
Dendrites enable a robust mechanism for neuronal stimulus
selectivity
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Abstract

Hearing, vision, touch – underlying all of these senses is stimulus selectivity, a robust
information processing operation in which cortical neurons respond more to some
stimuli than to others. Previous models assume that these neurons receive the highest
weighted input from an ensemble encoding the preferred stimulus, but dendrites enable
other possibilities. Non-linear dendritic processing can produce stimulus selectivity
based on the spatial distribution of synapses, even if the total preferred stimulus weight
does not exceed that of non-preferred stimuli. Using a multi-subunit non-linear model,
we demonstrate that selectivity can arise from the spatial distribution of synapses.
Moreover, we show that this implementation of stimulus selectivity increases the
neuron’s robustness to synaptic and dendritic failure. Contrary to an equivalent linear
model, our model can maintain stimulus selectivity even when 50% of synapses fail or
when more than 50% of dendrites fail. We then use a Layer 2/3 biophysical neuron
model to show that our implementation is consistent with recent experimental
observations, of a mixture of selectivities in dendrites, that can differ from the somatic
selectivity, and of hyperpolarization broadening somatic tuning without affecting
dendritic tuning. Our model predicts that an initially non-selective neuron can become
selective when depolarized. In addition to motivating new experiments, the model’s
increased robustness to synapses and dendrites loss provides a starting point for
fault-resistant neuromorphic chip development.

Author summary

From the stripes of your shirt to the sound of your grandmother’s name, your neurons
are capable of selecting among stimuli. How do they perform this selection? The
standard model assumes that a neuron receives the strongest inputs from neurons
encoding its preferred stimulus. While this can explain many observations, it neglects
dendrites, the neuron’s ”antennae” for receiving inputs. Here we propose an alternate
non-linear model for stimulus selectivity which incorporates dendrites fitting with the
latest experimental observations and more robust than a linear model all other things
being equal. This additional robustness enabled by dendrites offer new possibilities for
neuromorphic chip design.
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1 Introduction 1

Over 50 years ago, Hubel and Wiesel discovered an example of neuronal stimulus 2

selectivity [1], in which certain neurons in the visual cortex respond maximally to 3

particular visual stimuli. They proposed a single compartment model integrating its 4

input linearly to account for this selectivity. This model however neglects dendrites. 5

Several groups have recently presented data which is counter-intuitive given the 6

Hubel and Wiesel model. Firstly, this model integrates inputs with a narrow range of 7

selectivity. In contrast, some experimental groups observed a mixture of selectivity [2,3]. 8

Specifically, Smith et al performed dual soma-dendrites recordings and they have 9

demonstrated that somatic and dendritic tuning could differ [4]. Moreover, Jia and 10

colleagues have shown using calcium imaging that the tuning of dendritic hotspots could 11

also differ from the somatic tuning [3]. Secondly, it was observed that hyperpolarization 12

can significantly broaden somatic tuning, while dendritic tuning stays sharp [3]. The 13

first set of observations can be explained in a Hubel and Wiesel type model by using a 14

higher number of synapses for preferred than non-preferred stimuli. It is more difficult 15

however to explain the second set of observations with a Hubel and Wiesel model. Why 16

hyperpolarization does not also broaden dendritic tuning like it does for somatic tuning? 17

Taken together these two sets of observations call for models more complex than a 18

single linear compartment and in this paper we propose that they can be accounted for 19

by the properties of dendrites. 20

Biophysical studies from the 80s and 90s demonstrated that a neuron can be 21

sensitive to the spatial distribution of synaptic inputs because of its dendrites [5,6]. Mel 22

and colleagues have shown that a neuron could respond more intensely to clustered than 23

dispersed inputs [5, 7]. Alternatively, Koch and colleagues have had demonstrated that 24

under other conditions the opposite can also be true: a neuron can respond more to 25

dispersed than clustered inputs [6]. Our previous studies built on these biophysical 26

findings and demonstrated that dendrites extend the computational capacity of a single 27

