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Abstract

Background: Incomplete lineage sorting (ILS), modelled by the multi-species
coalescent (MSC), is known to create discordance between gene trees and species
trees, and lead to inaccurate species tree estimations unless appropriate methods
are used to estimate the species tree. While many statistically consistent methods
have been developed to estimate the species tree in the presence of ILS, only
ASTRAL-2 and NJst have been shown to have good accuracy on large datasets.
Yet, NJst is generally slower and less accurate than ASTRAL-2, and cannot run
on some datasets.

Results: We have redesigned NJst to enable it to run on all datasets, and we have
expanded its design space so that it can be used with different distance-based
tree estimation methods. The resultant method, ASTRID, is statistically
consistent under the MSC model, and has accuracy that is competitive with
ASTRAL-2. Furthermore, ASTRID is much faster than ASTRAL-2, completing in
minutes on some datasets for which ASTRAL-2 used hours.

Conclusions: ASTRID is a new coalescent-based method for species tree
estimation that is competitive with the best current method in terms of accuracy,
while being much faster. ASTRID is available in open source form on github.

Keywords: incomplete lineage sorting; phylogenomics; species trees; ASTRAL;
NJst; MP-EST; FastME; PhyD*; neighbor joining

Background
Species tree estimation in the presence of gene tree incongruence is a major challenge

for many biological analyses. Gene tree incongruence can result from a variety of

processes, notably incomplete lineage sorting (ILS) [1], which is modelled by the

multispecies coalescent (MSC) [2]. Concatenated maximum likelihood analyses is

generally the most common method for species tree estimation from multiple loci,

but can be statistically inconsistent, and even positively misleading, in some cases

[3], thus converging to an incorrect tree with increasing amounts of sequence data.

In recent years, a number of species tree estimation methods have been developed

that are statistically consistent under the MSC, and so will converge in probability

to the true species trees as the amount of data increases; see [4, 5, 6]. Methods

that are statistically consistent under the MSC include ASTRAL [7], ASTRAL-2

[8], *BEAST [9], BEST [10], the population tree from BUCKy [11], METAL [12],

MP-EST [13], NJst [14], SNAPP [15], STEAC [16], STEM [17], and SVDquartets

[18]. While little is yet known about some of these methods (either because they

have not yet been adequately studied or because they are not yet implemented),

only a few of them (MP-EST, NJst, and ASTRAL-2) have been shown to be able
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to analyze very large datasets (especially those with large numbers of taxa) with

high accuracy. MP-EST has been used more than either NJst or ASTRAL-2, but

NJst is more accurate than MP-EST, and ASTRAL-2 is more accurate than both

[8]. Furthermore, the currently available implementation of NJst is slower than

ASTRAL-2, and cannot run on some datasets [8, 14].

In this paper, we present ASTRID, a new ILS-aware distance-based method for

species tree estimation. Our approach is based on NJst, but is substantially faster,

and, unlike NJst, functions even when each gene tree contains only a small portion

of the data. The input to NJst is a set of unrooted gene trees. In the first step,

an n × n matrix D[x, y] is computed, where D[x, y] is the average distance (in

terms of number of edges) between x and y among all the gene trees. In the second

step, neighbor joining [19], a very popular distance-based method of phylogeny

estimation, is used to produce the species tree.

ASTRID improves on NJst by enabling other distance-based methods to be used

in the second step. In particular, although NJ cannot be run on datasets with

missing entries, other distance-based methods can, and ASTRID enables the use

of these other methods. We also explore the use of more accurate distance-based

methods. Thus, ASTRID is a very simple modification to NJst. As we will show,

ASTRID is much faster than NJst.

The comparison between ASTRID and ASTRAL-2 and MP-EST, two established

coalescent-based summary methods, is also interesting. ASTRID completed in min-

utes on some datasets where the other methods took hours, and was fast enough

to analyze datasets with 1000 species and 1000 genes on a single processor within

an hour (ASTRAL-2 and MP-EST take much more time on datasets of this size).

Furthermore, ASTRID clearly dominates MP-EST in terms of accuracy, and is com-

petitive with ASTRAL-2 (more accurate in some cases, and less accurate in others).

Finally, ASTRID has desirable theoretical properties: it runs in polynomial time,

and it remains statistically consistent under the MSC model without assuming the

molecular clock, nor requiring rooted gene trees as input.

