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Abstract 

Alternative splicing is a molecular mechanism regulated by RNA-binding proteins 

and affecting most eukaryotic genes. However, its role in human diseases, 

including cancer, is only starting to be unveiled. We systematically analyzed the 

mutation, copy number and gene expression patterns of 1348 RNA-binding protein 

(RBP) genes in 11 solid tumor types, together with alternative splicing changes in 

these tumors and the enrichment of binding motifs in the alternatively spliced 

sequences. Our comprehensive study reveals widespread alterations in the expression 

of RBP genes as well as novel mutations and copy number variations that are 

associated with multiple alternative splicing changes in cancer drivers and oncogenic 

pathways. Remarkably, breast and other tumors recapitulate splicing patterns similar 

to undifferentiated cells. These patterns, mainly controlled by MBNL1, involve 

multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 

alternative splicing contributes to enhanced cell proliferation and induces centrosome 

amplification in non-tumorigenic mammary epithelial cells. Our study uncovers novel 

splicing networks that potentially contribute to cancer development and progression. 
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Introduction 

Alternative splicing alterations are emerging as important signatures to understand 

tumor formation and uncover new therapeutic strategies1. Specific alternative splicing 

changes that confer tumor cells with a selective advantage2 may be caused by 

mutations in splicing regulatory sequences3 and/or regulatory factors4. Various 

splicing factors have been described to be mutated in tumors, including SF3B1, 

SRSF2, ZRSR2, U2AF1 in myelodysplastic syndromes and lymphoid leukemias5, 

RBM10 and U2AF1 in lung tumors4 6 or SF3B1 in breast tumors7. These mutations 

generally impair the recognition of key regulatory sites, thereby affecting the splicing 

of multiple genes, including oncogenes and tumor suppressors8. On the other hand, 

increasing evidence shows that changes in the relative concentration of splicing 

factors can also trigger oncogenic processes. For instance, splicing factors from the 

SR-protein9 10 and hnRNP11 12 families are overexpressed in multiple tumor types and 

induce splicing changes that contribute to cancer proliferation. Similarly, 

downregulation of splicing factors has also been observed, like RBM413 and QKI14, 

which have been proposed to act as tumor suppressors. 

Importantly, specific alternative splicing events can substantially recapitulate cancer-

associated phenotypes linked to mutations or expression alterations of splicing factors. 

This is the case of NUMB, for which the reversal of the splicing change induced by 

RBM10 mutations in lung cancer cells can revert the proliferative phenotype2. A 

similar example is S6K1, where expression of isoform-2 is sufficient to reverse the 

transformation of immortal rodent fibroblasts caused by the overexpression of SRSF1 

in vitro and in vivo9. Events that contribute to cancer are often controlled by multiple 

factors, like the exon skipping event of MST1R involved in cell invasion, which is 

controlled by SRSF115, hnRNPA2B112, hnRNPH1 and SRSF216. Furthermore, some 

events may be affected by both mutations and expression changes in splicing factors. 

For instance, mutations in RBM102 or downregulation of QKI14 lead to the same 

splicing change in NUMB that leads to cell proliferation. Alternative splicing changes 

that potentially characterize and contribute to the pathophysiology of cancer are thus 

triggered by alterations in a complex network of RNA binding proteins. However, the 

complete set of these alterations and how they may globally affect alternative splicing 

in cancer remain to be comprehensively described. 
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To elucidate the alterations in regulatory factors leading to the alternative splicing 

changes that may contribute to cancer, we analyzed RNA and DNA sequencing data 

from The Cancer Genome Atlas (TCGA) project for 11 solid tumor types. We 

performed a systematic analysis of the expression, mutation, and copy number 

alterations for 1348 genes encoding known and putative RNA binding proteins, and 

analyzed the alternative splicing changes potentially associated to these alterations. 

Our study reveals novel splicing networks involving RNA binding protein genes, 

whose alterations are predicted to trigger multiple alternative splicing changes in 

different tumor types that are potentially relevant for the development and progression 

of cancer. 

Results 

Expression changes in splicing factors separate tumor types and suggest new 

subtypes 

Using data from TCGA for 11 solid tumors (Supp. Table S1) (Methods), we analyzed 

the differential mRNA expression between normal and tumor sample pairs of 1348 

genes encoding known and predicted RNA binding proteins (RBPs) (Supp. Table S2) 

(Methods). The majority of them (1143, 84,8%) show significant differential 

expression in at least one tumor type (Supp. Fig. 1) (Supp. File 1). Examining in 

detail a subset of 162 RBP genes annotated as known or putative splicing factors 

(SFs), 132 (80%) of them are differentially expressed in at least one tumor type, with 

approximately the same number showing up- and downregulation (Fig. 1a). A number 

of SFs show frequent downregulation, including KHDRBS2, MBNL1, RBFOX, 

RBMS3, SRRM4, and QKI (Fig. 1a); whereas ELAVL2, IGF2BP, PABPC1, PABPC3, 

RBM28, SNRPA and SRRM3 and show frequent upregulation. Additionally, WT1 is 

strongly up or downregulated in the majority of tumors studied. Expression changes 

are similar between breast invasive carcinoma (BRCA) and prostate adenocarcinoma 

(PRAD), between colon adenocarcinoma (COAD) and lung squamous cell carcinoma 

(LUSC), and between lung adenocarcinoma (LUAD) and head and neck squamous 

cell carcinoma (HNSC) (Fig. 1a). Kidney renal clear cell (KIRC) and papillary cell 

(KIRP) carcinomas also show similar patterns, which are frequently opposite to the 

other tumor types.  
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Notably, only 29 (21.9%) of the 132 differentially expressed SFs were previously 

associated with oncogenic or tumor suppressor activities (labeled in red in Fig. 1a) 

(Supp. Table S3), and some of the previously reported patterns were not detected. For 

instance, although SRSF5 was described as oncogenic17, it is downregulated in 6 

tumor types; and TRA2B, reported as oncogenic in breast cancer18, is upregulated in 

LUSC but downregulated in KICH and thyroid carcinoma (THCA). Moreover, the 

oncogenic SRSF2, SRSF3 and SRSF610,19,20 are downregulated in KICH, while the 

oncogenic SRSF116 and the tumor suppressor RBM422 do not show any significant 

expression changes. Interestingly, new patterns emerge, including upregulation of 

genes from the RBM family, RBM28, RBM15, RBM39 and RBM41, and 

downregulation of the genes from the MBNL family, MBNL1, MBNL2 and MBNL3 

(Fig. 1a). 

Unsupervised clustering of the entire set of 4442 tumor samples using normalized 

expression values per sample for SFs (Fig. 1b, Supp. Fig. 2) or for all RBPs (Supp. 

Fig. 3) (Methods) largely separates samples by tumor type. In fact, a similar result is 

achieved when using a different gene set of similar size (Supp. Fig. 3), indicating that 

the RBP expression patterns reflect intrinsic properties of the tumor types and their 

tissue of origin23. LUAD and LUSC samples separate into two large subgroups, with 

the majority of LUSC samples showing frequent upregulation of TRA2B (Fig. 1b, 

Supp. Fig. 2). KIRC and KIRP samples cluster together and separately from KICH. 

The prostate adenocarcinoma (PRAD) and HNSC samples cluster closely and show a 

general pattern of low expression variation. Interestingly, a group of BRCA samples 

cluster separately from the rest of BRCA samples and close to LUSC and COAD 

tumors. Closer inspection reveals that the expression patterns of SFs largely reproduce 

BRCA and COAD subtypes (Supp. Figs. 4 and 5). MBNL1 is frequently 

downregulated in COAD and BRCA samples, whereas MBNL2 is specifically 

downregulated in BRCA samples. Moreover, ESRP1 shows specific upregulation in 

BRCA basal samples (Fisher test p-value = 7.887E-08), which may be related to the 

general worse prognosis of basal tumors, as ESRP1 expression promotes a CD44 

isoform that induces metastasis of breast tumor cells to the lung24. Collectively, 

expression analyses indicate that RBP genes are frequently and specifically altered in 

human cancer. 
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Patterns of RBP mutations and copy-number variation across tumors 

To further define the extent to which RBP genes are altered in human cancer, the 

TCGA data was analyzed for protein-affecting mutations and copy number variations 

(CNVs) (Methods). As with gene expression, most of the RBP genes are mutated in 

tumors, with only 10 (0.7%) showing no mutations in any of the samples tested. 

However, they are mutated in a smaller proportion of samples compared to cancer 

drivers and to other genes (Fig. 1c) (Supp. File 1) (Methods).  

