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ABSTRACT A key quantity in the analysis of structured populations is the parameter K, which describes the number
of subpopulations that make up the total population. Inference of K ideally proceeds via the model evidence, which is
equivalent to the likelihood of the model. However, the evidence in favour of a particular value of K cannot usually be
computed exactly, and instead programs such as STRUCTURE make use of simple heuristic estimators to approximate
this quantity. We show — using simulated data sets small enough that the true evidence can be computed exactly — that
these simple heuristics often fail to estimate the true evidence, and that this can lead to incorrect conclusions about K.
Our proposed solution is to use thermodynamic integration (TI) to estimate the model evidence. After outlining the
TI methodology we demonstrate the effectiveness of this approach using a range of simulated data sets. We find that
TI can be used to obtain estimates of the model evidence that are orders of magnitude more accurate and precise than
those based on simple heuristics. Furthermore, estimates of K based on these values are found to be more reliable than
those based on a suite of model comparison statistics. Our solution is implemented for models both with and without

admixture in the software TRUEK.

KEYWORDS population structure; K; model evidence; thermodynamic integration; model comparison

The detection and characterisation of population structure
is one of the cornerstones of modern population genetics.
Ever since Wright (1949) and his contemporaries (Malécot 1948)
it has been recognised that genetic samples obtained from a large
population may be better understood as a series of draws from
multiple partially isolated subpopulations, or demes. While tra-
ditional methods (such as those based on the fixation index, Fsr)
assume that the allocation of individuals to demes is known a pri-
ori, many modern programs such as STRUCTURE (Pritchard et al.
2000; Falush et al. 2003a, 2007; Hubisz et al. 2009) take a differ-
ent approach; attempting to infer the group allocation from the
observed data. What makes this possible is the simple genetic
mixture modelling framework used by STRUCTURE, together
with the efficiency of Markov Chain Monte Carlo (MCMC) meth-
ods for sampling from this broad class of models.

However, even within the flexible framework of Bayesian
mixture models, the number of demes (denoted K) is difficult
to ascertain. While the allocation of individuals to demes is
a parameter within a particular model, the value of K is fixed
for a given mixture model, and so the problem of estimating K
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involves a comparison between models. One of the most com-
mon ways of comparing between models in a Bayesian setting
is through the model evidence, defined as the probability of the
observed data under the model. Often this quantity is used in
a relative sense, with the ratio of evidence between competing
models (the Bayes factor) being used to guide the choice of one
model over another (Kass and Raftery 1995). However, comput-
ing the model evidence in complex, multi-dimensional models is
not straightforward, and for this reason it is common to resort to
simple heuristic estimators of the true evidence. These heuristics
tend to have some direct mathematical connection to the model
evidence, but also make certain simplifying assumptions in their
derivation.

For example, in the original paper on which STRUCTURE
is based, Pritchard et al. (2000) comment on the difficulties in
obtaining the model evidence directly, and instead opt for an ad
hoc procedure in which a simple heuristic (denoted Lk here) is
used as an approximation of —2 xlog(evidence). The derivation
of this statistic rests on certain simplifying assumptions, and
the authors are careful to emphasize that these assumptions
are ‘dubious’. It is reasonable to expect that any downstream
method that relies on the value of Lx (for example Evanno’s AK
statistic (Evanno et al. 2005)) is also at the mercy of these dubious
assumptions.
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Rather than relying on heuristics, what we would like is a
direct way of estimating the model evidence that is both accurate
and straightforward to implement. As noted by Gelman and
Meng (1998), such a method already exists, and has been known
about in the physical sciences for some time. This method — re-
ferred to in the statistical literature as thermodynamic integration
(TT) — uses the output of several closely related MCMCs to ob-
tain a direct estimate of the evidence. Crucially, this is not just
another heuristic. Rather, it is a true statistical estimator that can
be evaluated to an arbitrary degree of precision by simply in-
creasing the number of MCMC iterations used in the calculation.
The TI methodology was introduced into population genetics
by Lartillot and Philippe (2006) and has since been applied to a
range of problems in phylogenetics and coalescent theory (Baele
et al. 2012; Beerli and Palczewski 2010; Lepage et al. 2007; Blan-
quart and Lartillot 2006), but not yet the problem of estimating
K.