Methods
ASTRID

The input to ASTRID is a set of unrooted gene trees T1, . . . , Tk. We let Si = L(Ti)

denote the leafset of Ti, and S = ∪iL(Ti). Let |S| = n.

Step 1: Construct n × n matrix M̄ :

1 For all i = 1, 2, . . . , k, compute n×n matrix Mi, as follows. For pairs p, q

of species where both are in Si, set Mi(p, q) to be the number of edges

in the path between p and q in Ti. For all other pairs p, q (i.e., where one

or both are not in Si), set Mi(p, q) = 0. Thus, the only non-zero entries

in Mi are for pairs of species in Ti.

2 For all {p, q} ⊂ S, let n(p, q) be the number of trees Ti that contain both

p and q.

3 Define n × n matrix M̄ by setting M̄(p, q) =
P

i
Mi(p,q)

n(p,q) if n(p, q) > 0,

and M̄ [p, q] = −1 (to denote a missing value) otherwise.

Step 2: Compute tree on M̄ using a selected distance-based method
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Dataset # genes # taxa ILS level (AD%) # sites ref.

Avian very high ILS (0.5X) 1000 48 60 (VH) 500 [22]
Avian high ILS (1X) 1000 48 47 (H) 250-1500 [22]
Avian moderate (2X) 1000 48 29 (M) 500 [22]

Mammalian high ILS (0.5X) 200 37 50 (H) 250-1000 [22]
Mammalian moderate ILS (1X) 200 37 29 (M) 250-1000 [22]

Mammalian low ILS (2X) 200 37 21 (L) 250-1000 [22]
10-taxon very high ILS 200 10 89(VH) 100 [23]

10-taxon high ILS 200 10 48 (H) 100 [23]
15-taxon clocklike 1000 15 82 (VH) 100-1000 [23]

ASTRAL-2 500K-1e6 (MC1) 1000 200 69 (VH) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC2) 1000 200 33 (M) 300-1500 [8]
ASTRAL-2 10M-1e6 (MC3) 1000 200 21 (L) 300-1500 [8]
ASTRAL-2 500K-1e7 (MC4) 1000 200 68 (VH) 300-1500 [8]
ASTRAL-2 2M-1e7 (MC5) 1000 200 34 (M) 300-1500 [8]
ASTRAL-2 10M-1e7 (MC6) 1000 200 9 (L) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC7) 1000 10 17 (L) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC8) 1000 50 30 (M) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC9) 1000 100 34 (M) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC10) 1000 500 34 (M) 300-1500 [8]
ASTRAL-2 2M-1e6 (MC11) 1000 1000 35 (M) 300-1500 [8]

Table 1 Empirical statistics of simulated datasets used in this study. The ILS level is measured by
the average Robinson-Foulds distance (AD) between the true gene trees and the species tree,
expressed as a percentage; ILS levels are then classified as low (L), moderate (M), high (H), or
very high (VH).

Datasets

We tested species tree estimation methods on simulated datasets from previous

publications, and also evaluated ASTRID on the mammalian biological dataset

of 37 species, originally studied in [20]. Here we briefly describe the simulation

procedures used to generate these datasets, and provide empirical statistics for the

datasets in Table 1. See the original publications for details about the simulation

protocols, and our supplementary online materials for links to the data.

All datasets included both true and estimated gene trees, obtained by using max-

imum likelihood methods on the true sequence alignments, as well as species trees

estimated on these gene trees obtained in the prior publications. Each gene tree

had at most one copy of each species. We computed ASTRID species trees for these

datasets, using various techniques for Step 2 (how to compute the species tree given

the distance matrix).

We estimated the amount of ILS in the data by quantifying the average gene tree

discord in the data, using the average Robinson-Foulds (RF) [21] distance between

true gene trees and the model species tree, expressed as a percentage (written AD

for “average distance”). We also explored some simulated datasets where the DNA

sequence evolution was under the strict molecular clock. Model conditions with AD

at most 25% can be considered low ILS, conditions with AD between 26% and 39%

can be considered moderate ILS, conditions with AD between 40% and 59% can be

considered high ILS, and conditions with AD of at least 60% can be considered very

high ILS. In Table 1, we indicate these ILS levels for the different model conditions

we study both with the AD value, but also the general level (L for low, M for

moderate, H for high, and VH for very high).