neuron [8, 9]. Recent experimental evidence has shown that excitatory synapses 28

distribute non-randomly on dendrites and can form synaptic clusters [10–12]. We 29

examine here whether we can employ the spatial distribution of excitatory synapses to 30

implement stimulus selectivity. We show that such an implementation is more robust 31

than a linear equivalent model and propose that it could better explain the recent 32

experimental data. 33

2 Results 34

Dendrites allow stimulus selectivity based on the spatial 35

distribution of synapses 36

We began by using a multi-subunit model sensitive to the spatial distribution of 37

synapses. Each subunit processes its input independently with the same non-linear 38

transfer function (Fig. 1A) to account for the non-linear integration observed in 39

dendrites [13–16]. A subunit could be seen as a primary dendrite emerging from a 40

multipolar neuron. A cluster of active synapses on a subunit generate a single dendritic 41

spike whereas a dispersed synaptic activity on multiple subunits can generate more 42

spikes. In this model, as in vivo [17, 18], the generation of an action potential requires 43

multiple dendritic spikes; in our model, at least 20 % of subunits need to emit a 44

dendritic spike to trigger an action potential. Because of this property, our model will 45

be more likely to fire an action potential when synaptic activation is distributed across 46

multiple subunits rather than clustered onto a single subunit. 47

We use this sensitivity to generate stimulus selectivity in our model. Table 1 depicts 48
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the mean number of synapses per subunit depending on the ensemble of origin. We 49

grouped input neurons in eight different ensembles and each ensemble activates 50

synchronously depending on the stimulus. On the one hand, the ensemble encoding the 51

preferred stimulus distribute its 750 synapses randomly following a uniform law. On the 52

other hand, ensembles encoding the non-preferred stimuli cluster 40% of their 600 53

synapses on a given subunit and distribute the remaining synapses following a uniform 54

law on all the other subunits. We present an instance of this distinction in Fig. 1B. 55

Fig. 1C-D shows how the eight distinct ensembles distribute their synapses 56

(Red:Preferred, Black/Grey:Non preferred) on our our multi-subunit and our 57

biophysical stimulus selective neuron model. 58

Two recent papers describe how such a spatial distribution of synapses could be 59

learned [19,20]. Please note that we also proposed a learning algorithm presented in a 60

self-archived manuscript currently under review [21]. 61

Spatial distribution based stimulus selectivity increases 62

robustness to synaptic and dendritic failure 63

In this section, we probe the robustness of our implementation by comparing two 64

equivalent multi-subunit models in which integration is either linear or non-linear. 10 65

% of synaptic activity triggers a dendritic spike in a subunit of the non-linear model, 66

whereas a subunit in the linear model never spikes, and never saturates. 67

In a linear model it is necessary that the preferred ensemble makes the strongest 68

contact, i.e. makes the highest number of synaptic contacts. A linear model stops being 69

selective for the previously preferred stimulus when a non-preferred stimulus makes 70

stronger contacts than the preferred stimulus (Fig. 2A, black), for which proof is given 71

in Methods. The non-preferred stimulus making the highest number of contacts then 72

becomes the preferred stimulus. Conversely, our non-linear model remains stimulus 73

selective even when the preferred stimulus ensemble forms 200 fewer synapses than 74

non-preferred stimulus ensembles (Fig. 2A, red). This property of our non-linear model 75

confers robustness against synaptic failure (Fig. 2B), where a synapse stays inactive 76

when it should be active. It can separate both types of stimulus (Fig. 2C) and can 77

maintain its function after 50% of its synapses fail (Fig. 2D). In conclusion, for an 78

equivalent number of synapses a multi-subunit non-linear is more robust than its linear 79

counterpart. 80

A non-linear model also maintains its function when dendrites are disabled. This 81

could occur when a dendrite is physically pruned from the neuron. Our multi-subunit 82

non-linear model maintain its function even if only 25% of its synapses cluster on a 83

single subunit as shown in Fig. 3A (red). This considerably boosts the stability of the 84

non-linear model, which can maintain functionality even under the loss of more than 85