In the remainder of this paper we demonstrate the effective-
ness of TI as a method for estimating K in simple genetic mixture
models. We find that the STRUCTURE estimator Lk is both biased
an imprecise, often differing from the true evidence by a factor
of 50% or more, while the TI estimator differs by less than 1%
for the same computational effort. We also explore the ability of
different statistics to correctly estimate K, finding that TI outper-
forms Evanno’s AK, the Akaike information criterion (AIC), the
Bayesian information criterion (BIC) and the Deviance informa-
tion criterion (DIC). All of the methods described here are made
available through the program TRUEK (see link at end).

Methods

Evidence and Bayes Factors

In a Bayesian setting the problem of deciding between compet-
ing models can be addressed using Bayes’ rule. The posterior
probability of the model M, given the observed data x, can be
written
Pr(x | M) Pr(M)
Pr(M|x) = Pr(x) . 1
The quantity Pr(x | M) — the probability of the observed data x
given just the model M — is defined as the model evidence.
The ratio of the evidence between competing models, known
as the Bayes factor, can be used to measure the strength of evi-
dence in favour of one model over another. Bayes factors can be
used on their own, or they can be combined with priors on the
different models to arrive at the posterior odds:

Pr(Mi[x)  _ Pr(x|My)  Pr(My) o)
Pr(My|x)  Pr(x|My) = Pr(My)
%/_/
posterior odds = Bayes factor x prior odds .

A large Bayes factor in (2) provides evidence in favour of model
M over model Mj, whereas a small Bayes factor provides
evidence in favour of model M, over model M. A useful scale
for interpreting Bayes factors can be found in Kass and Raftery
(1995).

The problem of estimating the number of demes in a struc-
tured population can be understood within this framework. If
we let Mg denote a genetic mixture model in which K demes
are assumed then the problem of estimating the true value of
K becomes one of comparing between different models. Ide-
ally we would like to solve this problem using the exact model
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evidence, Pr(x | Mk). Unfortunately, however, calculating the
model evidence in complex, multi-dimensional models is not
straightforward. Most of the time we cannot write down the
probability of the data under the model without also condition-
ing on certain known parameters, denoted 8. Obtaining the
evidence from the likelihood requires that we integrate over a
prior on 6:

Pr(x| Mg) = /B'Pr(x\e,MK)Pr(e\MK)de. ®)

It is this integration step that makes calculating the model
evidence difficult in practice. For example, in genetic mix-
ture models 8 might represent the allele frequencies in all K
demes, perhaps alongside some additional admixture parame-
ters, making the integral in (3) extremely high dimensional (a
100-dimensional integral would not be uncommon). For this
reason it is common to turn to numerical methods or heuristic
approximations.

Estimating and Approximating the Evidence

Perhaps the simpest way of estimating the model evidence is
through the harmonic mean estimator, /ix (Newton and Raftery
1994):

-1

=
=

[ N
t Pr(x | 0y, Mx)

m=1

Pr(x| Mg) =

where 6, form € {1,...,t} denotes a series of draws from the
posterior distribution of 6. Part of the appeal of this estimator
is its simplicity — it is straightforward to calculate fig from the
output of a single MCMC run. As an example, the program
STRUCTURAMA (Huelsenbeck et al. 2011), which contains within
it a version of the basic STRUCTURE model, has an option for
using fig to estimate the model evidence (we note that this is not
the primary purpose of STRUCTURAMA, which also implements
a Dirichlet process model). However, in spite of its intuitive
appeal, the harmonic mean estimator has been widely criticised
to due its instability. /ix has been found to be very sensitive to
the choice of prior, often being dominated by the reciprocal of a
few small values (Neal 1994; Raftery et al. 2006).

In order to avoid some of the problems inherent in the har-
monic mean estimator, the approach taken by Pritchard et al.