Mammalian and avian simulated datasets

These datasets were created in [22] to evaluate method performance under model

conditions similar to real data. Species trees were generated with MP-EST for the
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avian phylogenomics dataset with 48 species and 14,446 loci [24], and for a mam-

malian dataset with 37 species and 447 loci [25]. These species trees were used as

basic model trees, with branch lengths in coalescent units. In addition, two other

model species trees were created for each dataset by scaling the species tree branch

lengths up (to reduce ILS) or down (to increase ILS). The ILS levels of the resul-

tant model species trees were very heterogeneous, ranging from AD = 21% (low)

to 50% (high) for the mammalian simulation, and from AD = 29% (moderate) to

60% (very high) for the avian simulation.

Both datasets had sequences of length 500 for all three model conditions. For

the default (“1X”) branch length condition, the avian dataset also had sequences

of length 250, 500, 100, and 1500, and the mammalian dataset had sequences of

length 250, 500 and 1000. Sequence evolution on these datasets deviated from the

strict molecular clock.

10-taxon simulated datasets

These data were presented in [23], and explored two ILS levels (AD=48% (high)

and AD=89% (very high)). Sequence evolution deviated from the strict molecular

clock.

15-taxon clocklike simulated datasets

These datasets evolved under a strict molecular clock, and were presented in [23].

The species tree was a caterpillar model tree (i.e., a path with leaves hanging off the

path) with very short internal branches, and a long branch to the outgroup species.

The ILS level in these data was very high (AD=82%).

ASTRAL-2 simulated datasets

These data were presented in [8], and provided a variety of model conditions with

varying ILS levels, tree shapes, numbers of taxa, and sequence lengths per locus.

SimPhy [26] was used to generate the species and gene trees, based on two param-

eters: the number of generations (given as the first number in the model) and the

speciation rate (given as the second number). The number of generations simulated

ranged between 500K, 2M, and 10M, and the speciation rate varied between 1e6 and

1e7. Model conditions with fewer generations had more ILS. Model conditions with

the 1e6 speciation rate had speciation events nearer the tips (leaves) of the trees,

while model conditions with the 1e7 speciation rate had speciation events nearer

the root. The ILS levels varied from very low (AD = 9%) to very high (AD =

69%). Sequences evolved down the gene trees under multiple GTRGAMMA models

that deviated from the strict molecular clock. Maximum likelihood gene trees were

computed using FastTree-2.

Incomplete gene tree datasets

To explore performance on incomplete gene trees, we modified the ASTRAL-2

dataset by randomly removing taxa from trees in the 50-taxon datasets. Up to 40

taxa were removed from the 50-taxon dataset, and up to 5 taxa were removed from

the 10-taxon dataset. In each of these cases, maximum likelihood gene trees were

estimated using FastTree-2 version 2.1.7 SSE3 [27], using the following command:
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fasttree -nt -gtr -quiet -nopr -gamma -n 1000 <fastafile> > <genetreefile>

where <fastafile> was the input file of aligned sequences and <genetreefile>

was the output file.

Distance-based tree estimation methods

In order to explore the design space for ASTRID, we ran various distance-based

methods for Step 2 (computing the tree from the distance matrix). For incomplete

distance matrices (where some entries are −1, indicating that the pair of taxa do

not appear together in any gene tree), we explored the methods in PhyD* [28]:

NJ∗, BIONJ∗, MV R∗, UNJ∗. These algorithms are all variants on neighbor

joining that work on incomplete distance matrices. We also explored FASTME

[29], which is a heuristic for the minimum evolution problem.

ASTRAL-2

To compute ASTRAL-2 species trees on the incomplete gene trees generated for

the ASTRAL-2 datasets, we ran ASTRAL-2 version 4.7.8, using command line

arguments

java -Xmx4000M -jar astral.4.7.8.jar -i <genetrees> -o <outputtree>

Computing tree error

All trees computed in this study were fully resolved. We report the RF tree error

(the proportion of the branches in the model tree missing from the estimated tree),

using scripts that are available in the supplementary online materials.

Results
Selection of distance-based tree estimation method for Step 2

First, we evaluated various distance-based tree estimation methods to determine

which one would be most accurate for the tree computation phase of ASTRID.