50% of compartments (Fig. 3B, black and Fig. 3C). In comparison, a linear model 86

cannot use the spatial distribution of synapses and if the synaptic bias is nil, it is 87

impossible to differentiate preferred and non-preferred stimuli (Fig. 3A, black). The 88

clustering bias (here 30 %) is detrimental for this type of model. It makes the linear 89

model sensitive to the loss of even a single compartment (Fig. 3B black). Fig. 3D shows 90

that it is impossible for a linear model losing four dendrites to separate the preferred 91

and non-preferred stimuli. 92

In summary, we compared two multi-subunit models: a linear and a non-linear 93

model. We used simulations to demonstrate that the non-linear model is much more 94

robust than its linear equivalent. We have shown that non-linear dendrites offer a new 95

dimension of robustness. Our non-linear multi-subunit model can lose 50% (more than 96

2600) of its synapses or more than 50% of its dendrites (more than 4) while maintaining 97

its function. 98
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Figure 1. Non-linearities enable stimulus selectivity using the spatial
distribution of synapses. (A) Local transfer function within a subunit; a non-linear
jump occurs at the point (θ, d). Input and output are normalized given their respective
maxima. (B) The input sites (red circles) on dendrites (horizontal lines) are where the
highest number of synaptic contacts are made (at most 70 synapses). The preferred
stimulus (Pref.) makes the highest number of synapses and the most scattered
distribution. (C-D) Schematic depiction of the spatial distribution of synapses on
dendrites (red: preferred 0, black/gray: non-preferred from 45 to 315). (C) Because of
the following synaptic placement (circles and squares) each subunit (vertical lines)
displays a distinct selectivity. Pref (shaded area) and NPref are respectively scattered or
clustered. (D) Localization of the input sites on a stimulus selective biophysical model
of a L2/3 neuron.
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Figure 2. Stimulus selectivity achieved with the spatial distribution of
synapses increases the robustness to synaptic failure. (A-B) Separability,
calculated as the fraction of model capable of separating preferred and non-preferred
stimuli (over 1000 model following the synaptic distribution depicted in Table 1), for the
non-linear (red circles) and linear (black square) models as a function of (A) the
synaptic bias, which is the difference in the number of synapses between preferred and
non-preferred ensemble; or (B) the synaptic failure which is the fraction of
malfunctioning synapses. (C-D) Fraction of spiking/active subunits in a model with
seven subunits (a subunit may not be fully active). Distribution for preferred (red) and
non-preferred stimuli (gray) (C) In control condition, or (D) with 50% synapses failing.
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Figure 3. Stimulus selectivity achieved with spatial distribution of
synapses increases the robustness to dendritic failure. (A-B) Separability,
calculated as the fraction of models capable of separating preferred and non-preferred
stimuli (n = 1000), for the non-linear (red circles) and linear (black square) model as a
function of (A) the clustering bias, which is the number of synapses specifically set on a
precise compartment; and (B) the number of removed compartments. (C-D)
Distribution of dendritic activity for preferred (red) and non-preferred (gray) (C) in the
non-linear models where dendritic activity closely relates to the number of maximally
active compartment; and (D) in the linear model, where synaptic activity is the number
of active synapses.
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The biophysical model replicates the mixture of dendritic 99

tunings 100

We have shown how a multi-subunit non-linear model can robustly implement stimulus 101

selectivity. The following section demonstrates that these results carry over to a 102

biophysical model capturing rich temporal dynamics and interactions between 103

compartments. This biophysical model fits recent experimental observations [3]. 104

We constructed a stimulus selective neuron (Fig. 4A) that replicates the 105

experimental data. Both the data and our model can display a variety of dendritic 106

tunings (Fig. 4B-C). To replicate the experimental observations, we used 8 ensembles of 107

AMPA/NMDA-type synapses distributed each on 7 locations. Synapses from the 108

preferred stimulus ensemble scatter across all branches, whereas synapses from the 109

non-preferred ensembles cluster, each onto a particular dendrite. We placed these 110

synapse on a Layer 2/3 neuron reconstruction [3] (Fig. 1D). 111

The activation of a synapse results in a somatic depolarization of 1
7 mV, independent 112

of its location (Fig. 4C), as has been observed in another cell type [4]. We enforced this 113