(2000) was to define the heuristic estimator Lg (our notation) as
follows:

52
~2log[Pr(x| My)] ~ ﬁ+% = Ik, (e

where fi and 62 are simple statistics that can be calculated from
the posterior draws. The key assumption that underpins this
expression is that the posterior deviance is approximately nor-
mally distributed (see supplementary text 1 for a more detailed
derivation of this and other statistics). Lx can be evaluated for
arange of K, and the smallest Lx (corresponding to the largest
evidence) can be used as an indication of the most likely model.
Alternatively, these values can be transformed out of log space to
provide direct estimates of the evidence which, once normalised,
can be used to approximate the full posterior distribution of K:

exp(~3Ly)
Yrexp(—3 L)
This procedure is rarely carried out in practice, despite be-

ing recommended in the STRUCTURE software documentation
(Pritchard et al. 2009).

Pr(Mk | x) (5)
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Thermodynamic Integration

The TI estimator differs fundamentally from Lk in the sense
that it is not a heuristic estimator — it makes no simplifying
assumptions about the distribution of the likelihood. It also
differs from fzK in that it is well-behaved, having finite and
quantifiable variance. The approach centres around the ‘power
posterior’ (Friel and Pettitt 2008), defined as follows:

Pr(x |6, Mg)P Pr(0| M)

Pﬁ(glx'MK) H(X|‘B,M[() . (6)
This is nothing more than the ordinary posterior distribution
of 0, but with the likelihood raised to the power § (the value
u(x | B, Mk) is a normalising constant that ensures the distribu-
tion sums to 1). In the same way that we can design an MCMC
algorithm to draw from the posterior distribution of 8, we can
design a similar algorithm to draw from the power posterior dis-
tribution. Details of the MCMC steps are given in the appendix
for models both with and without admixture. The resulting

draws from the power posterior will be written Bﬁ,, where the
superscript B indicates the power used when generating the
draws. The TI methodology then proceeds in two simple steps.
First, we calculate the mean log-likelihood of the power poste-
rior draws:

R t
Dy = % Z::llog [Pr(x|951,/\/l1<)} ) 7)

(It is important to note that the notation eﬁ, refers to values
drawn from the power posterior (with power p); it does not
indicate that the values of 6 (or these likelihoods) are raised to
the power B). This step is repeated for a range of values f; for
i={1,...,r} spanning the interval [0, 1]. Second, we calculate
the area under the curve made by the values D g, using a suitable
numerical integration scheme, such as the trapezium rule:

r—1
Tx = Z %(Dﬁiﬂ + D.Bi)(:Bi+1 - Bi) - (8)
i=1

The value TK is the TI estimator of the model evidence. It can
be seen that Tk is straightforward to calculate, although it does
require us to perform multiple MCMCs to obtain a single esti-
mate of the evidence, making it computationally intensive. On
the other hand, the method has greater precision than some al-
ternatives that can be calculated faster. In our comparisons, this
trade-off was taken into account by using the same number of
MCMC iterations for all methods.

Results

Comparison against the exact model evidence

Our first objective was to measure the accuracy and precision
of different estimators of the model evidence against the exact
value, obtained by brute force (see appendix). The difficulty in
calculating the exact model evidence meant that this was only
possible for very small simulated data sets of n =10 diploid indi-
viduals at L =5 loci, generated from the same without-admixture
model implemented in the program STRUCTURE2.3.4. A total of
1000 simulated data sets were produced, with K ranging from 1
to 10 (100 simulations each). Each data set was then analysed us-
ing the program TRUEK1.0. This program is written in C++ and
was designed specifically to carry out the MCMC procedures
described in the appendix. The output of TRUEK1.0 includes

values of fig, L, and the TI estimator Tx (values of Ly were
compared extensively against the output of STRUCTURE2.3.4 to
ensure agreement). A total of 1000 iterations were obtained from
the posterior distribution, with a burn-in of 100 iterations and
thinning of 5 iterations. These values are smaller than typical
settings for an analysis using the program STRUCTURE2.3.4, the
reason being that TRUEK1.0 differs in the way it implements
the core algorithm, resulting in fewer iterations being needed
to ensure approximately independent draws from the posterior
(see supplementary text 2 for details). In spite of the apparently
small number of samples and burn-in iterations, an autocorre-
lation analysis indicated that this level of burn-in and thinning
was sufficient to ensure pseudo-independent draws from the
posterior. For the TI estimator the number of ‘rungs’ used (the
number of powers B;) was set to 50. For hig and L the analysis
was repeated 50 times to obtain a global mean and standard
error, thereby ensuring that the same computational effort was
expended for all methods.