Results on datasets with all complete gene trees (no missing species in any gene)

are shown in Figure 1 and results on datasets with incomplete gene trees are shown

in Figure 2. Note that for datasets with entirely complete gene trees, FastME per-

formed as well as or better than the other distance-based methods, but there were

datasets with incomplete distance matrices in which FastME had very poor accu-

racy. Therefore, we selected FastME to analyze datasets where the distance matrix

has no missing entries, since it had the best accuracy. For the datasets with incom-

plete distance matrices M̄ (indicated by M̄ [p, q] = −1 for some p,q), we selected

BioNJ*, since it generally had among the most accurate results of these PhyD*

methods.

Comparison of ASTRID, ASTRAL, and MP-EST

We begin with a comparison between ASTRID, ASTRAL-2, and MP-EST on the

avian simulated datasets with high (1X) ILS, varying number of genes and sequence

alignment lengths, but where all genes are complete; see Figure 3.

All methods improved with increasing numbers of genes or increasing sequence

length; however, the methods differed substantially in terms of their accuracy.

Across all conditions we explored, MP-EST had the highest error and ASTRID
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Figure 1 A comparison of ASTRID variants on the moderate ILS avian simulated datasets with
500bp, using different distance-based methods for the tree estimation phase. We report RF
topological error rates over 20 replicates. Red dots represent means, while lines represent medians
and boxes represent quartiles.
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Figure 2 Comparison of ASTRID variants on 50-taxon ASTRAL-2 MC8 datasets with missing
taxa. We show average RF error rates over 50 replicates for ASTRID variants, that differ in terms
of the method used to compute the tree from the distance matrix. The datasets have taxa
randomly removed from each gene and the sequence lengths truncated to 300bp. Red dots
represent means, while lines represent medians and boxes represent quartiles.

had the lowest error. ASTRAL-2 was in between, but was closer to ASTRID than

to MP-EST. The gap between MP-EST and ASTRID was very large, and increased

with the number of genes. For example, at 1000 genes and gene sequence align-

ments of length 500, MP-EST had 19% RF error while ASTRID had about 7% RF

error. The gap between ASTRID and ASTRAL-2 was substantial on the 200- and

500-gene cases, but very small on the 1000-gene case.

Thus, although MP-EST is statistically consistent under the MSC model and

hence theoretically robust to ILS, it did not have particularly good accuracy on

these data. Among all coalescent-based methods, MP-EST is probably the one that

has been used the most in biological data analyses, but its performance here and in

[8, 30] demonstrates that it is not competitive with the best methods on datasets

with even moderate numbers of species. Therefore, we omit MP-EST from the rest

of this study.

Comparison of ASTRID and ASTRAL-2 on complete gene trees

Comparison on avian datasets. Figure 4 shows the performance of ASTRAL-2

and ASTRID on avian simulated datasets under three ILS conditions (moderate,

high, and very high). Both methods performed better when provided with more

genes, and both performed worse on higher levels of ILS. Overall, ASTRID tended to
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Figure 3 Comparison of ASTRID, ASTRAL-2, and MP-EST on the avian simulated data. The
simulated data evolve under 1X (high ILS) species tree branch lengths, and with varying gene
sequence lengths. We report mean RF rates with standard error bars over 20 replicates.
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Figure 4 Comparison of ASTRID and ASTRAL-2 on avian simulated datasets. We show
average RF error rates and standard error bars for 20 replicates. Gene sequence alignments have
500 sites and varying amount of ILS. Species tree branch lengths of 0.5x have very high ILS, 1X
has high ILS, and 2x have moderate ILS.

outperform ASTRAL-2, with the largest effect seen when many genes were available.

With 800 genes available, the ASTRID species tree had a RF error rate that was 2.4

percentage points better than ASTRAL-2’s under the very high and high ILS model

conditions, and 1.2 percentage points better for the moderate ILS model condition.

On the moderate ILS model condition, ASTRID had the greatest advantage over

ASTRAL-2 for moderate numbers of genes. Above 200 genes, the error rate dropped

below ten percent for both ASTRAL-2 and ASTRID, and ASTRID had an average

advantage of only about one percentage point.