”dendritic democracy” [22] by scaling synaptic conductances depending on their 114

distance to the soma. Consequently, all synapses produce the same depolarization at 115

the soma and each ensemble makes the same number of synapses. Therefore, in theory 116

all ensemble should produce the same depolarization at the soma, but this is not exactly 117

the case in practice because of non-linear interaction between synapses. 118

Interestingly, synapses interact in two distinct ways, dependent on their location. 119

For synapses clustered on a branch (Fig.1D black squares and Fig. 4C, black trace), 120

seven active synapses (one per location, Fig.1D presents the 8 sets of 7 locations) 121

interact supra-linearly and they produce a depolarization superior to one mV because 122

they generates an NMDA spike [23], but 35 synapses on a branch (five per location) 123

interact sub-linearly due to reduced driving force at synapses [6, 24]. Even if the 124

depolarization at the soma is weak, locally, the membrane voltage within a branch 125

reaches the equilibrium voltage (0 mV) because of the branch small diameter 1 µm (see 126

Movie S1). In contrast, for synapses scattered across the seven branches, scattered 127

stimulation depolarizes the soma more than clustered synapses because multiple NMDA 128

spikes are generated (Fig. 4C, red trace) as has been observed experimentally in 129

vivo [17]. These observations are summarized in an expected/measured plot (Fig. 4D) 130

and show the biophysical model’s sensitivity to the synaptic spatial distribution. 131

This sensitivity enables the generation of stimulus selectivity in our model. If the 132

population coding for the preferred stimulus makes functional synapses on all primary 133

dendrites, whereas non-preferred stimuli cluster on single branches, then the distributed 134

synaptic arrangement produces multiple NMDA spikes that reach the soma in parallel, 135

as observed in vitro [25] and in vivo [18, 26] (Fig. 4A). Both scenarios are illustrated in 136

animations provided as supplementary material (see movies S1 and S2). 137

In a single compartment model, the highest weighted stimulus always ”wins”, 138

rendering synaptic spatial distribution irrelevant. Conversely, our multi-compartment 139

biophysical model uses exclusively the spatial distribution of synapses to implement 140

stimulus selectivity, a configuration that could explain, in contrast with single 141

compartment models, how calcium hotspots in dendrites display mixed stimulus 142

tuning [3]. Note that our model does not exclude an average dendritic tuning similar to 143

the somatic tuning, however it can explain the cases where the average dendritic tuning 144

differs from somatic tuning. 145
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Figure 4. Stimulus selectivity implemented through the spatial distribution
of synapses displays a mixture of dendritic selectivities. (A) Somatic voltage
for two stimuli (0/45 degrees during shaded period). (B) Spike count (red) and
experimentally determined integral of the calcium response in dendrites (black) and
integral of the voltage response in dendrites (one example, blue). Note the similarity of
the somatic tuning but not of the dendritic tuning. The model has a broad dendritic
tuning because there is no hyperpolarisation. The soma tuning is shown in the
hyperpolarized case. (C) Somatic depolarization when one(top)/five(bottom) synapse(s)
activate in one of the input sites from 0 to 800 ms; or when one/five occurs at all the 7
sites (800 to 1000ms). Input locations are described in Fig. 1 (red: scattered/black:
clustered). (D). Expected (arithmetic sum) versus measured depolarization in the 8 sets
(red:scattered on 7 branches, black/grey:clustered on a branch) of 7 input sites. Black
and red marks correspond to experiments carried out in (C)
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Hyperpolarization broadens somatic but sharpens dendritic 146

tuning in our model 147

We injected current at the soma in our biophysical model to pull down the membrane 148

potential from -65mV to -70mV, as in Jia et al.’s experiment [3]. Because of 149

hyperpolarization, the neuron stops firing action potentials, and the somatic tuning of 150

