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Hearing, vision, touch — underlying all of these senses is stimulus se-
lectivity, a robust information processing operation in which cortical
neurons respond more to some stimuli than to others. For vision,
Hubel and Wiesel discovered that certain neurons respond selectively
to elongated visual stimuli, and proposed an elementary linear model
to account for this selectivity. Recent experiments have however
cast doubt on some aspects of this textbook model. Hyperpolarising
a neuron can abolish selectivity in the soma, while selectivity in the
dendrites - the receptive compartments of neurons - remains unaf-
fected. A model assuming linear summation of inputs, like the Hubel
and Wiesel model, cannot explain this observation. Here instead we
employ a morphologically realistic model, incorporating non-linear
dendrites reconstructed from real neurons, to implement stimulus
selectivity. We show that this model explains the effect of hyper-
polarisation, and implements stimulus selectivity more robustly than
the classic model. It can remain selective even if 50% of its synapses
fail. This demonstrates that in addition to increasing neuronal com-
putational capacity, dendrites can also increase the robustness of
neuronal computation. We also predict that a neuron that is ini-
tially stimulus non-selective can become selective when depolarized.
This prediction stimulates new experimental studies on stimulus se-
lectivity.Moreover, the robustness of our implementation provides a
starting point for the development of fault-resistant neuromorphic
chips.

Dendrites | stimulus selectivity | electrophysiology ‘ single neuron computation

O ver 50 years ago, Hubel and Wiesel discovered a canon-
ical example of stimulus selectivity [1], the selectivity of
striate cortical neuronal responses to bar-like visual stimuli of
a particular spatial position and orientation. They proposed
a model to account for this, in which simple cells develop ori-
entation tuning through pooling of inputs aligned along a pre-
ferred axis, and complex cells linearly summate inputs from
simple cells with the same orientation. Recently, however, sev-
eral groups using two photon calcium imaging combined with
whole cell patch clamp electrophysiology have presented data
in apparent discordance with this model. Firstly, it was ob-
served that the soma and dendrites of layer 2/3 cortical pyra-
midal cells show different tuning, with inputs sharing the same
orientation preference distributed widely throughout the den-
dritic tree, and inputs with different orientation preferences
interspersed within a dendritic locality [2]. In contrast, the
Hubel and Wiesel complex cell would be expected to integrate
inputs with a relatively narrow range of orientations. Sec-
ondly, it was observed that hyperpolarisation can eliminate
orientation selectivity at the soma, while leaving the selectiv-
ity of dendrites unaffected [2, 3]. This disruption of somatic
selectivity has also been observed in other sensory modali-
ties such as touch [9], and thus may reveal a general principle
underlying cellular information processing. A linear synaptic
integration model such as the Hubel and Wiesel model would
predict that the sub-threshold membrane potential remains
stimulus selective.

Inputs with different orientation preferences are interspersed
within the same dendritic locality might potentially be recon-
ciled with the Hubel and Wiesel model, if simple cell inputs
encoding the preferred stimulus make the highest number of or
the strongest contacts. That hyperpolarisation eliminates ori-
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entation selectivity at the soma while leaving the dendrites un-
affected, however, is difficult or impossible to reconcile with a
linear synaptic integration model. How might it be explained?
Here, we demonstrate that nonlinear integration in dendrites
may provide a possible explanation.

Dendrites can enhance the computational capacity of single
neurons. This stems from local and non-linear interactions
of synaptic inputs in dendrites: the somatic depolarization
resulting from multiple synaptic inputs can be larger (supra-
linear) [10] or smaller (sublinear) [11, 12, 13, 10] than their
arithmetic sum. Either of these non-linearities endow neurons
with greater computational capacity than expected from a lin-
ear model [8]. We therefore examined how stimulus selectivity
could be incorporated into a biophysical neuron model by the
use of nonlinear dendrites.