It is well known that summary methods improve in accuracy as the number of sites

per gene or the number of genes increase [31, 32, 33, 34]. We explored the impact

of varying the sequence length and number of genes on the avian datasets with

high (1X) ILS, as well as on true gene trees. Figure 5 shows results on 10, 100, and

1000 genes; results on other numbers of genes have the same trends (data provided

in supplementary materials). As expected, both methods improved with increased

sequence length, and had their best accuracy on true gene trees. Both methods

also improved as the number of genes increased. ASTRID was always at least as

accurate as ASTRAL-2, with the biggest improvement for shortest sequences (with

250bp).
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Figure 5 Performance on the avian simulated data with 1X species tree branch lengths,
varying gene sequence length and number of genes. We report RF rates over 20 replicates.
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Figure 6 Comparison of methods on mammalian simulated datasets, varying ILS level and
number of genes. We show average RF error rates and standard error bars for 20 replicates. Gene
sequence alignments had 500 sites. Model conditions varied in ILS level from high (0.5x branch
lengths) to low (2X branch lengths).

Comparison on mammalian datasets. A comparison of ASTRAL-2 and ASTRID

on the mammalian datasets with different levels of ILS (high, moderate, and low)

is given in Figure 6. ASTRAL-2 and ASTRID performed fairly similarly on the

low (2X branch lengths) and moderate (1X branch lengths) ILS conditions. Under

the high ILS level (0.5X branch lengths), ASTRAL-2 was fairly consistently more

accurate than ASTRID, with the largest improvement on the 10-gene case.

Comparison on the ASTRAL-2 datasets. We explored performance on the

ASTRAL-2 datasets with 200 taxa (model conditions MC1 to MC6, see Fig. 7).

These model trees varied in ILS level, with MC1 and MC4 having very high ILS,

MC2 and MC5 having moderate ILS, and MC3 and MC6 having low ILS. Under

MC2, MC3, and MC5, the two methods had essentially identical accuracy. However,

under MC1, MC4, and MC6, ASTRAL-2 had an advantage over ASTRID. In MC1

and MC4, the improvement disappeared at 100 genes, but in MC6 ASTRAL-2 was

still more accurate than ASTRID on 100 genes.

Comparison on the 15-taxon datasets. The 15-taxon datasets evolved on a cater-

pillar species tree under very high ILS (AD=82%), the highest ILS considered in this

study. We explored performance under two sequence lengths (100bp and 1000bp)

and varied the number of genes from 10 to 1000. Results on the 15-taxon datasets

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2015. ; https://doi.org/10.1101/023036doi: bioRxiv preprint 

https://doi.org/10.1101/023036
http://creativecommons.org/licenses/by/4.0/


Vachaspati and Warnow Page 9 of 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
F 
To
po
lo
gi
ca
l E
rro
r

a) MC1
ASTRAL-2
ASTRID-fastme

b) MC2 c) MC3

10 25 50 100
Number of genes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
F 
To
po
lo
gi
ca
l E
rro
r

d) MC4

10 25 50 100
Number of genes

e) MC5

10 25 50 100
Number of genes

f) MC6

Figure 7 Comparison of ASTRID and ASTRAL-2 on the simulated ASTRAL-2 datasets with
200 taxa, varying levels of ILS, tree shape, and number of genes. We report RF error rates and
standard error bars over 10 replicates. See Table 1 for information on the model conditions listed.

(Fig. 8) showed very close performance between ASTRID and ASTRAL-2. On the

100bp alignments and on 1000bp alignments with at least 100 genes, the two meth-

ods could not be distinguished. However, on 1000bp alignments with at most 50

genes, ASTRAL-2 had an advantage over ASTRID.

Comparison on the 10-taxon datasets. The 10-taxon datasets evolved under two

different ILS levels - high and very high, and we explored performance on both

true and estimated gene trees; see Figure 9. In general, ASTRID and ASTRAL-2

had very close accuracy on these data, but there were some cases where they had

different accuracy levels. For example, on the high ILS condition with estimated gene

trees, ASTRAL-2 was more accurate than ASTRID for 200 genes, and ASTRID was

more accurate than ASTRAL-2 on 25 genes.