We confirmed 5,4% (25/458) of LUAD tumor samples to have protein-affecting 

mutations for RBM10, in agreement with previous studies6. Using this case as 

reference, 205 (15,2%) of all RBPs (13 (8%) of the 162 SFs) were mutated in more 

than 5% of samples in a given tumor type (Table 1) (Supp. File 1). In general, there is 

a weak correlation between mutations and expression changes of the corresponding 

genes (Table 1) (Supp. Table S4) (Methods). On the other hand, we tested the mutual 

exclusion of mutations and expression changes, as they both may have similar 

functional impact. The top cases include SYNE1 in COAD and CDKN2A in HNSC 

(Table 1) (Supp. Table S4) (Methods). In contrast to mutations, CNVs are more 

recurrent across samples, with gains more frequent than losses (Fig. 1c). CNV gains 

show frequent association with upregulation, the strongest ones including TRA2B in 

LUSC, ESRP1 in BRCA, and RBM39 and SRSF6 in COAD (Table 1) (Supp. Table 

S5). SRSF6 amplification was observed before in colon tumors25 and RBM39 

overexpression has been linked to breast cancer progression26. On the other hand, 

deletions show weaker associations with downregulation, the most frequent ones 

being RBFOX1 in COAD and RBMS3 in LUSC (Table 1) (Supp. Table S6). These 

analyses highlight the potential relevance of expression alterations of RBPs, besides 

mutations and copy number variation, in shaping the tumor phenotypes. 

Patterns of alternative splicing alteration in tumors 

Next, we investigated the patterns of differential splicing that may occur as a 

consequence of the alterations described above. To determine those possibly related to 

expression alterations in RBPs, we first evaluated the significant splicing changes in 

tumors compared to normal tissue classified into 5 major event types: skipping exon 

(SE), alternative 5’ splice-site (A5), alternative 3’ splice-site (A3), mutually exclusive 

exon (MX) and retained intron (RI) events (Fig. 2a) (Supp. File 2) (Methods). There 
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was no clear relationship between the number of differentially spliced events and the 

number of paired samples used and the proportions for each event type are similar 

across tumor types with SE events being the most abundant (average 58%) (Supp. 

Table S7). 

As alternative splicing in cancer drivers may contribute to the oncogenic process1, we 

investigated their patterns of differential splicing. We collected a list of 937 genes that 

we collectively call drivers, which either show alternative splicing in relation to 

cancer (82 cases) (Supp. Table S8) or are predicted as drivers based on mutations and 

CNVs (889 cases, 34 in common with previous set) (Supp. Table S9) (Methods). 653 

(69.7%) of these 937 drivers have annotated alternative splicing and 292 (31.2%) 

have at least one differentially spliced event, with a number of them occurring in 

multiple tumor types (Supp. Fig. 6) (Supp. File 2). Moreover, comparing the splicing 

changes in drivers and non-drivers, 7 of the 11 tumors (Fig. 2b, in red) show 

enrichment of differentially spliced events in drivers, (Supp. Table S10). To further 

characterize the differentially spliced events, we evaluated whether specific cancer 

hallmarks from MSigDB28 are enriched in differentially spliced events (Methods). 

Interestingly, various hallmarks are enriched according to differential splicing but not 

differential expression, including Mitotic spindle, WNT/Beta-catenin, UV response, 

and Notch signaling (Fig. 2c) (Supp. Fig. 7) (Supp. Table S11). These results suggest 

possible relevant mechanisms of alternative splicing in tumors involving genes and 

pathways that are independent of expression alterations. 

To determine the splicing changes possibly related to mutations in RBPs, we 

compared the inclusion levels (percent spliced in, PSI) of the events between samples 

with or without protein-affecting mutations for each RBP (Supp. Fig. 8) (Methods). In 

LUAD, we found 53 (enrichment z-score = 52.35) and 83 (z-score = 81.35) 

differentially spliced events associated to RBM10 and U2AF1, respectively (Figs. 2d 

and 2e) (Supp. Fig. 9). Additionally, we found HNRNPL (42 events, z-score = 41.35) 

in COAD, with 13 of the 16 alterations consisting of deletions or insertions in a 

specific position of the second RNA recognition motif that cause a frameshift (Fig. 2f) 

(Supp. File 3). In LUAD we also found the transcription factor and predicted RBP 

TCF2029 (49 events, z-score = 50.35), with most of the alterations consisting of an 

insertion in a Glycine-rich region at the N-terminus (Supp. Fig. 9). In COAD we also 

found the predicted RBP MACF130 (42 events, z-score = 45.35), with mutations along 
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the entire protein (Supp. Fig. 9). We analyzed SF3B17 as comparison and found 64 

differentially spliced events (z-score = 63.35) in BRCA, despite being mutated in only 

1.7% of the tested samples (16 out of 956 for which we had mutation and RNA-Seq 

data).  

Notably, compared with the proportions of the different event types, there is a 

significant enrichment of A3 (Fisher's test p-value = 1.45E-11) events associated with 

SF3B1, of A5 (p = 2.09E-6) events for TCF20, and of SE events for RBM10 (p = 

0.003) (Fig. 2g) (Supp. Fig. 9). There is also a significant depletion of SE (p = 

0.0014) events for TCF20, SE events (p = 2.24E-8) for SF3B1, and of A5 events for 

U2AF1 (p = 1.67E-3) and HNRNPL (p = 0.005) (Fig. 2g) (Supp. Fig. 9) (Supp. Table 

S12). Furthermore, we confirmed 17 (20%) of the previously detected differentially 

spliced genes for SF3B17, 32 (38%) for U2AF14 and 21 (30%) for RBM104 (Supp. 

Table S13). Although we found no clear enrichment of any particular cancer hallmark 

from MSigDB28 (Supp. Table S11), some of the alternatively spliced events 

associated with mutations in RBPs occur in cancer drivers (Table 2) (Supp. File 3). 

For instance, HNRNPL mutations are associated with an A5 event in CASP8 (Fig. 2h), 

a gene involved in programmed cell death31. As hnRNPL was related before to  

CASP9 alternative splicing32, this result suggests a relevant role in apoptosis. Our 

analyses reveal a rich source of new information about alternative splicing events 

associated with RBP alterations with potential relevance in cancer. 

 

Common and specific patterns of differential splicing in tumors 

Our results suggest that mutations in RBPs may not be the main cause of splicing 

changes in tumors. We thus decided to characterize further the splicing changes 

between tumor and normal samples to determine their association to RBPs. We first 

identified common patterns of splicing change between tumors, by selecting those 

events with a strong correlation with a differentially expressed SF in at least two 

tumor types (Methods). The changes in PSI (ΔPSI) for these common events show 

high correlation between tumor pairs (Fig. 3a) and indicate potential common 

regulators (Fig. 3b) (Supp. Fig. 10) (Supp. Table S14). For example, BRCA and 

LUAD have 229 common events associated to various factors, including SRSF5 and 

QKI (Fig. 3b, upper left panel), whereas HNSC and LUSC have 141 common events, 
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63 of them associated to RBM38 (Fig. 3b, upper right panel). PRAD and KIRC share 

78 anti-correlating events associated to ESRP2 and MBNL1 (Fig. 3b. lower left panel). 

Interestingly, RBM47, recently described as a tumor suppressor33, appears as the main 

common SF between KIRC and HNSC with 61 associated events (Fig. 3b, lower left 

panel). These results suggest an association between some of the RBPs in tumors and 

the splicing changes detected. On the other hand, these results also raise the question 

of whether there are tumor specific events. To address this, we used an entropy-based 

feature selection approach to identify events that separate tumor types according to 

the PSI values (Methods). This produced 380 events that largely separate the 4442 

tumor samples by type (Fig. 3a) (Supp. Fig. 11) (Supp. Table S15). These splicing 

changes may be indicative of tumor-type specific oncogenic mechanisms.  

Enriched RBP motifs in differentially spliced events 

To further understand the link between the observed splicing patterns and the RBPs, 

we tested the enrichment of putative binding motifs in differentially spliced events. 

We assigned binding motifs from RNAcompete34 to 104 of the analyzed RBPs and 

tested enrichment by comparing the motif frequencies between differentially and non-

differentially spliced events on and around the variable region (Methods) (Supp. Fig. 

12). Nearly all differentially expressed RBPs from this set show motif enrichment 

(average 92.8% across tumor types) (Supp. Fig. 12). Motifs associated to non-

differentially expressed factors are also frequently enriched, probably due the 

similarities between motifs (Supp. Fig. 13). We thus considered the enriched motifs of 

differentially expressed RBPs in the same tumor type to be the functionally important 

ones (Fig. 4a). Motifs from the CELF, MBNL and RBFOX families are among the 

most frequently enriched in the different tumor types, as well as in luminal breast 

tumors (Supp. Figs. 14-18). Moreover, downregulated RBP genes in inclusion events 

and upregulated ones in skipping events show more frequently enriched motifs in 

upstream and exonic regions, consistent with the positional effects proposed for 

splicing factors 35. On the other hand, downregulated RBP genes in skipping events 

and upregulated ones in inclusion events show enriched motifs most frequently on 

exons, suggesting that RBPs more often enhance the inclusion of exonic regions to 

which they bind. 

To define candidate target events for RBPs, we selected differentially spliced events 
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whose PSI correlates with gene expression (|R| > 0.5, Spearman) and that contain the 

corresponding RNA binding motif for differentially expressed RBP gene (Methods). 

