1Hz. Inset at the lower left shows lateral view of 
the reconstructed tree. 
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