the membrane voltage becomes broader. This might be mainly due to the non-linearity 151

induced by somatic spiking in the control condition. The dendritic tuning, however, is 152

sharp even under hyperpolarization. 153

When we decrease the resting membrane voltage to -70mV, the number of synapses 154

necessary to trigger an NMDA spike increases, and only the dendritic preferred stimulus 155

provokes an NMDA spike. Fig. 5A shows that only the 45 degree stimulus triggers 156

dendritic spikes, and dendritic selectivity sharpens (Fig. 5B). Furthermore, this could be 157

reinforced by the non-linearity of the calcium sensor. Conversely, the somatic 158

depolarization difference between scattered and clustered synapses decreases, when we 159

hyperpolarize the neuron (Fig. 5C-D), and somatic selectivity broadens. 160

The model’s sensitivity to the spatial distribution of synapses predicts the effect of 161

hyperpolarization on dendritic tuning. The broadening of the somatic tuning can 162

intuitively be explained by hyperpolarization. Intuitively, somatic spiking non-linearly 163

sharpens somatic tuning in the control condition. The sharp dendritic tuning however is 164

much less intuitive, and the sharpening of dendritic tuning during hyperpolarization is 165

another important prediction of our modeling work. This could be tested by using 166

micro-injection of TTX, or a similar approach, instead of hyperpolarization to block 167

back-propagated action potentials. 168

3 Discussion 169

We implemented stimulus selectivity in a multi-subunit non-linear model (Fig. 1) that 170

can lose 50% synapses or more than 50% of its subunits and maintain its function 171

(Fig. 2). Importantly, the selectivity mechanism we propose can coexist with a classical 172

mechanism based upon synaptic strength (Fig. 4A), providing an additional channel for 173

neuronal information processing. In practice, the ensemble encoding the preferred 174

stimulus does make the strongest contact, as suggested by Cossel et al [27] and observed 175

by Chen et al [28]. A linear model can also be robust if there is a large difference in the 176

number of synapses between preferred and non-preferred ensembles. In our study, we 177

used the same synaptic difference in the non-linear and the linear model to show that 178

using the spatial distribution of synapses adds a new dimension to robustness. Although 179

the two models detailed in the manuscript exhibit average dendritic tuning different to 180

that of the soma, these models also allow for the possibility that the average dendritic 181

tuning is similar to the somatic tuning. 182

Local and non-linear integration could have made our model cluster sensitive. A 183

neuron with the latter type of sensitivity might possess the same robustness to synaptic 184

failure than our neuron model, but not to dendritic failure. Instead the neuron model 185

used here is scatter sensitive: it responds more to scattered (widely distributed) than 186

clustered synaptic activity. This behavior has previously been described [5, 6], but has 187

never been proposed as a mechanism underlying stimulus selectivity. Recent tour de 188

force experimental work [3] motivated our use of scatter sensitivity, rather than cluster 189

sensitivity, for this purpose. Additional experimental work, for instance where dendrites 190

are disabled using targeted laser dendrotomy, will however be necessary to confirm the 191

functional role of scatter sensitivity [29]. This work could test our first prediction, that 192

stimulus selectivity is stable to dendrites removal. Futhermore, functional connectomics 193

will enable us to determine experimentally whether clustered and scattered synapses 194
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Figure 5. Hyperpolarization broadens somatic tuning whereas it sharpens
dendritic tuning in our model. (A) Local membrane potential in the first dendritic
branch for two stimuli: the soma’s preferred stimulus and for the dendrite’s preferred
stimulus. (B) Integral of dendritic calcium signal (black) and of the somatic membrane
voltage (red) (replotted from [3]). In our model we compute the integral of the dendritic
membrane voltage (blue). (C) Somatic depolarization when one(top)/five(bottom)
synapse activate in one of the input site from 0 to 800 ms; or when one/five occurs at
all the 7 sites (800 to 1000ms). Input locations are described in Fig. 1 (red:
scattered/black: clustered). (D). Expected (arithmetic sum) versus measured
depolarization in the simulation 2 sets of 7 locations.
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encode non-preferred and preferred stimuli. 195