We could assign significantly 20-80% of the differentially spliced events to at least 

one RBP (Fig. 4c, upper panel) (Supp. File 4). Some of the RBPs with assigned 

targets were previously associated to cancer: RBFOX2 in PRAD (23.3% of events); 

ESRP1 in KIRC (24.3% events) and PRAD (17.8% events), QKI in KICH (8.9%) and 

LUAD (5.5%), PTBP1 in COAD (23.4%) and LUSC (16.1%), and RBM47 in THCA 

(18.4%) (Fig. 4c, lower panel) (Supp. Table S16). Interestingly, TRA2B, whose motif 

is enriched in LUSC, is linked to 6% of the differentially spliced events, including an 

SE event in the DNA damage response gene CHEK1, reported recently to be 

controlled by Tra2 proteins36. Additionally, MBNL1 appears relevant in COAD 

(15.3% events), PRAD (14%) and BRCA (8.8%). We confirm the role of MBNL1, 

QKI, RBFOX2, PTBP1, RBM47 and ESRP1 in some of these tumors by comparing 

the ΔPSI values of differentially spliced events with those obtained in knockdown or 

overexpression experiments of the individual RBPs in different cell lines (Supp. Figs. 

19-21) (Supp. Table S17). As MBNL1 and MBNL2 depletion induces an 

undifferentiated state in cells37 38, we compared the tumor events with those 

differentially spliced between human embryonic stem cells (hESC) and differentiated 

cell lines or tissues38. We found a high positive correlation of ΔPSI values in BRCA, 

PRAD, LIHC and breast luminal tumors; to a lesser extent in COAD and LUAD, and 

an anti-correlation in KIRC, in agreement with the MBNL1 and MBNL2 expression 

patterns in these tumors (Fig. 4d, upper panels) (Supp. Fig. 22) (Supp. Table S18). 

Additionally, the majority of correlating events contain the MBNL binding motif. The 

potential major role of MBNL1 and MBNL2 in cancer is further highlighted by the 

fact that they both target a considerable proportion of cancer drivers in BRCA, PRAD 

(Fig. 4d, lower panels) (Supp. Fig. 23). 

To further explore the role of RBP gene expression changes in splicing in tumors, we 

evaluated the potential association of RBP motifs on differentially spliced events, 

taking into account motif redundancies (Methods). Motifs for IGF2BP2, IGF2BP3, 

PABPC3, PABPC5, RBM46, HNRNPC, CELF5, CPEB2 and CPEB4 associate 

frequently with each other in 4 or more tumor types (Fig. 4d). Similarly, motifs for 

CELF5 and RBFOX1 associate on differentially spliced events in 4 tumor types. In 

contrast, motifs for SRSF7, ZNF638, RBMS3, DAZAP1, among others, do not show 
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any association. As these are differentially expressed and show motif enrichment, it 

suggests that they alone may control multiple splicing changes in cancer (Fig. 4d). 

These results highlight the prominent role of RBP gene expression changes in the 

alterations of splicing in cancer and suggest new mechanisms of regulation. 

Network analysis uncovers overlapping regulatory modules in cancer 

To identify new mechanisms of splicing control relevant in cancer, we built clusters 

with the 162 SFs using the correlation between gene expression and event PSI values 

and linked these clusters to differentially spliced genes in the enriched hallmarks 

(Methods). This analysis reveals modules of splicing regulation, with one or two 

genes as the main regulator of each hallmark across different tumor types (Figs. 5a 

and 5b) (Supp. Figs. 24 and 25). Main regulators of myogenesis and epithelial-

mesenchymal transition (EMT) include ESRP1 (BRCA, LUAD, LUSC) and MBNL1; 

regulators of the apical junction complex include the genes from the RBFOX family 

(BRCA, KIRP and PRAD); and regulators of mitotic spindle include the MBNL genes 

(THCA, PRAD) as well as PTBP1 (LUSC), which is also related to myogenesis 

(COAD, LUSC) and EMT (LUSC). BRCA shows 3 modules (Fig. 5a): two mainly 

associated to EMT and myogenesis, and a third one including RBFOX2, mainly 

related to the apical junction complex. These regulatory modules also control two 

relevant hallmarks: the G2 checkpoint (G2M), which includes NUMA1, a gene 

involved in spindle formation during cell division39; and the WNT/Beta-catenin 

pathway, which includes NUMB, and inhibitor of the NOTCH pathway whose 

alternative splicing has been linked to cell proliferation2 (Figs. 5c and 5d). COAD has 

6 modules (Fig. 5b) with PTBP1 as main regulator of myogenesis. Additionally, 

angiogenesis, which is an enriched hallmark in COAD for splicing but not for gene 

expression, includes an event in SERPINA5, an inhibitor of serine proteases involve in 

homeostasis and thrombosis40, which we predict to be controlled by RBM47, PTBP1 

and RBM28 (Fig. 5e). This analysis reveals new roles of RBPs and splicing in cancer-

relevant processes.  

 

MBNL1 contributes to cell proliferation through alternative splicing regulation 

of NUMA1 
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MBNL1 emerges as a relevant regulator of splicing for multiple cancer drivers, 

especially in luminal breast tumors (Supp. Fig. 26). MBNL1 potentially controls an 

exon skipping event in NUMA1: its PSI correlates with MBNL1 expression (Spearman 

R = 0.65/0.66 in luminal A/B) and has a MBNL1 motif downstream of the alternative 

exon (Fig. 6a) (Supp. Fig. 27). The same event is significantly more included in KIRC 

(ΔPSI = 0.11, corrected p-value = 3.11e-06), where MBNL1 is significantly 

upregulated compared to normal tissues, providing further support for the dependence 

of NUMA1 splicing on MBNL1. We thus decided to validate experimentally the 

potential role of MBNL1 and NUMA1 in breast tumors. 

We detected MBNL1 protein in the breast epithelial cell line MCF10A, and the triple-

negative cell lines MDA-MB-231, MDA-MB-436 and MDA-MB-468 but not in the 

luminal-like MCF7 (Supp. Fig. 28). To test the effect of the downregulation of 

MBNL1, we used siRNAs to deplete MBNL1 in MCF10A cells. MBNL1 depletion 

with two different siRNAs targeting exons 3 and 5 induces skipping of exon 16 in 

NUMA1 measured by semi-quantitative RT-PCR, recapitulating the splicing pattern 

observed in the tumor samples (Fig. 6b, upper panels) and in MCF7 (Supp. Fig. 28). 

We also tested NUMB alternative splicing of exon 9, which we predict to be 

dependent on MBNL1 in BRCA luminal tumors. The depletion of MBNL1 

recapitulates the NUMB splicing pattern in luminal samples (Fig. 6b). For comparison, 

we evaluated the role of QKI, which we also observe downregulated in BRCA 

luminal tumors and whose protein we detect in MCF10A cells but not in MCF7 cells 

(Supp. Fig. 28). Upon QKI depletion, NUMA1 exon 16 inclusion changes in the 

direction opposite to that with MBNL1 depletion to a small but reproducible extent 

(Fig. 6b, upper panel). Although we did not find a QKI motif on the NUMA1 event, 

this is consistent with the low and negative correlation found with QKI expression (R 

= -0.11) in BRCA. We also tested NUMB alternative splicing of exon 9, which is 

regulated by QKI in lung tumors14 and which we predict to be also affected by QKI in 

BRCA luminal tumors. The depletion of QKI induces exon 9 inclusion and 

recapitulates the NUMB splicing pattern in luminal samples (Fig. 6b, middle panels).  

To measure whether the depletion of MBNL1 or the splicing change in NUMA1 had 

any effect on cell proliferation, we designed 2’-O-methyl phosphorothioate-modified 

antisense oligonucleotides (AONs) targeting specifically the 5’ and 3’ splice-sites of 

NUMA1 exon 16. As expected, these AONs promote exon skipping, recapitulating in 
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the MCF10A epithelial cell line the splicing pattern observed in BRCA luminal 

tumors, with the AON against the 5’ss being more efficient (Supp. Fig. 29). We used 

a Resazurin-based assay41 to measure the proliferation/viability of MCF10A cells 

transfected with the AONs targeting NUMA1 exon 16, or with siRNAs against 

MBNL1 and QKI. We observed a significant increase in cell proliferation/viability at 

72, 96 and 120 hours upon depletion of MBNL1 or QKI compared with controls (t-test 

p-value < 0.05) (Fig. 6c) (Supp. Table S19), and when transfecting cells with the 

AON against the 5’ splice site (t-test p-values < 0.05) (Fig. 6c). Using only the 3’ 

splice site or both AONs we also measured certain increase, albeit not statistically 

significant.  