Non-linear interaction between synapses in the dendrites
makes our neuron model sensitive to the spatial distribution
of synaptic activity. We exploited this property to make our
model stimulus selective (Fig. 1A). We reproduced the ob-
servation that dendritic selectivity can differ from somatic se-
lectivity (Fig. 1B) by shaping of the spatial distribution of
synapses (Fig. 1C). We placed 8 sets of 7 groups of 1 to 5
AMPA /NMDA-type synapses at 8x7 locations either scattered
on 7 distinct primary dendrites or clustered on a single branch
from a morphological reconstruction of a layer 2/3 stellate cell
neuron [2] (Fig. 1D). The activation of a single synapse per
location results in a somatic depolarization of 1 mV, inde-
pendent of synapse location, as observed in [14] (Fig. 1E).
We enforced this “dendritic democracy” [15] by scaling the
synaptic conductance. Interestingly, these synapses interact
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From the stripes of your shirt to the sound of your grandmother’s
name, your neurons are capable of selecting among stimuli. How
do they perform this selection? The standard model assumes
that a neuron receive the highest number of active inputs for its
preferred stimulus. While this can explain many observations, it
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ation of fault-resistant neuromorphic chips.
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non-linearly in two distinct ways. When the activation of
7 synapses (1 per location) is clustered on a branch within
(typically) 40 pm, they can generate a depolarization larger
than their arithmetic sum at the soma because of the voltage-
gated magnesium block of the NMDA current [16](Fig. 1E
top black trace). In contrast, when 35 clustered synapses (5
per location) are active they interact sub-linearly, and the re-
sulting voltage is smaller than the arithmetic sum, due to
saturation [17, 18] (Fig. 1E bottom black trace). For scat-
tered synapses, the interactions have the opposite behavior
(Fig. 1E red trace), and the result is a more linear inte-
gration, as observed experimentally [19]. Therefore, the non-
linear interaction between synapses depends on their spatial
distribution and on the number of active synapses: For 35 ac-
tive synapses, clustered synapses interact sub-linearly whereas
scattered synapses interact almost linearly (Fig. 1F). This
demonstrates that synaptic integration in a realistic recon-
struction of a layer 2/3 neuron is highly sensitive to the spatial
distribution of active synapses, and even a few synapses can
effectively depolarize the cell when active synapses are spa-
tially dispersed throughout the dendrites. We exploited this
sensitivity to the spatial distribution of synapses to generate
stimulus selectivity. In our model, only the population cod-
ing for the preferred stimulus makes functional synapses on all
the 7 different primary dendritic branches, whereas the pop-
ulations coding for non-preferred stimuli each synapse on a
single branch. In this case, a single NMDA spike is generated
and is, in most cases, insufficient to make the neuron spike.
Conversely, for the preferred stimulus the neuron fires because
multiple NMDA spikes are generated in parallel, as observed
in vitro [20] and in vivo [21, 22] (Fig. 2A). Both scenarios are
illustrated in animations provided as supplementary material
(see movies S1 and S2).

Hyperpolarization abolishes selectivity at the soma both in
experiments and in our model (Fig. 2A). Injecting 100pA into
the neuron changes its resting membrane potential, pulling
the somatic membrane potential down to -95mV from -64mV.
The neuron stops firing action potentials, however hyperpolar-
isation also affects the shape of the subthreshold potential in
our non-linear model. This modification of the voltage range
changes how the synapses interact. When we hyperpolarise
the neuron, the depolarization difference between the scat-
tered and clustered situation decreases and becomes negligi-
ble (Fig. 2C). Consequently, there is very little difference in
the depolarization induced by the preferred and non-preferred
stimuli, and somatic stimulus selectivity is lost (Fig. 2B and
C). Conversely, stimulus selectivity in dendrites remains sharp
under hyperpolarisation, because it depends instead upon the
non-linearity of integration across NMDA synapses, which is
retained under hyperpolarisation (Fig. 1B). We conclude that
the sensitivity to the spatial distribution of synapses can ex-
plain the effect of hyperpolarisation on somatic selectivity.

Our implementation of stimulus tuning is possible only if
synaptic integration is locally non-linear, and impossible if
integration is completely linear. If the model is linear, the
position of synapses relative to each other becomes irrelevant
and it is impossible to use the spatial distribution of synapses
to implement stimulus selectivity. Our theoretical framework
is sufficient to explain the experimental observations: While
a neuron might instead use a different non-linear mechanism
than the one we have assumed, we show that a sublinear den-
dritic non-linearity is sufficient.

In the biophysical model, we used relatively few synapses
(280) and we placed these synapses in a non-random fashion.
Relaxing these two non-realistic assumptions, by using an ab-
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stract non-linear model with 4600 synapses distributed almost
randomly. This enabled us to study the more general case of
a biologically realistic order of magnitude.