Importantly, the average dendrites tuning and soma tuning can, different to the 196

results presented here, be identical. Let’s take a case where each branch do not have the 197

same weight -produce the same depolarization on the soma. One could imagine a 198

situation where branches with a small weight have the same tuning than the soma. If 199

these branches are the most numerous then the average dendrites tuning will correspond 200

the soma tuning. 201

Although we have focused, to ease comparison with experimental studies, on the 202

tuning of a neuron to a sensory stimuli, all neural computations can be described in 203

terms of stimulus selectivity. Boolean functions can both describe a neural computation 204

and stimulus selectivity. In the latter case, we can describe stimuli as words of 0s and 1s. 205

In the former case, we can describe all neural computations as Boolean functions if we 206

binarize activity. Therefore our implementation based on the spatial distribution of 207

synapses can be used for general neural computation. To transpose a synaptic strength 208

based implementation of a computation, it suffices to turn the strength of a weight into 209

a dispersion factor. 210

The biophysical model reinforces our claim that the insights gained from the 211

multi-subunit model are physiologically relevant; together, they yield three predictions. 212

Firstly, we predict that hyperpolarization not only broadens somatic tuning [3,30] but it 213

also sharpens dendritic tuning (Fig. 5). Our results, taken together, make two testable 214

predictions. Secondly, our model predicts that a neuron may recover its tuning after 215

losing a large fraction of either its synapses or dendrites, due to the robustness provided 216

by spatial synaptic distribution based information processing. Thirdly, we predict that a 217

cortical neuron with no apparent stimulus tuning can acquire stimulus selectivity when 218

depolarized, similar to what can be observed in place cells [31]. In the next paragraph 219

we describe a fourth prediction. 220

Our implementation using nonlinear dendritic integration that can be learned using 221

an unsupervised learning algorithm [32]may inform the design of neuromorphic chips, as 222

it suggests that the use of dendrites – even passive – can extend the robustness of the 223

circuit. These two papers taken together yield an original and interesting experimental 224

prediction: an animal, reared in an environment containing mostly vertical lines, will 225

have neuron in its visual cortex mostly tuned to the horizontal direction. While we have 226

demonstrated these capabilities in the context of a neuron’s selectivity to a visual 227

stimulus, the model we have proposed is general, and potentially reflects a canonical 228

computational principle for neuronal information processing. 229

In the end, all we can hope is that our model is falsifiable. This is why we provided 230

multiple ways to falsify (or not) our model. From a practical point of view, our result 231

on robustness may have a major impact on the design of new neuromorphic chips, as 232

discussed in our manuscript, so even if falsified, we would allege that our study may not 233

be completely useless. However, we believe that our model is already useful in that it 234

provides a way to account for some previously puzzling experimental results, and that 235

with the rate of progress in Neurotechnology, it will not be long until it can be tested in 236

more detail. 237

4 Methods 238

Multi-subunit model 239

Our multi-subunit model consists of seven subunits, each receiving input from eight 240

presynaptic neuronal ensembles corresponding to eight different stimulus orientations. 241

The mean number of synaptic contacts for each ensemble-dendrite pair is described in 242

Table 1. The preferred stimulus (0 degrees) activates 700 synapses following a random 243
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uniform distribution across all seven dendrites. In contrast, non-preferred stimuli 244

activate 650 connections each, including a bias such that 40% of input from each 245

orientation preferentially target one of the dendrites and the remaining 60% being 246

uniformly distributed among the remaining six dendrites following a uniform 247

distribution. A dendrite saturates when 100 of its synapses are active, and the somatic 248

output will be determined by the arithmetic sum of all the dendritic output. 249

Table 1. Synaptic distribution in our multi-subunit model. Mean number of
synapses made by each presynaptic ensemble for each stimulus, for each postsynaptic
dendrite.