We decided to study the possible effects of the alternative splicing of NUMA1 exon 

16 on centrosome amplification (Methods) (Supp. Table S20). Using the AON against 

the 5’ splice-site that recapitulates the splicing form of NUMA1 in luminal types, we 

observed a significant increase in number of cells with centrosome amplification 

compared with controls in MCF10A cells (Fig. 6d). Using the siRNA against MBNL1 

we could not detect any significant difference, which may be explained by the 

superposition of indirect effects. To further relate NUMA1 alternative splicing to the 

fidelity of centrosome formation, we compared the PSI values with an expression 

signature for chromosome instability and aneuploidy42. We observe an inverse 

correlation between this signature and the inclusion of NUMA1 event in luminal 

tumors (Fig. 6e), which is higher than for any other tumor type (Supp. Fig. 30). The 

exon skipping described in NUMA1 is the only coding difference between the tumoral 

and the normal alternative splicing isoforms. While it is unclear whether the 14 amino 

acid change between the isoforms could explain the observed effects (e.g. we could 

not detect any protein domain or disordered regions43) using GPS44 we predict loss of 

a high scoring threonine phosphorylation site (FDR ≤ 2%) upon exon skipping, 

suggesting a possible mechanism for the differential activities of the two isoforms 

(Supp. Fig. 30) (Supp. Table S21). 

Discussion 

Our study reveals that expression changes in RBP genes are pervasive in cancer and 

characterize the different tumor types. Most of these expression changes are not 

related to mutations or copy number alterations, suggesting that they originate from 
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genetic alterations in the pathways that control the regulation of RBP genes. Despite 

the fact that the majority of RBPs are mutated, this occurs in a low proportion of 

samples compared to other genes. Only a few RBP genes show mutations associated 

to genome-wide effects on alternative splicing, and the number of events affected is 

low compared with all the splicing changes that occur in tumors with respect to 

normal samples. Thus, expression changes in RBP genes may be the major 

contributor of the alternative splicing changes observed in tumors. 

Some of the described RBPs were related before to cancer, but their mechanisms have 

not yet been described. For instance, MACF1 was shown previously to be 

differentially spliced in lung tumors45. Interestingly, MACF1 is a component of the 

WNT-pathway, which is also known to affect RNA processing and splicing46. One 

possibility is that this and other RBPs contribute to cancer through the alternative 

splicing changes that occur as a consequence of different alterations described here, 

consistent with other studies2,9. An important implication for prognostic and clinical 

studies is that the definition of functional impact of somatic mutations should be 

expanded to include alterations in the alternative splicing of the gene targets. 

Considering splicing alterations in predicted cancer drivers as a measure of the 

tumorigenic impact of alterations in RBPs, we identified various potentially relevant 

genes, including MBNL1 in breast and prostate tumors, and TRA2B in lung squamous 

tumors. Squamous carcinomas (LUSC and HNSC) show frequent amplifications of 

TRA2B, but only LUSC shows overexpression of TRA2B, which would explain the 

differences in splicing between these two tumor types. The potential relevance of 

TRA2B in LUSC is further highlighted by the enrichment of its binding motif in 

differentially spliced events. Thus, despite the similar genetic alterations between the 

squamous tumors47, their expression phenotypes are very different, partly due to the 

TRA2B overexpression.  

Our analyses provide possible new roles for RBPs that had no clear involvement in 

splicing. For instance, IGF2BP genes are upregulated in multiple tumor types and 

their motifs are commonly enriched in differentially spliced events, but interestingly 

only on exonic regions. Although this does not provide rigorous evidence of their 

involvement in splicing, it does support a role for IGF2BP in most of the tumors 

analyzed48, an observation that deserves further mechanistic analyses. Similarly, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2015. ; https://doi.org/10.1101/023010doi: bioRxiv preprint 

https://doi.org/10.1101/023010
http://creativecommons.org/licenses/by/4.0/


 15

RBMS3, which appears frequently deleted and downregulated, modulates the TGFβ 

signaling pathway post-transcriptionally49 and was found depleted before in 

esophageal squamous cell carcinoma50 and lung squamous cell carcinoma51. Although 

RBMS3 has no known role in splicing, it has a nuclear function regulating MYC 50, 

which has recently been related to the maintenance of splicing fidelity52. Its frequent 

downregulation in tumors, often in the presence of DNA deletions, suggest a general 

role for RBMS3 in cancer, possibly related to splicing.  

The splicing alterations detected are predicted to have an impact on many cancer 

hallmarks, some of them independently of changes in gene expression. This agrees 

with previous reports on the impact of splicing on cancer hallmarks on the basis of 

literature searches53 and highlights the relevance of alternative splicing as a 

complementary molecular mechanism to explain tumor development. Additionally, 

splicing changes in several tumor types and especially in breast luminal tumors 

recapitulate the splicing pattern of undifferentiated cells, mainly linked to MBNL1 and 

MBNL2, in agreement with recent studies37,38. It remains to be described the 

alterations that give rise to these phenotypic changes. It was proposed recently that 

RBPs involved in development and differentiation, and controlled by common 

enhancers, could act as master splicing regulators54. These included MBNL1, 

RBFOX2, RBM24, RBM38, RBM20, RBFOX1, ZNF638, and RBMS3, which we found 

frequently downregulated in tumors. This suggests that the reversal of RNA splicing 

to an undifferentiated pattern through the deactivation of one or more RNA binding 

proteins may be a general mechanism of tumors.  

MBNL1 potentially controls multiple genes that participate in cancer-related 

pathways, including the mitotic gene NUMA1, whose alternative splicing correlates 

with cell differentiation. Although NUMA1 locus was related before to breast cancer 

risk55, a clear mechanism explaining its relevance in cancer is still lacking and its 

exon skipping event has not been characterized so far. We observed that NUMA1 

alternative splicing leads to higher proliferation and increased centrosome 

amplification in normal cells. NUMA1 produces a protein component of the nuclear 

matrix, which is dependent on threonine-phosphorylation to regulate the orientation of 

mitotic spindles and ensure symmetric cell division39 56 57. NUMA1 alternative 

splicing removes a strong predicted threonine phosphorylation site; hence, one 

attractive possibility is that the splicing change described affects its phosphorylation, 
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thereby impairing correct spindle positioning, leading to increased genome instability. 

Taken together, the results of this study provide a rich resource of information about 

novel networks of splicing factors and RBPs that trigger common and specific 

alternative splicing changes in several solid tumors and provide candidate alternative 

splicing changes that may be relevant to understand the molecular basis of - and 

potentially reverse - the oncogenic properties of tumor cells. 

Methods 

Datasets 

Tumor types were selected from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/) according to whether they had a sufficient number of RNA-

Seq samples from tumor and paired normal samples at the time of start of the study: 

breast invasive carcinoma (BRCA)58, colon adenocarcinoma (COAD)59, head and 

neck squamous cell carcinoma (HNSC)60, kidney chromophobe (KICH)61, kidney 

renal clear cell carcinoma (KIRC)62, kidney renal papillary carcinoma (KIRP) 

(https://tcga-data.nci.nih.gov/), liver hepatocellular carcinoma (LIHC) (https://tcga-

data.nci.nih.gov/), lung adenocarcinoma (LUAD)63, lung squamous cell carcinoma 

(LUSC)64, prostate adenocarcinoma (PRAD) (https://tcga-data.nci.nih.gov/) and 

thyroid carcinoma (THCA)65. Processed RNA-Seq data for tumor and normal samples 

was downloaded for RNA-Seq version 2 Level 3 data with RSEM estimated read 

counts for genes and isoforms and the TCGA annotation (hg19, June 2011) were used. 

Mutation and copy number variation (CNV) data was downloaded from the TCGA 

data portal for all tumor types. For the mutation data, MAF files containing Level 2 

somatic mutation calls from whole exome sequencing was used. For the CNV data, 

Level 3 SNP array data, containing the normalized copy number variation and 

purity/ploidy analysis results for each sample was used, excluding germline copy 

number variations. BRCA subtypes were determined using the classification from 

TCGA58. COAD subtypes were determined by counting the number of somatic 

mutations per sample59. A sample was classified as hypermutated if it contained more 

than 250 mutations in total, and as non-hypermutated otherwise. To assess sample 

quality, tissue types were predicted with URSA66 from the RSEM estimated read 

counts per gene, keeping only those predictions with posterior P ≥ 0.1. Samples that 
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did not cluster with the rest from the same class (either normal or tumor) were 

removed. 

The 1348 genes coding for RNA binding proteins (RBPs) analyzed includes those 

with high confidence for RNA binding29,30,67 and those with known RNA-binding 

activity from Ensembl68 (Supp. Table S2). From this set, a subset of 162 known and 

potential splicing factors (SFs) was selected (Supp. Table S2). SF3B1 and the kinases 

SRPK1 and SRPK2 were included in the analyses for comparison. Additionally, 1426 

genes coding for transcription factors (TFs) from the Animal Transcription Factor 

Database69 were analyzed. TFs not present in the TCGA annotation or in the latest 

ENSEMBL release (v80), based on their HUGO or Entrez ids, were removed; and 

only TFs showing differential expression (absolute log fold change > 0.5 and adjusted 

p-value < 0.05) in at least one tumor type were kept for analysis. 