Performance on incomplete gene trees

We explored the impact of missing data on ASTRAL-2 and ASTRID by deleting

taxa from gene trees in the 50-taxon datasets (MC8) from the ASTRAL-2 collection,

using 150bp per gene, and varying the number of genes and the amount of missing

taxa; see Figure 10. ASTRAL-2 and ASTRID had very similar topological accuracy

throughout these experiments. With low amounts of missing data (20% to 40%

missing taxa from each gene tree), both methods had very good accuracy (below

5% tree error) by 500 genes. With 60% of the taxa missing from each gene tree,

the error rates increased for low numbers of genes (above 20% RF error for up to

100 genes), but then declined to about 10% by 1000 genes. With 80% of the taxa

missing from each gene (so that all gene trees have only 10 taxa out of 50), error

rates were very high with 25 genes (at least 85% RF), but decreased quickly with
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Figure 8 A comparison of ASTRID and ASTRAL-2 on the 15-taxon simulated datasets for two
different sequence lengths. The 15-taxon datasets evolve down gene trees generated by a
caterpillar tree with very high ILS (AD=82%), the highest ILS condition explored in this study.
We report mean RF rates and standard error over 10 replicates.

increases in the number of genes, so that at 500 genes the error rate was 24%,

and then at most 18% at 1000 genes. The trends suggest that the error rates had

not plateaued, and that adding additional incomplete gene trees should result in

continued improvement.

Analysis of the mammalian biological dataset

We analyzed the mammalian biological dataset originally studied in [35]. The orig-

inal dataset had 37 species and 447 genes, but there were 23 erroneous genes (as

noted by [20]) which we removed before doing the analysis.

We obtained maximum likelihood gene trees and bootstrap replicates of these gene

trees from [22]. We then analyzed these data using ASTRAL-2 and ASTRID+FastME

and compared these analyses to previously published trees obtained using AS-

TRAL and MP-EST [7]. We then annotated the branches of the ASTRID+FastME

and ASTRAL-2 trees with bootstrap support from 100 multi-locus bootstrapping

(MLBS). The ASTRID+FastME and ASTRAL-2 trees were topologically identical

to the ASTRAL tree and differed only in the bootstrap support; see Figure 11 for

the ASTRID+FastME tree. On the other hand, the support for the placement of

Scandentia - one of the major open questions about mammalian evolution - was

very low, only 47% (ASTRAL-2 gave it 82%). Hence, neither the ASTRID tree nor

the ASTRAL-2 tree resolved the placement of Scandentia with high support.

Running time results

Asymptotic running time

ASTRID has two steps: the first step computes the distance matrix, and the second

step uses a selected distance-based method to construct a tree from the distance

matrix. When the input has n species and k genes, then calculating the distance

matrix can be performed in O(kn2) time. Distance-based tree estimation methods

typically run in O(n2) to O(n3) time, but this step no longer depends on k. Hence,
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Figure 9 Results on true and estimated gene trees on 10-taxon datasets with two ILS levels
(high and very high). All gene sequence alignments have 100bp. We report RF rates and standard
error bars over 20 replicates.

the overall running time depends on the selected distance-based method, but is

generally dominated by the first phase, especially for typical inputs, for which k >>

n. Thus, under the assumption that k > n and that ASTRID uses a distance-based

method that runs in O(n3) time, ASTRID’s running time is O(kn2).

ASTRAL-2’s scaling is more complicated to discuss. Asymptotically, ASTRAL-

2 runs in O(nk|X |2) time, where n is the number of species, k is the number of

genes, and X is a set of bipartitions it computes to constrain the search space.

The size of X is not bounded by a polynomial in the input size, and the technique

that ASTRAL-2 uses means that X can be large under conditions with high ILS.

Thus the asymptotic running times of ASTRAL-2 and ASTRID (used with various

distance methods) are quite different.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2015. ; https://doi.org/10.1101/023036doi: bioRxiv preprint 

https://doi.org/10.1101/023036
http://creativecommons.org/licenses/by/4.0/


Vachaspati and Warnow Page 12 of 18

0.0

0.2

0.4

0.6

0.8

1.0

R
F 

To
po

lo
gi

ca
l E

rro
r

a) 50 taxa, missing 10 per tree
ASTRAL-2
ASTRID-bionj

b) 50 taxa, missing 20 per tree

25 50 100 250 500 1000
Number of genes

0.0

0.2

0.4

0.6

0.8

1.0

R
F 

To
po

lo
gi

ca
l E

rro
r

c) 50 taxa, missing 30 per tree

25 50 100 250 500 1000
Number of genes

d) 50 taxa, missing 40 per tree

Figure 10 Results on 50-taxon ASTRAL-2 dataset (MC8) with missing taxa and sequence
lengths of 150bp. We report RF rates and standard error over 50 replicates.