Figure 1 shows the results of one such analysis, in which the
true number of demes was K=2. It can be seen that the STRUC-
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Figure 1 True and estimated values of the model evidence in
log space and in linear space. Error bars give 95% confidence
intervals around estimates.

TURE estimator L is negatively biased in this case, leading to
estimates of —2 xlog(evidence) that are smaller than the true
value. This bias is still present after transforming to linear space
and normalising results to sum to unity.

The accuracy and precision of the different estimators was
evaluated across all 1000 simulated data sets in the form of the
Mean Percentage Error (MPE) and the Mean Absolute Percent-
age Error (MAPE). The MPE measures the average percentage
difference between the true and estimated values, and hence
can be considered a measure of bias, while the MAPE measures
the average absolute percentage difference, and hence can be
considered a measure of precision (small values represent more
precise estimates). Results are given in Table 1 broken down by
the value of K used in the model (a more detailed breakdown
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can be found in supplementary table 3).

It can be seen that the average MAPE of the Lk estimator
across all simulations is 57.84%, while the MAPE of the TK esti-
mator is just 0.85% for the same computational effort. In other
words, given an estimate of the model evidence obtained using
Lk we can expect the true value to be 57.84% larger or smaller
than our estimate on average. The harmonic mean estimator is
intermediate between these values, differing from the true evi-
dence by 11.34% on average. Based on these results we would
expect estimates of the posterior distribution of K made using Lg
to be qualitatively different from the true posterior distribution.

Choosing the ‘best’ K

Although the results in Table 1 are suggestive of a weakness in
the Lg estimator, we are limited here to looking at small data sets
in which the exact model evidence can be calculated by brute
force. It is plausible based on these results that the bias in Lg
could be amplified in small data sets due to a lack of information,
and would cease to be a problem if more data were available.
There is also a question of whether it matters that Lk fails to
estimate the model evidence as long as the single ‘best” value of
K is correctly identified. For example, in Figure 1 all estimation
methods correctly identify that K = 2 is the most likely value,
even though our confidence in that result may be misplaced in
some cases.

Here we therefore use larger simulated data sets to address
the question of whether the TI method produces improvements
that would be of practical importance. To begin with, we com-
pare the ability of different methods to estimate the single ‘best’
value of K, irrespective of the logic behind the statistic. By using
simulated data sets, in which a known value of K is used when
generating the data, we can measure the proportion of times
that the true value is correctly identified. As well as comparing
the estimators TK, fzK and L, in which the smallest value of
the estimator indicates the most likely model, we also compare
Evanno’s Ak (Evanno et al. 2005), in which the largest value
indicates the point of maximum curvature of Lg, and the AIC,
BIC and DIC statistics, in which the smallest value indicates
the best fitting model. Values of the DIC are calculated using
the method of Spiegelhalter et al. (2002) (DICs) as well as the
method of Gelman et al. (2014) (DIC;). To ensure that our re-
sults are not driven by a lack of information, larger data sets of
n =100 diploid individuals at L =10 loci were generated from
the same without-admixture model used above. As before, 1000
simulated data sets were produced, with K ranging from 1 to
10 (100 simulations each). TRUEK1.0 was run with 200 burn-in
iterations, 1000 sampling iterations and thinning every 5 itera-
tions. As before, an autocorrelation analysis indicated that these
parameter values were sufficient to ensure pseudo-independent
draws from the posterior. For the TI estimator 50 rungs were
used, and for Lg and /g the analysis was repeated 50 times.

Table 2 gives the number of times that the correct value of K
was identified by each of the methods. As there are 100 simula-
tions for each K, these values are also equivalent to percentages.
It can be seen that the TI based method of choosing K provides
the most reliable results, with the majority of simulated data sets
being correctly identified over a wide range of K. Estimates of
K based on /1 k are less reliable, leading to incorrect conclusions
in a greater proportion of simulations, and estimates based on
Lk are even more unreliable, with a clear bias towards large
values of K. Evanno’s Ag shows the opposite trend, favouring
small values of K (although Ak can never predict K = 1). Of
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Table 2 Number (%) of times K correctly identified.
AIC BIC DICs DICq