Differential expression  

Quantile normalization and voom transformation was performed on gene-level read-

count data70. Differential expression analysis was performed using the empirical 

Bayes function from the limma package71 and p-values were corrected for multiple 

testing using the Benjamini-Hochberg method. Genes were considered differentially 

expressed if they had an absolute log2-fold change > 0.5 and corrected p-value < 0.05. 

A robust Z-score per gene and per tumor sample was calculated using the quantile 

normalized and mean-variance relationship corrected voom transformed read-counts, 

based on the values in the tumor sample (n) and the median (m) and median absolute 

deviation (MAD) values in the normal samples for the same tumor type: 

 

or using mean absolute deviation (MeanAD) of the normal samples if the MAD value 

was equal to zero: 

 

The genes RBMY1 and RBMY2 were discarded, as they show almost no variability 

in most samples. 

 

Mutation and Copy number variation analysis 

Z − score = n − m

1.486× MAD

Z − score = n − m

1.253314× MeanAD
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The frequency of somatic mutations across all samples with available data was 

calculated per gene and for each tumor type, and genes were ranked according to this 

frequency. The top 5% of somatic mutation frequencies were considered significant. 

For samples with copy number variation (CNV) data available, the overlap of each 

RBP with the annotated CNVs was calculated, requiring a CNV score > log2(3) or < 

log2(1) for gain or loss, respectively. The frequency of CNV gain/loss across all 

samples with available data was calculated per gene and tumor type, and genes were 

ranked based on this frequency. The top 5% of CNV gain/loss were considered 

significant. For each RBP the robust Z-score defined above was used to calculate the 

association between up regulation (Z-score > 1.96) or down regulation (Z-score < -

1.96) with CNV gain or loss, respectively, was calculated using a Jaccard index based 

on the presence or absence of each of these two features per tumor sample. Mutual 

exclusion was measured in the following way: given the number of samples having an 

RBP mutation and no expression change, n10, and the number of those having an 

expression change but no RBP mutation, n01, a mutual-exclusion score, mx, with 

values between 0 and 1, was defined as: 

 mx = 2
min(n10, n01)

N
, 

where N is the total number of samples with both mutation and expression data 

available. 

Alternative splicing events 

Alternative splicing events were calculated from the gene annotation using SUPPA 72, 

producing a total of 30820 events: 16232 exon skipping (SE) events, 4978 alternative 

5’ splice-site (A5) events, 6336 alternative 3’ splice-site (A3) events, 1478 mutually 

exclusive exon (ME) events, and 1787 retained intron (RI) events. Alternative first 

and last exons were not included in the analysis. The percent spliced-in (PSI) value 

for each alternative splicing event and per sample was calculated with SUPPA from 

the quantification of the transcripts isoforms in transcript per million (TPM) units. 

Only those events with a total TPM value for the transcripts defining the event higher 

than 0.1 were considered. Differentially spliced events were obtained by comparing 

the PSI value distributions between the normal and tumor samples using a Wilcoxon 

signed rank test, removing samples with missing PSI values, using at least 10 paired 

samples, and correcting for multiple testing using the Benjamini-Hochberg method. 
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Events were considered as differentially spliced if the absolute difference between the 

tumor and normal median PSI values was > 0.1 and corrected p-value <0.05. Non-

regulated events were defined as having an absolute difference of median PSI values 

(ΔPSI) ≤ 0.01 and corrected p-value > 0.05. The same approach was used to calculate 

differentially spliced events associated with mutations in RBPs. Tumor samples were 

separated according to whether they have any mutation in a given RBP, and the two 

sample groups were compared using a Wilcoxon signed rank test and correcting for 

multiple testing using the Benjamini-Hochberg method. The tests were performed  

using protein-affecting mutations (Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, 

In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation). Only 

RBPs that had mutations in at least 10 samples were tested. A median-based 

enrichment z-score was calculated per RBP and tumor type by comparing the number 

of events changing significantly in relation to mutations with the median value 

obtained using all RBPs tested. 

Tumor type specific alternative splicing events were calculated by comparing the PSI 

values for events between each pair of tumor types. An equal number of samples from 

each tumor pair were subsampled 100 times and compared using information gain 

(IG). An average IG per event was then calculated from the 100 iterations, keeping 

only events differentially spliced in at least one of the tumor types. The events were 

ranked based on the average IG and the top 1% was chosen as the most discriminating 

events between the pair of tumor types. All events obtained this way were finally 

combined into a final non-redundant set. The list of alternative splicing events 

changing splicing patterns between embryonic stem cells (ESCs) and differentiated 

cells and tissues, or upon the knockdown of various proteins were obtained from the 

literature73 74 33 38. These events were matched to our events and the correlations of 

ΔPSI values for each tumor type were calculated. 

Gene sets 

Annotations for 50 cancer hallmarks were obtained from the Molecular Signatures 

Database v4.028. A Fisher exact test was performed using genes with annotated events 

and genes with differentially spliced events in each tumor type. A list of 82 genes 

whose alternative splicing was linked before to angiogenesis, apoptosis, metastasis, 

cancer therapy, proliferation and DNA damage was collected from the literature 
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(Supp. Table S8). Additionally, a set of 889 cancer drivers based on mutations and 

CNVs (34 in common with the previous set) (Supp. Table S9) was obtained from a 

combination of COSMIC (October 2014)75, the genes tested in Jelinic et al., 201476,  

291 high-confidence tumor drivers (HCD)77 and 260 drivers from the set 

Cancer500078. These genes were labeled as oncogenes or tumor suppressors based on 

the annotations from COSMIC, from Vogelstein et al., 201379, and from the TSGene 

database80. For unlabeled cases in the HCD and Cancer5000 lists, OncodriveROLE81 

was used to assign a classification with cutoffs of 0.3 (loss-of-function class) and 0.7 

(activating class). Mutational/CNV drivers that remained without annotation were 

labeled as unknown. This resulted in a total set of 937 genes that we collectively call 

drivers. 

RNA binding motif enrichment 

The RNA binding motif collection from Ray et al., 201334 was used for motif 

analysis. For RBPs with more than one motif, the matrix model with the highest 

relative entropy was used. When the RNA binding motif was missing for an RBP, the 

motif model from another member of the same protein family with reported similar 

binding affinities was used (Supp. Table S2). For a number of RBPs, the motif from a 

different species was used after confirming that the RNA binding domain is conserved 

between the human and the other species: RBM47 (chicken), SF1 (Drosophila), 

SRP54 (Drosophila), TRA2 (Drosphila), and PCBP3 (mouse) (Supp. Table S2). The 

tool fimo82 was used to scan the motifs in the event regions using p-value < 0.001 as 

cut-off. Motif enrichment analysis was performed by comparing the frequency of 

regions in regulated events with an RNA binding motif with 100 random subsamples 

of the same size from equivalent regions in non-differentially spliced (DS) events. 

Motif enrichment was performed separately for the two directions of splicing change 

(ΔPSI > 0.1 or ΔPSI < -0.1). An enrichment z-score per RNA binding motif, region 

and direction of regulation was calculated by normalizing the observed frequency in 

the DS events set with the mean and standard deviation of the 100 random control 

sets. Random controls were sampled from non-differentially spliced events for each 

region and direction of regulation controlling for G+C content. The G+C content 

distribution for each percentile (0-100) was calculated for DS events, then the G+C 

percentage for each event in the control set was calculated and a probability assigned 
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based on the distribution of the DS events. Finally, as many control events as DS 

events were sampled 100 times using the assigned probabilities. 

We considered a differentially spliced event to be a potential target of a differentially 

expressed RNA binding protein gene if the correlation between the event PSI value 

and the gene expression robust Z-score was |R| > 0.5 (Spearman) and the event 

contained a binding motif. We assessed the significance of the number of events 

associated to a certain RBP in a tumor type in the following way: The same number of 

differentially spliced events in a tumor type was randomly selected from the set of 

non-differentially spliced events 100 times, and events associated to the RBPs 

calculated each time as described previously. A mean and standard deviation were 

calculated, from which a z-score was calculated. Only cases with z-score > 1.96 were 

considered significant. 

RBP motif associations and networks 

To study the association of RNA binding motifs, a hypergeometric test p-value was 

calculated to test the co-occurrence of motifs on DS events for a given tumor type. 

Only motif co-occurrences with adjusted hypergeometric test p-value < 0.05 were 

kept. To take into account the similarities between motifs, STAMP83 was used to 

calculate a motif dissimilarity. The association between motifs was then measured 

using the geometric mean of the motif dissimilarity and the Jaccard score of the 

association, multiplied by the log10 of the number of DS events involved, to give more 

relevance to motifs that occur in many events. 

Networks of RBPs and events were built based on the correlations between RBPs 

through events. A correlation between a pair of RBPs was calculated using the 

Spearman correlation values with all differentially spliced events in the same tumor 

type. RBP clusters were built by calculating an inverse covariance matrix of the 

correlations using the glasso algorithm84 and then searching for dense, highly 

connected sub-graphs with a greedy algorithm85. Events were associated to a network 

if they had |R| > 0.8 (Spearman) or |R| > 0.5 plus motif for any of the RBPs in an RBP 

cluster. 