We found that using the spatial distribution of synapses in a
non-linear model adds robustness against both synaptic failure
and the loss of dendrites (Fig. 3). To show that, we computed
the depolarization using our non-linear model, and scaled up
our implementation to include more than 4000 synapses. We
used 8 ensembles of presynaptic neurons, with each ensemble
coding for a different stimulus. The ensemble coding for the
preferred stimulus targeted all dendritic compartments ran-
domly, whereas the ensembles coding for non-preferred stimuli
each tended to cluster their synapses on a different dendritic
compartment (30%). Their remaining synapses distributed
randomly. We found this difference in spatial distribution to
be sufficient to create stimulus selectivity. On the one hand,
the preferred stimulus can make in this model up to 200 fewer
synapses than the non-preferred stimuli without altering stim-
ulus selectivity (Fig. 3A); on the other hand, in a linear model
it is necessary that the preferred stimulus makes the highest
number of contacts (for proof, see Methods). Moreover, a neu-
ron can be stimulus selective even if input sources coding for
the non-preferred stimuli cluster only 10% of their synapses
(Fig. 3B). These properties confer robustness against synap-
tic failure or the loss of dendrites (Fig. 3C to F). We first study
examples: We either randomly made 50% of input sources fail
in a non-linear (Fig. 3C and D) or a linear model (Fig. 3F),
or two dendrites (Fig. 3E), and look at the effect on the dis-
crimination ability - the separability - between preferred from
non-preferred stimuli. We observed that despite synaptic fail-
ure, the two types of stimuli in a non-linear model still generate
distinct depolarizations at the soma (Fig. 3D); this was also
the case when we removed two dendrites (Fig. 3E). This shows
that a neuron suffering from synaptic failure or dendritic loss
can remain selective by adjusting its somatic spike threshold
during a recovery period. On the contrary, for a model where
integration is linear, the preferred and non-preferred stimuli
can no longer be discriminated when sources encoding the pre-
ferred direction lose too many synapses and are no longer the
ensemble with the highest number of synaptic contacts. In
Fig. 3F, we systematically compare the linear and the com-
partimentalized non-linear model. From this, we conclude that
implementations using the spatial distribution of synapses are
more robust to synaptic failure than implementations which
make use of linear synaptic integration.

In summary, we have demonstrated that local and non-
linear synaptic integration enables neurons to implement ro-
bust stimulus selectivity. Our non-linear model, as an alterna-
tive to linear synaptic integration models based upon the prin-
ciples established by Hubel and Wiesel, can generate stimulus
selectivity and reproduce two recent and relatively surpris-
ing experimental observations: i) complex cells receive inputs
coding for a variety of stimuli [2, 3] (Fig. 1); and ii) hyper-
polarisation disrupts selectivity at the soma [2, 9] (Fig. 2)
while leaving dendritic selectivity unimpaired. We demon-
strated that this implementation of stimulus selectivity in a
layer 2/3 biophisycal model is more robust than an equivalent
model with linear synaptic integration (Fig. 3).

The additional robustness of our model comes from local
and non-linear synaptic integration. This type of integration
can make a neuron cluster sensitive, but our model is, in this
study, instead scatter sensitive. Sensitivity to scatter in the
spatial distribution of active synapses has previously been de-
scribed [23], but never exploited computationally. Our results
were strongly motivated by experimental results on the spa-
tial distribution of orientation preferences with the dendritic
tree reported by [2], supported by results from related studies
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[3, 9]. We consider that there is a strong need for additional
experimental work on the distribution of sensory tuning prop-
erties within the dendritic tree of neurons across a number of
cortical areas. We note that our implementation of stimulus
specificity is compatible with a bias in synaptic connectivity,
where the strongest input comes from the preferred stimulus,
as observed recently by Chen et al [24].

Our results, taken together, make two additional testable
predictions. Firstly, they predict that a neuron may recover
its tuning after losing a large fraction of either its synapses
or dendrites, due to the robustness behaviour displayed here.
Secondly, the model predicts that a neuron in a sensory cor-
tical area with no apparent stimulus tuning can acquire stim-
ulus selectivity when depolarized. A similar phenomenon is
observed in place cells [25].

In this study we considered the sensitivity of a layer 2/3
complex cell to the orientation of a visual stimulus. One
important feature of the complex cell is its phase insensitiv-
ity - which is frequently accounted for by integrating inputs
from simple cell receptive fields in quadrature [26]. It would
be interesting to explore whether inputs sensitive to different
phases cluster in nearby dendritic locations, or are scattered
throughout the dendritic tree. Thus far, the spatial distri-
bution of phase sensitivity within the dendritic tree of visual
cortical neurons is yet to be characterised, however, based on
the phase insensitivity of the complex cell we might expect
inputs tuned for similar spatial phase to be scattered widely
amongst the dendritic tree, rather than clustered on particular
dendrites. A specific prediction here would be that the degree
of scatter of spatial phase amongst the dendrites would corre-
late with the ” complexity” of the cell, as measured by the ratio
between the DC and first harmonic of the stimulus modulated
response.