K| Tx hx Lx Ax

1 (100 92 0 0 85 100 0 97
2 {100 91 0 100 97 100 0 88
3 |100 &4 2 73 98 99 0 87
4 | 100 64 15 59 97 77 0 80
5 | 100 66 21 47 100 26 0 89
6 9% 64 31 24 95 3 2 83
7 191 57 35 12 66 0 2 82
8 73 52 40 4 28 0 8 64
9 60 47 46 0 4 0 25 49
10| 89 91 88 0 0 0 93 40

Number of times K correctly identified by each method, broken
down by the value of K used when generating the data.

the model comparison statistics the DIC calculated using the
method of Gelman et al. (2014) (DIC;) appears to be the most
reliable, although this is still outperformed by TI. Surprisingly
the BIC, which has been found to give reliable results in other
mixture modelling applications (Steele and Raftery 2009; Fraley
and Raftery 1998), performs poorly here.

Returning to the question of whether the inaccuracy in fig
and Lk in Table 1 was driven by a lack of information, it can be
seen from Table 2 that even for reasonably large data sets the
bias and error in the /ix and L statistics can lead to qualitatively
different conclusions about K. Thus, the increased precision of
the TI approach is of practical as well as theoretical importance.

Comparing between different evolutionary models

As well as being useful for inferring K, the model evidence
provides a robust framework for comparing between different
evolutionary models. The analyses described so far have all
involved a model comparison of sorts, in the sense that each K
technically represents a different model M, but the evolution-
ary model (i.e. the without-admixture model) has been assumed
known. However the evolutionary model will often be of greater
interest; for example, a biologist might be less interested in the
exact number of subpopulations, but rather in the level of ge-
netic admixture between them. In such circumstances, K can be
thought of as indexing a series of models within a wider evolu-
tionary model, M. We can compare models at this wider level
by simply integrating K out as a nuisance factor:

Pr(x | M) = ;Pr(x | Mg)Pr(Mg) . )

If we assume an equal prior over K then this amounts to taking
the mean of the evidence for each value of K to arrive at the
overall evidence for M.

To explore this point, a single simulated data set of n =100
diploid individuals at L =5 loci (i.e. relatively weak informa-
tion per individual) was generated from the without-admixture
model with K = 5 demes. This data set was then analysed
under three competing models; the without-admixture model
(i.e. the correct model), the with-admixture model used by
STRUCTURE2.3.4 with admixture parameter « = 1.0, and the
with-admixture model used by STRUCTURE2.3.4 where « is in-
ferred as part of the MCMC (given a Uniform(0, 10) prior). All
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Table 1 Accuracy of estimation methods compared with the exact model evidence.

-2log(evidence) normalised evidence

K TK ],’\lK LK TK }:IK LK

1 0.00 (0.00) 0.00 (0.00) -4.59 (4.59) 0.00 (0.35) -16.34 (16.34) -93.60 (93.60)
2 0.00 (0.01) -0.19 (0.20) -7.18 (7.18) 0.02 (0.95) 9.89 (14.34) 70.76 (95.41)
3 0.00 (0.01) -0.23 (0.23) -7.17 (7.17) 0.00 (1.00) 14.30 (16.21) 38.13 (61.55)
4 0.00 (0.01) -0.19 (0.19) -7.02 (7.02) -0.07 (1.01) 7.36 (10.94) 1.92 (36.57)
5 0.00 (0.01) -0.15 (0.15) -6.99 (6.99) 0.06 (0.94) 1.53 (8.10) 0.20 (37.17)
6 0.00 (0.01) -0.12 (0.12) -7.01 (7.01) 0.00 (0.89) -2.62(7.72) 6.45 (41.13)
7 0.00 (0.01) -0.10 (0.10) -7.03 (7.03) 0.01 (0.88) -5.71 (8.35) 15.07 (45.34)
8 0.00 (0.01) -0.07 (0.08) -7.04 (7.04) -0.05 (0.86) -8.24 (9.67) 22.20 (50.90)
9 0.00 (0.01) -0.07 (0.07) -7.05 (7.05) 0.02 (0.79) -9.22 (10.31) 27.33 (56.03)
10 0.00 (0.01) -0.05 (0.06) -7.05 (7.05) -0.05 (0.83) -10.65 (11.46) 31.23 (60.69)
mean 0.00 (0.01) -0.12 (0.09) -6.81 (6.81) -0.01 (0.85) -1.97 (11.34) 11.97 (57.84)