Cell culture and siRNA transfection 
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The MCF10A cell line (ATCC, CRL-10317) was sub-cultured in DMEM-F12 (Life 

Technologies, 31330038) containing 2.5 mM glutamine, 15 mM HEPES, 10% FBS 

(Life Technologies, 10270), Pen-Strep (Life Technologies, 15070063), human insulin 

solution at 10 ng/ml concentration (SIGMA, I9278), Hydrocortisone at 0.50 μg/ml 

(Merck, 386698) and human recombinant EGF from E. coli at 25 ng/ml (Merck, 

324831). 250,000 MCF10A cells were plated in 6-well plates for cell transfection, and 

transfected in triplicate using 2 μl Lipofectamine RNAiMax (Life Technologies, 

13778150) per 1 ml of total volume of transfection in OPTIMEM (Life Technologies, 

13778150). Media was replaced to DMEM-F12 containing 10% FBS and Pen-Strep 

five hours after treatment. Total RNA was extracted 72 hours after cell transfection, 

using Maxwell Simply RNA Tissue kit (PROMEGA, AS1280). RNA quality was 

assessed by Nanodrop spectrophotometer, and in parallel, protein extracts were 

prepared with RIPA buffer (1mM EDTA, 1.5 mM MgCl2, 20 mM TrisHCl pH7.5, 

150 mM NaCl, 1% NP40) with 1x Complete protease inhibitor (ROCHE, 

11697498001). MBNL1 siRNA (Life Technologies, s8553 and s8555) and QKI 

siRNA (Life Technologies, s18084 and s18085) were used at 20, 60, 100 nM 

concentrations, as well as Silencer® Select Negative Control No. 1 siRNA (Life 

Technologies, 4390843) at 20 and 100 nM concentrations. 

Antisense oligonucleotides treatment 

2’-O-Methyl RNA oligos were designed with full phosphorothioate linkage, antisense 

to the 5’ or 3’ splice sites of NUMA1 alternative exon 16 (UCSC genome browser 

hg19 coordinates chr11:71723447-71723488) optimizing GC content to 45-60 %. 

Custom modified and HPLC purified RNA oligos were ordered in a 0.2 μM scale 

from SIGMA-ALDRICH. 

NUMA1_ex16_5’ss: 5’- ggcauuacCUGCUUAGUUUGC-3’ 

NUMA1_ex16_3’ss: 5’- CCUCUAGCUGCUCCACcugu-3’ 

RANDOM 2’-O-Methyl RNA oligo: 5’-GCAAUGGCGUCAAGUGUGUCG-3’ 

Antisense RNA oligos were transfected in triplicate at 20 nM final concentration 

using 2 μl Lipofectamine RNAiMax (Life Technologies, 13778150) per 1 ml of total 

volume of transfection in OPTIMEM (Life Technologies, 13778150). After five hours 

of treatment, media was replaced by DMEM-F12 containing 10% FBS and Pen-Strep. 

Western Blot analysis 
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Protein extracts were fractionated by electrophoresis in 10% native acrylamide:bis-

acrylamide 30:0.8% gels, and semi-dry transferred to a 0.45 μM nitrocellulose 

membrane (Protran BA85 10401196, Whatman). MBNL1 monoclonal antibody 

(M02), clone 3E7 (ABNOVA, H00004154-M02), QKI MaxPab mouse polyclonal 

antibody (B01) (ABNOVA, H00009444-B01), monoclonal anti-β-tubulin (SIGMA, 

T4026) and ECL rabbit or mouse IgG, HRP-Linked Whole Ab (GE Healthcare, 

NA9340 or NA931) were incubated with the membranes and after extensive washes 

the bound antibodies detected by Western Lightning Plus ECL chemiluminescence 

reagent (PERKIN-ELMER, NEL105001EA) and exposed to Kodak BioMax MR film 

(SIGMA, Z353949). 

Cell proliferation/viability assay 

2500 MCF10A cells/well were seeded the night before treatment in 96-well plates 

(NUNC, 167008) in 100 μl complete DMEM-F12 medium. Wells with none, half or 

double amount of cells were also seeded for fluorescence calibration. Cells were 

transfected with siRNA or AON oligos as described. Resazurin (SIGMA, R7017) 

treatment was performed 72, 96 and 120 hours after transfection, in 7 replicates and 

incubated for 4 hours in a 37ºC incubator. Fluorescence was measured after 4 hours of 

incubation, using a TECAN infinite m200 device with 530 nm excitation wavelength, 

590 nm emission wavelength, 30 nm emission bandwidth, and set to optimal gain. 

The medium was replaced by complete DMEM-F12 after measurements. 

Semi quantitative RT-PCR 

500 ng of total RNA was reverse-transcribed with Superscript III (Life Technologies, 

18080085) with a mix of random primers and oligo-dT (18‐mer), and 1 μl of cDNA 

was analyzed by PCR, using specific primers complementary to the constitutive exons 

flanking the alternative exon and GoTaq flexi DNA polymerase (Promega, M7806). 

PCR products were analyzed by 6% native acrylamide gel electrophoresis in 1x TBE 

and Sybr safe staining (Life Technologies, S33102). The ratio between exon inclusion 

and skipping isoforms was quantified from biological triplicates using ImageJ 1.47v 

(NIH, USA). The list of primers used for the semi-quantitative RT-PCR can be found 

in Supp. Table S22. 

Centrosome count and aneuploidy signature 
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The number of centrosomes was determined by immunofluorescence assays using an 

anti-γ-tubulin (TUBG1) antibody (clone GTU-88, Sigma-Aldrich; dilution 1:1,000). 

The expected immunostaining pattern of this centrosomal marker in normal cells is 

one or two foci proximal to the nucleus. The cells were fixed in methanol cold for 10 

minutes and washed in phosphate-buffered saline. The secondary antibody was Alexa 

Fluor 488 (Molecular Probes, Life Thecnologies) and the cells were mounted using 

VECTASHIELD® with DAPI. The results correspond to at least five independent 

fields and > 200 cells analyzed. The significance of the results was assessed using the 

one-sided Mann-Whitney test (Supp. Table S20). The chromosome instability 

signature (CIN25) from 42 was used by calculating the mean value of the normalized 

expression robust Z-score values for the 25 genes from the signature in each sample. 

Supplementary Data 

Supp. File 1: Information about the differential expression, mutations and copy 

number variations of the all the RBP genes analyzed.  

Supp. File 2: Differentially spliced events in the comparison of tumor vs. normal.  

Supp. File 3: Differentially spliced events in the comparison of samples with and 

without mutations in RNA binding proteins.  

Supp. File 4: Candidate target differentially spliced events for each tumor and for 

each differentially expressed RBP.  

Supp. File 5: Information per tumor type for each gene: whether it is differentially 

expressed, has alternative splicing events, has differentially spliced events in tumor vs 

normal, or is a cancer driver. 
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Table 1 
 
Protein affecting mutations 

Tumor RBP logFC Pval Frequency Assoc. Freq. Jac | Mex 

COAD ANKHD1 0,2324 0,091015684 5,24 0,48 0,02 | 0,10 

COAD HNRNPL 0,4393 2,97E-10 6,67 5,24 0,05 | 0,03 

COAD PPRC1 1,032 1,07E-09 5,71 4,76 0,07 | 0,02 

COAD RALY 0,3369 0,006243332 8,57 5,24 0,09 | 0,07 

COAD SRPK3 -0,1594 0,851130983 5,24 0,00 0,00 | 0,10 

KICH PABPC1 -0,0069 1 11,29 3,23 0,10 | 0,16 

KICH PABPC3 1,2009 3,42E-07 12,90 8,06 0,14 | 0,10 

KICH RBMXL1 -0,6954 1,62E-05 9,68 3,23 0,06 | 0,13 

LIHC ANKHD1 0,1164 0,27503992 5,79 2,11 0,05 | 0,07 

LIHC HNRNPCL1 0,5051 0,147106267 5,26 2,11 0,11 | 0,06 

LIHC HNRNPUL2 0,2405 0,005931708 5,26 2,63 0,04 | 0,05 

LIHC ZNF638 -0,0726 0,437 6,32 2,11 0,08 | 0,08 

LUAD RBM10 0,1471 0,057328622 5,46 4,37 0,11 | 0,02 

LUSC ANKHD1 -0,0813 0,403533863 5,06 1,69 0,04 | 0,07 

LUSC SRRM2 -0,2196 0,083550303 6,74 2,81 0,05 | 0,08 

 