Our nonlinear dendritic integration will inform the design of
neuromorphic chips, as it suggests that the use of dendrites -
even if passive- can extend the robustness of the circuit, as well
as adding information processing capacity. Dendrites may not
only increase the computational power of each unit, but also
increase their resilience, addressing a crucial issue in the design
of fault-tolerant chip architectures. While we have demon-
strated these capabilities in the context of a neuron’s stimulus
selectivity to a visual stimulus, the model we have proposed
is general, and potentially reflects a canonical computational
principle for neuronal information processing.

Materials and Methods

Biophysical model. For detailed modelling, we used a reconstructed morphology of
a stellate cell from Layer 2/3 of visual cortex in mouse [2]. The axial resistance in each
section was Rq = 35.4€), and passive elements were included (g; = 0.001(271,
e; = —65 mV). Spiking was implemented using a hard threshold of -45mV giving
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the same result but more realistic [31] than a Hodgkin-Huxley model (data not show),
whereupon we set the voltage to 20mV in the following timestep before resetting at
-65mV. The model was implemented using NEURON with a Python wrapper [27],
with the time resolution set to 0.1ms.

Synaptic inputs. We generated 280 presynaptic neurons divided into 8 sets of 35
neurons, corresponding to 8 different orientations. Each had a background firing rate
of 1 Hz which increased to 10Hz during the presentation of the stimulus. As experi-
mental evidence suggests that stimulus information is coded not only by an increase
in firing rate but also in spike-time correlation [28, 29], we inserted 20 synchronous
spikes to the spiketrains from neurons encoding the preferred stimulus, raising their
firing rate to 30 Hz.

Conductance based NMDA-type synapses. NMDA-like inputs were included by
modelling voltage-dependent, conductance-based synapses that generated postsynap-
tic currents 15 = g(t)gmg(v) X (U(t) —es), with reversal potential €5 =0 mV.
For g(t), we used an alpha-function with rise and decay time constants 71 = 0.1ms
and T2 = 10ms respectively. Values for 71 and T2 were chosen to be deliberately
lower than those for real glutamate binding on NMDA channels to account for the
presence of voltage-gated calcium dependent potassium channels in the membrane.
The voltage-dependent conductance gmg (’U) was determined following the formalism

in [30] and assuming [Mg2+] =1mM.

Multi-compartmental model. Our multi-compartmental model consists of 7 den-
drites, each which receives input from 8 groups presynaptic neurons corresponding to
8 different orientations (Fig. 4). Here, the preferred stimulus (0 degrees) projects 700
synapses randomly distributed across all 7 dendrites. In contrast, non-preferred stim-
uli make 650 connections each, with the mean number of synaptic contacts for each
stimulus-dendritic pair described in Table 1, including a bias such that 40% of input
from each orientation preferentially target one of the dendrites and the remaining 60%
being evenly distributed among the remaining 6 dendrites. Additionally, clustering bi-
ases were generated by keeping the 40% bias from a given stimulus, and supplying the
specified clustering bias additionally from the remaining 60% of inputs. A dendrite
saturates when 100 of its synapses are active, and the somatic output is determined
as the arithmetic sum of all the dendritic output.

A necessary condition for the linear model.  The highest weight needs to be
from the preferred stimulus in a linear model. To prove that let us consider the
simplest scenario where two presynaptic neurons each synapse onto a postsynaptic
neuron. We arrange it so that one input codes for the preferred stimulus while the
other for a non-preferred stimulus, and Wpref and Wnonpref be the amplitude of
their resulting depolarization on the postsynaptic neuron. Here, stimulus selectivity
is possible only if Wprcf > © and Wnonpmf < O, which is equivalent to
Wpref >0 > Wnonpreﬂ This condition can be generalized for any number of
presynaptic neurons, and implies in the linear neuron model when constrained to posi-
tive values of W that stimulus selectivity is only possible when the preferred stimulus
has the highest weight.
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Table 1. Synapses distribution in multi-compartmental model.
Mean number of synapses made by each presynaptic ensemble for each
stimulus, for each postsynaptic dendrite.