Values show MPE (MAPE). Normalised values are obtained by first transforming estimates out of log space and then normalising to
sum to 1. Values of K here denote the value used in the inference step (i.e. the K assumed by the model), although multiple values of K
were used when generating data. A more detailed breakdown can be found in supplementary table 3.

three models were run using the program TRUEK1.0. In all
cases burn-in and thinning values were chosen based on an au-
tocorrelation analysis, leading to burn-in={200,500,5000} and
thinning={5, 10,100} for the three models respectively, and in
all cases 10,000 draws were obtained from the posterior distribu-
tion.

The results of this analysis are shown in Figure 2 for each
of the three evolutionary models. Looking first at the overall
evidence for each evolutionary model (Figure 2 E) we can see
that the without-admixture model obtains the highest overall ev-
idence, followed by the admixture model with « free to vary. We
can dig deeper into the latter model by looking at the posterior
distribution of a (Figure 2 D). Very small values of « are observed
for K={3,4,5}, which are the most likely values of K under this
model (as shown in Figure 2 C). When & =0 this model becomes
directly equivalent to the without-admixture model, and so the
small values of « here indicate that admixture is very weak, if it
is present at all (in fact we know that it is not). Finally, looking at
the posterior distribution of K in the without-admixture model
(Figure 2 A) we can see that K= {4, 5,6} are all plausible within
this model. Note that although the Structure estimator Lg esti-
mates the correct value of K=>5 under the without-admixture
model, in general neither Ly nor fig can be relied upon to give
reliable results in this example. Thus, using current methods it
is not clear whether admixture is small or zero, and even then
the value of K may be estimated incorrectly, whereas using TI
we can make a direct comparison between evolutionary models
and find convincing evidence for the correct model.

Discussion

Model based clustering methods have proved extremely useful
within population genetics. The probabilistic allocation of indi-
viduals to demes employed by programs such as STRUCTURE
has made it possible to tease apart population subdivision within
a wide range of organisms, including humans (Rosenberg et al.
2002; Li et al. 2008; Tishkoff et al. 2009), human pathogens (Falush
et al. 2003b), plants (Garris et al. 2005) and animals (Parker ef al.

2004). However, these posterior assignments are always pro-
duced conditional on the known value of K. Choosing an ap-
propriate value of K is statistically much more challenging than
estimating population assignments, as it involves a comparison
between models rather than simple parameter estimation within
a given model. A standard way of comparing models within
a Bayesian setting is through the model evidence — defined as
the likelihood of the model integrated over all free parameters.
Indeed, the STRUCTURE estimator Lg was originally designed
as an approximation to the model evidence, although we show
above that this approximation can be quite poor in some cases.
Thermodynamic integration offers a way out of this problem,
providing estimates of the model evidence that are both accurate
and precise (Table 1), and in turn leading to estimates of K that
are more reliable than other methods (Table 2).

Although the results above are promising, when thinking
about population structure it is important that we do not place
too much emphasis on any single value of K. The simple mod-
els used by programs such as STRUCTURE and TRUEK1.0 are
nothing more than highly idealised cartoons of real life, and so
we cannot expect the results of model-based inference to be a
perfect reflection of true population structure (see discussion
in Waples and Gaggiotti (2006)). Thus, while TI can help ensure
that our results are statistically valid conditional on a particular
evolutionary model, it is still possible to generate results that are
biologically meaningless if the evolutionary model is not appro-
priate for the data. Similarly — in spite of the results in Table 2 -
we do not advocate using the model evidence (estimated by TI
or any other method) as a way of choosing the single ‘best’ value
of K. The chief advantage of the evidence in this context is that
it can be used to obtain the complete posterior distribution of K,
which is far more informative than a single point estimate. Al-
though one value of K may be most likely a posteriori, in general
a range of values will be plausible, and we should entertain all
of these possibilities when drawing conclusions. As a concrete
example, even for those simulations in Table 2 where TI failed
to estimate the correct K, the true value of K was within the 95%
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A) distribution of K under without-admixture model
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Figure 2 Analysis of simulated data under three evolutionary models. A), B), C) evidence for K under all three evolutionary models
in log space and linear space after normalisation, D) posterior distribution of « under the variable « admixture model (truncated
at & = 2.0, although distributions extend to & = 10.0), E) overall evidence for each evolutionary model, obtained by summing the
evidence for K={1,...,10} given an equal Pr(K) =0.1 prior for each model.

credible interval 94.5% of the time.