CNV Gains 

Tumor RBP logFC Pval Frequency Assoc. Freq. Jaccard  

BRCA 

 CELF3 2.11 8.82E-14 20.21 15.29 0.22 

BRCA ESRP1 2.07 1.03E-13 23.66 20.21 0.50 

BRCA HNRNPU 0.56 5.50E-29 20.52 14.14 0.32 

COAD HNRNPA1L2 0.71 2.24E-10 16.67 14.29 0.17 

COAD PABPC1 1.21 2.68E-12 10.00 10.00 0.13 

COAD PABPC3 1.05 4.21E-10 18.57 15.24 0.22 

COAD RBM39 0.81 3.31E-08 36.67 35.71 0.54 

COAD SRSF6 0.52 3.05E-05 38.10 31.43 0.52 

KIRP IGF2BP3 2.86 1.98E-05 13.94 9.70 0.12 

KIRP RBM28 0.69 6.84E-10 16.36 15.15 0.29 

KIRP SRRM3 2.35 0.000300325 13.94 12.73 0.17 

LIHC HNRNPU 0.57 1.23E-08 20.00 12.11 0.22 

LIHC PABPC1 1.05 3.26E-09 28.42 28.42 0.37 

LUAD ESRP1 0.96 4.34E-18 8.08 7.86 0.10 

LUAD PABPC1 0.94 3.68E-15 9.39 9.17 0.13 

LUAD SRP54 0.63 4.42E-15 11.35 11.14 0.16 

LUSC FXR1 1.44 6.35E-25 57.87 57.87 0.60 

LUSC HNRNPL 0.71 1.97E-20 7.87 7.87 0.08 

LUSC IGF2BP2 2.29 1.37E-12 55.06 49.44 0.57 

LUSC TRA2B 0.64 6.57E-12 53.93 53.37 0.66 

 

CNV Losses 

Tumor RBP logFC Pval Frequency Assoc. Freq. Jaccard  

COAD RBFOX1 -2.19 0.000197793 11.90 4.76 0.07 

KIRC RBFOX1 -4.20 1.45E-30 1.71 1.71 0.02 

LIHC RBMS3 -1.51 6.75E-09 1.05 1.05 0.02 

LUSC CELF2 -2.91 4.41E-29 1.12 1.12 0.01 

LUSC CPEB2 -0.87 1.98E-07 1.12 1.12 0.02 

LUSC KHDRBS2 -5.78 4.49E-32 1.12 1.12 0.01 

LUSC RBM47 -0.97 9.45E-14 2.25 1.69 0.02 

LUSC RBMS3 -2.09 2.18E-16 2.25 2.25 0.03 
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Table 1. Association of mutations and CNVs with expression changes. For each 

RBP gene and each tumor type we give the log-fold change (logFC) and adjusted p-

value (Pval) of the differential expression analysis between tumor and normal samples, 

the frequency of the alteration (Frequency), the association of the alteration with 

expression Z-score (Assoc. Freq.) and the Jaccard score of the association. For 

mutations we show those cases with mutation frequency >5% and wither a Jaccard 

(Jac) or mutual exclusion (Mex) score > 0.05. For CNV gains we show those cases 

that show a significant upregulation and association frequency >7%. For CNV losses, 

we show those cases with significant downregulation and association frequency > 1%. 

We only show known or putative splicing factors. Other RBPs are described in the 

Supplementary Material. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2015. ; https://doi.org/10.1101/023010doi: bioRxiv preprint 

https://doi.org/10.1101/023010
http://creativecommons.org/licenses/by/4.0/


 29

 
Table 2 

Tumor 
type 

Gene Cancer 
driver 

event 
type 

event ΔPSI Pval 

BRCA CDK12 TFEB SE chr6:41658973-41673385:41673490-41673655:- -1,00 0,0001 

BRCA MDN1 EBF1 SE chr5:158267118-158500404:158500472-158511674:- -0,23 0,0343 

BRCA SF3B1 BCL2L1 A3 chr20:30310151-30310421:30310133-30310421:- 0,23 4,14E-06 

BRCA SF3B1 MEF2A SE chr15:100106309-100138635:100138716-100173183:+ -0,21 0,0026 

COAD BAT2L1 MLH1 SE chr3:37056035-37061801:37061954-37067128:+ 0,70 0,0109 

COAD CHD2 CAST SE chr5:96065429-96071876:96071944-96073553:+ -0,15 0,0396 

COAD HNRNPL CASP8 A5 chr2:202098345-202098739:202098277-202098739:+ 0,17 0,0271 

COAD KIAA0802 MKNK2 A3 chr19:2039855-2040133:2037828-2040133:- -0,13 0,0340 

COAD KIAA0802 MYH11 MX chr16:15876334-15878555:15878575-15880487:15876334-
15880332:15880351-15880487:- 

-0,14 0,0004 

COAD MACF1 TJP2 SE chr9:71863140-71865951:71866280-71867731:+ 0,16 0,0251 

COAD MYH9 AURKA A5 chr20:54965721-54966999:54965721-54967224:- 0,16 0,0462 

COAD MYO18A MDM4 A3 chr1:204501374-204506558:204501374-204506587:+ 0,54 0,0462 

COAD MYO18A PDCD1LG2 A5 chr9:5563215-5569954:5563211-5569954:+ 0,21 0,0403 

COAD SPEN TTLL9 SE chr20:30512852-30513676:30513763-30521603:+ -0,17 0,0118 

COAD YLPM1 CD44 SE chr11:35211612-35218293:35218421-35219668:+ 0,12 0,0268 

COAD ZC3H18 ACSL6 MX chr5:131309093-131310451:131310528-
131312341:131309093-131310586:131310642-131312341:- 

-0,84 0,0114 

COAD ZC3H18 MBD1 SE chr18:47796188-47797839:47797910-47799047:- -0,11 0,0173 

HNSC DSP PAX5 MX chr9:36840633-36846840:36846926-37002645:36840633-
36966546:36966721-37002645:- 

-0,12 0,0034 

HNSC EPPK1 TAF1 SE chrX:70680653-70704734:70704843-70748392:+ 0,24 0,0007 

HNSC MYH9 PTCH1 SE chr9:98248156-98268689:98268881-98278905:- -1,00 0,0058 

LIHC CHD2 BUB1B SE chr15:40509868-40532800:40532882-40545379:+ 1,00 0,0020 

LIHC EPPK1 NEDD4L SE chr18:56001124-56008270:56008401-56008910:+ -0,26 0,0339 

LIHC HUWE1 HLA-A A5 chr6:29912411-29912836:29912393-29912836:+ 0,35 0,0281 

LUAD CHD2 SELP A3 chr1:169562962-169563930:169562959-169563930:- -1,00 0,0008 

LUAD NOMO1 TFG A5 chr3:100428565-100432487:100428275-100432487:+ -0,23 0,0238 

LUAD RBM10 BLM SE chr15:91260671-91267265:91267374-91290619:+ 0,13 0,0340 

LUAD RBM10 CTNND1 A3 chr11:57529518-57558857:57529518-57558966:+ -0,34 0,0064 

LUAD RBM10 MUC1 SE chr1:155160052-155160198:155160334-155160639:- 0,13 0,0333 

LUAD RBM10 WNK1 A3 chr12:980514-987378:980514-987381:+ 0,22 0,0033 

LUAD TWISTNB CLIP1 MX chr12:122826244-122831922:122832026-
122837273:122826244-122835658:122835690-122837273:- 

-0,20 0,0435 

LUAD U2AF1 BCOR SE chrX:39930412-39930890:39930943-39931602:- -0,12 0,0351 

LUAD U2AF1 CHCHD7 A3 chr8:57127226-57128948:57127226-57128992:+ -0,11 0,0005 

LUAD U2AF1 CTNNB1 A3 chr3:41280845-41281151:41280845-41281310:+ 0,26 0,0002 

LUAD U2AF1 CTNNB1 RI chr3:41280625:41280845-41281310:41281939:+ 0,19 0,0004 

LUAD U2AF1 MUC1 MX chr1:155159850-155159931:155160052-
155160484:155159850-155160198:155160334-155160484:- 

-0,26 0,0472 

LUAD U2AF1 PATZ1 A3 chr22:31724910-31731678:31724845-31731678:- -0,15 0,0347 

LUAD U2AF1 PCM1 SE chr8:17838264-17840742:17840798-17842956:+ 0,12 0,0160 

LUAD U2AF1 RIPK2 SE chr8:90770461-90775057:90775210-90777569:+ -0,26 0,0008 

LUAD U2AF1 RIT1 SE chr1:155880297-155880447:155880595-155881034:- -0,13 0,0018 
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Table 2. Events in cancer drivers associated to protein-affecting mutations in 

RBPs. For each tumor and for each RBP (Gene) with more than 10 differentially 

spliced events associated to protein-affecting mutations, we indicate the cancer driver 

genes and events predicted to have a significant splicing change.s We also provide the 

PSI change between mutated and non-mutated samples (ΔPSI) and the p-value of the 

comparison after correcting for multiple testing (Pval). SF3B1 is included for 

comparison. Events are defined according to the format used by SUPPA72. 