Running times on simulated data

In practice, creating the distance matrix took the majority of the running time.

On 1000 taxa, creating the distance matrix took several minutes to several hours,

depending on the number of genes, but running FASTME took less than one

second regardless of the number of genes. However, PhyD* methods were much

slower than FASTME; on 1000 taxa, running any of the PhyD* methods took

approximately 40 minutes (data not shown).

We recorded running times for ASTRAL-2, ASTRID-FastME, and NJst, on avian

simulated datasets with high ILS (1X), as we varied the number of genes (see

Fig. 12). Note that ASTRID-FastME was by far the fastest of the three methods,

and NJst was the slowest. However, the trends suggest that NJst will be faster than

ASTRAL-2 for larger numbers of genes. Note also that ASTRID-FastME and NJst

both scaled linearly with the number of genes, but that ASTRAL-2’s running time

scaled super-linearly.

We recorded running times for two variants of ASTRID (one using FastME and the

other using BioNJ*), and compared them to ASTRAL-2 on ASTRAL-2 simulated

datasets with 1000 taxa (MC11) as we varied the number of genes (Fig. 13) and

for 500-gene datasets in which we varied the number of taxa (MC 2 and 7-10, see

Fig. 14). The relative running times show that all methods were very fast for smaller

datasets, but were clearly distinguished on the larger datasets, where ASTRID-

FastME was much faster than ASTRID-BioNJ* and both variants of ASTRID were

much faster than ASTRAL-2. For example, on the dataset with 1000 genes and

1000 taxa, ASTRID-FastME finished in 33 minutes, ASTRID-BioNJ finished in 1

hour and 10 minutes, and ASTRAL-2 finished in 12 hours and 30 minutes.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2015. ; https://doi.org/10.1101/023036doi: bioRxiv preprint 

https://doi.org/10.1101/023036
http://creativecommons.org/licenses/by/4.0/


Vachaspati and Warnow Page 13 of 18

Running times on biological data

We recorded running times for ASTRID-FastME and ASTRAL-2 on the mammalian

biological dataset. Both methods took 6 seconds for a single bootstrap replicate on

one core of a 2.7 GHz Intel Xeon processor with 424 genes and 37 taxa.

Discussion
A few trends are apparent upon examining the data as a whole. ASTRAL-2 and

ASTRID had, for the most part, very similar levels of accuracy, while MP-EST was

consistently less accurate. However, there were cases where ASTRID and ASTRAL-

2 have small but detectably different levels of accuracy. One intriguing trend in the

data is the improvement of ASTRAL-2 over ASTRID on high ILS datasets; see

Figures 6, 7, 8, and 9. In particular, Figures 6 and 7 suggest that increases in

ILS should favor ASTRAL-2 over ASTRID. Yet, ASTRID is consistently at least

as accurate as ASTRAL-2 on the avian datasets, which have moderate to very

high levels of ILS (Fig. 4). Thus, ILS level might have an impact on the relative

accuracy of the two methods, but it is not a determining favor. Similarly, neither

method dominates the other based on the number of taxa, number of genes, or

amount of gene tree estimation error. Thus, it is very difficult to characterize the

conditions under which each method is likely to have an advantage over the other.

However, even for the cases where there are differences in accuracy, in general the

differences are fairly small. Thus, the main difference between the two methods is

computational efficiency, where ASTRID is clearly faster. ASTRID has the biggest

running time advantage over ASTRAL-2 for large numbers of gene trees, since

ASTRID scales linearly in the number of genes while ASTRAL scales super-linearly.

This makes ASTRID an especially good method for genome-scale datasets that have

a large number of genes.