Dendrite (dj)
Preferred orientation 0 1 2 3 4 5 6 Total

0 100 100 100 100 100 100 100 700
45 260 65 65 65 65 65 65 650
90 65 260 65 65 65 65 65 650
135 65 65 260 65 65 65 65 650
180 65 65 65 260 65 65 65 650
225 65 65 65 65 260 65 65 650
270 65 65 65 65 65 260 65 650
315 65 65 65 65 65 65 260 650

A necessary condition for the linear model 250

The highest weight needs to be from the preferred stimulus in a linear model. To prove 251

that let us consider the simplest scenario where two presynaptic neurons each synapse 252

onto a postsynaptic neuron. We arrange it so that one input codes for the preferred 253

stimulus while the other for a non-preferred stimulus, and Wpref and Wnonpref is the 254

amplitude of their resulting depolarization on the postsynaptic neuron. Here, stimulus 255

selectivity is possible only if Wpref ≥ Θ and Wnonpref < Θ, which is equivalent to 256

Wpref > Θ > Wnonpref . This condition can be generalized for any number of 257

presynaptic neurons, and implies in the linear neuron model when constrained to 258

positive values of W that stimulus selectivity is only possible when the preferred 259

stimulus has the highest weight. 260

Biophysical model 261

For detailed modeling, we used a reconstructed morphology of a neuron from Layer 2/3 262

of visual cortex in mouse [3]. The capacitance of the model is C = 1µF/cm2. The axial 263

resistance in each section was Ra = 35.4Ω, and passive elements were included 264

(gl = 0.001 Ω−1, el = −65 mV). To hyperpolarize the neuron to −70mV we injected in 265

the soma 0.15nA which gives an input resistance of 33.3MΩ. Spiking was implemented 266

using an integrate-and fire mechanism with a hard threshold of -45mV, which has been 267

shown to provide an accurate depiction of spike initiation behaviour [33], whereupon we 268

set the voltage to 20 mV in the following timestep, before resetting to -65 mV. The 269

model was implemented using NEURON with a Python wrapper [34], with the time 270

resolution set to 0.1ms. 271

Synaptic inputs to the biophysical model 272

We used 280 synapses divided into 8 groups of 35 synapses, corresponding to 8 different 273

stimuli (orientations). Each had a background activity of 1 Hz which increased to 10Hz 274

during the presentation of the stimulus. As experimental evidence suggests that 275
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stimulus information is coded not only by an increase in firing rate but also in 276

correlation [35,36], synapses synchronously co-activate 20 times to encode the presence 277

of a stimulus (preferred or otherwise). This raises the firing rate of this group to 30 Hz. 278

The specific set of synchronous synapses activated depends on the stimulus identity, e.g. 279

synapses 1-35 synchronously activate for the preferred stimulus, synapses 36-70 activate 280

for the non-preferred stimulus #1, etc. 281

Conductance based NMDA-type synapses 282

NMDA-like inputs were included by modeling voltage-dependent, conductance-based 283

synapses that generated postsynaptic currents is = g(t)gmg(v) × (v(t) − es), with 284

reversal potential es =0 mV. For g(t), we used an alpha-function with rise and decay 285

time constants τ1 = 0.1ms and τ2 = 10ms respectively. Values for τ1 and τ2 were chosen 286

to be deliberately lower than those for real glutamate binding on NMDA channels to 287

account for the presence of voltage-gated calcium dependent potassium channels in the 288

membrane. The voltage-dependent conductance gmg(v) was determined assuming 289

[Mg2+] =1mM. The equation for the Mg block was gMg(v) = 1
1−ve0.062 × 1

3.57 . 290

Supporting Information 291

S1 Video 292

Neuron response to clustered synaptic inputs. L2/3 neuron reconstruction from 293

the visual cortex. The large circle is the soma and black dots are input sites. 294

Depolarisation of a section is color-coded (black:low, yellow:high). 295

S2 Video 296

Neuron response to scattered synaptic inputs. L2/3 neuron reconstruction from 297

the visual cortex. The large circle is the soma and black dots are input sites. 298

Depolarisation of a section is color-coded (black:low, yellow:high). 299
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