 

 

Figure captions 

 

Figure 1. Cancer alterations in splicing factors. (a) Up- (red) and downregulation 

(blue) patterns of 162 splicing factors (x-axis) in the different tumor types (y-axis) 

compared to normal samples (Methods). The color intensity indicates the log2-fold 

change (log2 FC). The bar plot above indicates the frequency of tumor types with up- 

(red) or down- (blue) regulation for each factor. Splicing factors previously described 

to have oncogenic or tumor-suppressing activities (Supp. Table S3) are indicated in 

red on the x-axis. Dendrogram was built with Ward clustering after transforming to 

+1 or -1 significant cases for log2 FC>0.5 or <0.5, respectively, and using Gower 

distance. (b) Dendrogram for the unsupervised hierarchical clustering of the 4442 

tumor samples across the 11 tumor types using the expression robust Z-score 

expression relative to normal samples. (c) Percentage of samples (y axis) in which 

RBPs (upper panel), driver genes (middle panel) and the rest of genes (lower panel) 

show mutations in each tumor type (x axis). Distributions are represented as violin 

plots, where the width indicates the density at a given y-axis value. Drivers were 

extracted from the literature (Methods). (d) Copy number gains (left panel) and losses 

(right panel) of the tested splicing factors. Only those with a frequency of 

amplification or deletion in the top 5% of all genes using all tumor samples are shown. 

SRPK1 and SRPK2 are included for comparison. 

 

Figure 2. Differentially spliced events in tumors. (a) Upper panel: number of 

paired-samples used per tumor type. Lower panel: number of differentially spliced 
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events per tumor type compared to normal samples, split according to the number of 

each type of event: alternative 3’ splice-site (A3), alternative 5’ splice-site (A5), 

mutually exclusive exon (MX), retained intron (RI) and skipping exon (SE) (Supp. 

Table S4). (b) Proportion of driver and non-driver genes with differentially spliced 

events. We indicated in red those tumors for which the enrichment is significant. (c) 

Cancer hallmarks (x-axis) that are enriched (Fisher test p-value < 0.05) in 

differentially spliced events in each tumor type (y-axis). The color indicates the odds 

ratio of the enrichment. Hallmarks that are also enriched according to gene expression 

are indicated with a black dot. (d) Proportion of samples with mutations in each tumor 

type for RBP genes with at least 10 associated differentially spliced events. SF3B1 is 

included for comparison. (e) Number of differentially spliced events related to the 

mutations in (d) color-labeled by tumor type. Only cases with at least 10 associated 

differentially spliced events are shown. (f) Number of protein-affecting mutations (y-

axis) along the HNRNPL protein (x-axis), color-labeled according to whether they are 

substitutions, insertions or deletions. Protein domains are indicated in light red. (g) 

Enrichment or depletion of specific event types in association to mutations in 

HNRNPL (red bars) compared to the overall proportions of events (black bars). 

Significant differences (p < 0.05, Fisher test) are labeled in red. Contingency tables 

are provided as Supplementary Tables. (h) Distribution of PSI values for the A5 event 

in CASP8 associated to the mutations of HNRNPL in COAD, separated into normal 

samples, tumor samples without protein-affecting mutations (Tumor – NM), and 

tumor samples with protein-affecting mutations (Tumor – M). 

 

Figure 3. Common and specific events in tumors. (a) Common events and splicing 

factors between pairs of tumor types. For each pair of tumor types and for each 

splicing factor differentially expressed in both tumor types, we plot the correlation of 

ΔPSI values for events that have a correlation of |R| > 0.5 (Spearman) with these 

splicing factors in both tumor types. Only factors with more than 50 associated events 

in both tumor types are shown. Each event is only plotted once and the color of the 

plot corresponds to the most common correlating splicing factor. Correlations 

between ΔPSI values are indicated. In red or green, we highlight those higher than 0.8 

or lower than -0.8, respectively. (b) ΔPSI correlations for the pairs LUAD - BRCA, 

PRAD - KIRC, KIRC – HNSC, and LUSC – HNSC, for the common events separated 
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according to their potential splicing factor regulators. Events associated to more than 

one factor are represented with jitter. (c) Principal Component Analysis (PCA) plot of 

380 tumor specific alternative splicing events colored by tumor type. 

 

Figure 4. Enriched RNA binding motifs in differentially spliced events. (a) 

Enriched RNA binding motifs in differentially spliced skipping exon events in each 

tumor type, separated by inclusion (upper panels) or skipping (lower panels) events, 

and by upstream (left), exonic (middle) or downstream (right) regions. Only enriched 

motifs for splicing factors that are differentially expressed in each tumor type are 

indicated. RBP gene up- and downregulation is indicated in red and blue, respectively. 

The color intensity indicates the Z-score of the motif enrichment. Similar plots for the 

other event types are given in the Supp. Material. (b) Proportion of enriched motifs in 

inclusion (ΔPSI > 0.1) (left panel) and skipping (ΔPSI < 0.1) (right panel) events, in 

each of the event regions (x-axis): upstream (Upstr.), exon and downstream 

(Downstr.). Proportions are separated according to whether the RBP gene is up- (red) 

or down- (blue) regulated. (c) Upper panel: Total proportion (y-axis) of differentially 

spliced events in each tumor type (x-axis) that are assigned as potential targets of one 

or more differentially expressed RBPs with significance z-score > 1.96. Lower panel: 

Proportion of differentially spliced events (marked in green) that are assigned as 

potential targets of each RBP (y-axis) in each tumor type (x-axis), with significance z-

score > 1.96. (d) Top panels: Correlation (Spearman R) of ΔPSI values in breast 

tumors (BRCA) and prostate tumors (PRAD) with the ΔPSI obtained from the 

comparison of stem cells (ESCs) with differentiated cells (CL). Events with a 

predicted MBNL binding motif are indicated in blue. Lower panels: for each RBP (y 

axis), it shows proportion of cancer drivers (x-axis) with differentially spliced events, 

whose PSI correlates (|R| > 0.5 Spearman) with the RBP gene expression and contains 

the corresponding RNA binding motif. Only the top 10 RBPs are shown. (e) Circos 

plot for the association of RNA binding motifs on differentially spliced events 

(Methods). Only significant links are shown (association score > 1.5 and 

hypergeometric p-value < 0.05). The thickness of the links indicates the number of 

tumor types for which a significant association has been found. 
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Figure 5. Networks of splicing regulation. Modules of alternative splicing 

regulation according to cancer hallmarks in breast (a) and colon (b) tumors. For each 

cluster of splicing factors (x-axis) we indicate in gray the total number of genes 

associated to these factors in each hallmark (y-axis). Only enriched hallmarks are 

shown. We indicate in red the number of cancer drivers associated to each factor. 

Splicing factors in each cluster are ordered according to the total number of genes 

they are associated to. Representation of the regulatory modules for G2M checkpoint 

(c) and WNT/Beta-catenin (d) hallmarks in breast tumors, and for the angiogenesis 

hallmark (e) in colon tumors. Splicing factors are indicated as square boxes in red or 

blue depending of whether they are up- or downregulated. Target genes are presented 

as white diamonds for cancer drivers and white boxes for the rest. Connections 

indicate predicted splicing regulation by a splicing factor. 

 

Figure 6.  Regulation of NUMA1 alternative splicing by MBNL1 in breast 

luminal tumors. (a) PSI value distributions in tumor and paired normal sample for 

luminal A (LA) and luminal B (LB) breast tumors for the events in NUMA1 (LA: 

ΔPSI = -0.22, p-value = 7.81e-07, LB: ΔPSI =  -0.23, p-value = 0.037) and NUMB 

(LA: ΔPSI = 0.28 p-value = 0.0001, LB: ΔPSI = 0.28, p-value = 0.016). All p-values 

given are corrected for multiple testing. (b) RT-PCR isoform analysis upon 

knockdowns of MBNL1 (lanes 2-10) and QKI (lanes 12-14) and their respective 

controls with scrambled siRNAs (lanes 1 and 11). The diagrams to the right indicate 

the position of the alternatively spliced exons. (c) Resazurin-based assays of cell 

viability/proliferation. Measurements were performed in triplicate at 72, 96 and 120 

hours. The plot shows measurements upon knockdowns of MBNL1 (siMBNL1) and 

QKI (siQKI), upon transfection of AONs targeting the 3’ and 5’ splice-sites 

independently and both together, and the corresponding controls (scrambled siRNA 

and random AON). (d) Left panel: graph showing the results of the evaluation of 

centrosome amplification upon knockdown of MBNL1 (siMBNL1) or upon 

transfection of AONs targeting 5’ splice-sites (5’ss AON), compared to the 

corresponding controls siScrambled (p=0,4271) and random AON (p=0,04356), 

respectively (one-sided Mann-Whitney test). Right panels: representative merged 

(TUBG1 and DAPI) images of immunofluorescence assays. (e) Correlation of 

NUMA1 PSI (x-axis) with the CIN25 signature of aneuploidy (y-axis) across the 
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tumor (red) and normal (blue) samples for luminal A (upper panel) (R=-0.4 

Spearman) and B (lower panel) (R=-0.33 Spearman). 
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