Conclusion
ASTRID is a fast and highly accurate method for species tree estimation that is

robust to high levels of ILS, and provably statistically consistent under the multi-

species coalescent model. Like ASTRAL-2, ASTRID can analyze datasets with un-

rooted gene trees, an advantage that the two methods have over many other methods

(e.g., MP-EST) that can only be run on rooted gene trees. ASTRID (like NJst) runs

in time that is polynomial in the number of gene trees and species, but ASTRAL-

2 and other leading coalescent-based methods do not have this guarantee. Thus,

ASTRID has many desirable theoretical properties compared to existing methods.

From an empirical viewpoint, ASTRID is also extremely fast and can analyze very

large datasets in minutes, where other methods either cannot run or take hours.

In particular, ASTRID is much faster than ASTRAL-2, especially on datasets with

many genes and large numbers of species. ASTRID also produces more accurate

trees than MP-EST and NJst, and is competitive with ASTRAL-2 in terms of

accuracy.

However, even better (more accurate) results might be obtained through more

extensive modifications to the ASTRID algorithm design. In particular, the accuracy

of the tree depends on the particular distance-based method that is used. New

distance-based phylogeny estimation methods, such as the absolute fast converging
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methods [36, 37, 38, 39], might provide improved accuracy for very large datasets.

Another important direction is developing additional methods for estimating species

trees from distance matrices that have good accuracy when the distance matrix has

missing data. As we saw here, FastME produced more accurate trees than the

PhyD* methods, but it could only be applied to distance matrices without any

missing data. An extension of FastME to enable it to handle incomplete distance

matrices would also be of great interest.

This study can be expanded in several directions. Future work should more

carefully investigate the conditions under which ASTRID is more reliable than

ASTRAL-2, and explore performance on more biological datasets. This study also

only investigated relatively long sequences; a subsequent study should investigate

the relative and absolute accuracy of ASTRID and other methods on very short se-

quences, since recombination-free loci can be very short [32]. In addition, this study

only examined datasets with a single individual per species, yet ASTRID (like NJst)

can be run on datasets with multiple individuals; future work should evaluate the

absolute and relative accuracy of ASTRID and other methods on such data. This

study showed that ASTRID performed well in terms of species tree topology estima-

tion, but we did not explore its accuracy with respect to the estimation of coalescent

branch lengths; future work will need to explore how well ASTRID estimates these

numeric parameters. Finally, it may well be that ASTRID will be most useful as

a starting tree for use within more computationally intensive analyses, including

Bayesian MCMC analyses (e.g., *BEAST) or maximum likelihood analyses.

Availability of supporting data

All datasets used in this study are available from prior publications. ASTRID is available in open source form on

github at http://pranjalv123.github.io/ASTRID. Supporting materials are available online at

http://pranj.al/ASTRID.
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Figure 11 ASTRID analysis of a mammalian biological dataset. We used ASTRID+FastME to
analyze the mammalian biological dataset studied in [20, 7], with 37 taxa and 424 genes. The
branches are annotated with bootstrap support values from 100 MLBS bootstrap samples; values
not shown indicate 100% support. The ASTRID tree is identical to the ASTRAL and ASTRAL-2
trees on the same data, but differs from the MP-EST analysis in the placement of Scandentia.
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Figure 12 Scatterplot of running times for ASTRID-FastME, ASTRAL-2, and NJst, on avian
high ILS (1X) simulated datasets, varying number of genes. We show running time for 20
replicates of each number of genes. The quadratic dependence of ASTRAL-2’s running time is
clearly contrasted with the linear dependence of both ASTRID and NJst. Experiments were run on
a single core of a 2.7 GHz Intel Xeon processor.
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Figure 13 Running time on the ASTRAL-2 simulated datasets with 1000 taxa (MC11), varying
number of genes. We show results for the each of the ASTRID steps – matrix generation and tree
estimation. We compare ASTRID used with two ways of computing the trees: FastME and
BioNJ*. Experiments were run on a single core of a 2.7 GHz Intel Xeon processor.
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Figure 14 Running time of two ASTRID methods on the ASTRAL-2 simulated dataset with
500 genes, varying number of taxa. We show results on a single replicate of model conditions
MC2 and 7-10 from the ASTRAL-2 collection. Experiments were run on a single core of a 2.7
GHz Intel Xeon processor.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2015. ; https://doi.org/10.1101/023036doi: bioRxiv preprint 

https://doi.org/10.1101/023036
http://creativecommons.org/licenses/by/4.0/

	Abstract