Dendrite (d;)
Preferred orientation 0 1 2 3 4 5 6 Total

0 100 | 100 | 100 | 100 | 100 | 100 | 100 | 700

45 260 | 65 65 65 65 65 65 650

90 65 | 260 | 65 65 65 65 65 650

135 65 65 | 260 | 65 65 65 65 650

180 65 65 65 | 260 | 65 65 65 650

225 65 65 65 65 | 260 | 65 65 650

270 65 65 65 65 65 | 260 | 65 650

315 65 65 65 65 65 65 | 260 | 650

Footline Author PNAS | lIssue Date | Volume | lIssue Number | 5


https://doi.org/10.1101/023200

bioRxiv preprint doi: https://doi.org/10.1101/023200; this version posted December 12, 2015. The copyright holder for this preprint (which was not certified
by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
“art” — 2015/12/12 — 10:28 — page 6 — #6

A Experiment Model B Experiment Model

[

10

4 om70°} - -490

180°

D |
5 % —
£ _ 4
(]
%5 90° 1
wn
@
< d
()]
8 : | | |
5 .
S 315 ] -100 0 100
0 size(pm)
E s F 401
< —50| Scattered / Clustered s 2?5;2:23 .7
E -551 1 synapse / site g Al ietarar ,/
o —60F kel
g —65 L L L L[& o
3 S
> _45- 0
®] ©
% =50} 5 synapses / site ‘JE’
g —551
3 |
w0
0 20 40

200 400 600 800
Time (ms)

expected (mV)

Fig. 1. Differential stimulus tuning of the soma and dendrites
can arise from the spatial distribution of synapses. A Somatic response
to two stimuli (0/45 degrees). Dotted horizontal lines indicate resting potential with shaded
areas indicating stimulus presentation. B. Polar plots of somatic (red, normalized spike count)
and an example of dendritic selectivity (black, normalized calcium signal integral in experiments
or voltage integral in model). The chosen dendrite corresponds to the black color in all panels.
C Schematic depiction of synapses’ spatial distribution. Horizontal lines are axons color coded
for their stimulus selectivity (red: preferred, black/gray: non-preferred). Vertical lines are
distinct primary dendrites. Each dot corresponds to 5 synaptic contacts. D 2-D projection of
a reconstructed layer 2/3 neuron from [2]. Dots are input locations color coded as in C. E2
Somatic depolarization when 1 synapse (top) or 5 synapses (bottom) are stimulated at each
location from 0 to 800 ms; and when stimulation occurs at the 7 locations simultaneously from
800 to 1000 ms. Here we used two sets of locations (thick red line: scattered / thin black
line: clustered). F. The expected depolarization based on arithmetic summation, versus that
measured from the simulation, for 8 sets of 7 locations.
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Fig. 2. Hyperpolarization disrupts stimulus selectivity at the
soma. A. Polar plots of somatic stimulus tuning, given by the normalized spike count.
Hyperpolarization induced by 100 pA both in the experiment and in our simulation. Experimen-
tal data replotted from [2]. B Somatic depolarization when 1 synapse (upper) or 5 synapses
(lower) are stimulated at each location from 0 to 800 ms; and when stimulation occurs at the 7
locations simultaneously from 800 to 1000ms. We used the same sets of locations as in Fig. 1
(red: scattered/black: clustered). C. The expected depolarization based on the arithmetic
sum of individual depolarizations versus the depolarization measured in the simulation. This is
quantified for the 8 sets of 7 locations using the same color code as in Fig. 1.
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Fig. 3. Using the spatial distribution of active synapses for neu-
ronal computation increases robustness to synaptic failure. We
presented 8 input patterns to 1000 random instances of our model. Separability - the fraction
of model instances able to separate preferred from non-preferred stimuli - is shown as a func-
tion of A the difference in the number of synapses between the fixed number of 700 preferred
and a variable amount of non-preferred inputs (Synaptic Bias), and B the fraction of synapses
from a non-preferred stimulus on each dendrite in addition to the baseline proportion originally
obtained when uniformly distributed (Clustering Bias). C The probability distribution of the
resulting somatic depolarization (arbitrary units proportional to mV) for all model instances
after filtering in dendrites for either preferred (red) or non-preferred (gray) stimuli. Dendritic
saturation here occurs at 100 units of depolarization. The vertical dotted line is the threshold
that separates preferred from non-preferred inputs. DD Depolarization distribution with 50%
of synapses randomly removed for the two stimuli. E& Depolarization distribution with 20% of
synapses randomly removed. F Separability fraction for 1000 instances of the problem as a
function of the fraction of synaptic failures. Red circles: non-linear model; Black squares: linear

model.
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Fig. 4. Using the spatial distribution of synapses to implement
stimulus selectivity. Each horizontal line represents an axon coming from a presynaptic

neuron. Red lines correspond to the population activated for the preferred stimulus. Each

vertical line represents a different dendrite.
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