Looking at the wider issue of which evolutionary model is
most appropriate for our data, once again the model evidence
can be an extremely useful tool here. By treating K as a nuisance
factor, choosing to integrate it out of the problem rather than
focussing on it, we can begin to compare models at this wider
level. In doing so we guard against the temptation to apply
a single evolutionary model to all data types, irrespective of

whether the model is in fact appropriate for the data at hand.

This is particularly important when our focus is on inferring the
Ppresence or absence of admixture between subpopulations, as
the particular form of the model may play a large role in whether
or not we detect a signal of admixture.

In either case — whether we are looking at the distribution
of K within an evolutionary model, or integrating over K as a
nuisance factor — the ability to obtain reliable estimates of the
model evidence is a prerequisite, and TI takes us one more step
in this direction.

The TRUEK1.0 program and documentation can be downloaded
from www.bobverity.com/TrueK
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Appendix

MCMC under the without-admixture model

In order to carry out the TI estimation approach we need to
be able to draw from the power posterior distribution. This is
straightforward in the case of genetic mixtures, and requires
nothing more than a simple extension of existing MCMC al-
gorithms. In the following we strive to bring our notation in
line with previous studies wherever possible, but the complex-
ities of certain likelihood functions also motivate us to define
some new notation (see Table 3). It is worth noting, for ex-
ample, that we will write individual genotypes in simple list
form (as in Pritchard et al. (2000)) using the notation x;; for the
I locus of the i individual, but also in allelic partition form
(as in Huelsenbeck et al. (2011)) using the notation s;;. For ex-
ample, a diploid individual homozygous for the third allele
at a particular locus can be written x;; = (3, 3) or equivalently
s;1=1{0,0,2,0,0}, where there are five possible alleles to choose
from in this example. Conditioning on the model Mk is also im-
plicit throughout this section. In the basic algorithm described
by Pritchard et al. (2000) there are two free parameters to keep
track of — the allocation of individuals to demes, denoted z here,
and the allele frequencies in all K demes, denoted p. Under
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Table 3 Definitions of parameters used in this study.

parameter description

K No. of populations

L No. of loci

Ji No. of unique alleles observed at locus !

n No. of individuals sampled

X Allele information for all individuals

X; Allele information for individual i

Xj] Allele information for individual i at locus [

Xila Allelic type of the ath gene copy in individual i at locus !/
[Xita € (1, 1))

Sil Allelic partition of alleles in individual i at locus /. For example, the genotype x;; = (3,3) can be
written s;; ={0,0,2,0,0} in allelic partition form, where in this example J; =5

Silj No. of copies of allele j at locus [ in individual

St No. of copies of any allele at locus [ in individual i

Yk Allelic partition at all loci of all gene copies assigned to population k

Yki Allelic partition at locus [ of all gene copies assigned to population k

Ykij No. of copies of allele j at locus [ assigned to population k

Ykl No. of copies of any allele at locus I assigned to population k

p Allele frequencies in all populations at all loci

Zila Assignment of gene copy a at locus [ in individual i to a population [z;, € (1,...,K)]

Zi Assignment of individual i to a population. When referring to z; it is implied that z;;, is
identical for all (I, 2), meaning all gene copies within this individual are assigned together

z Assignment of all gene copies in all individuals

qi Admixture proportions in individual i

v Partition of gene copies to populations in all individuals

v; Partition of gene copies to populations in individual

Vik No. of gene copies in individual i assigned to population k

v; No. of gene copies in individual i assigned to any population

Ajj Dirichlet parameter for frequency of allele j at locus [

Ao Sum of the Dirichlet parameters for locus I [A;g= Z]]I: 1951

o Dirichlet parameter on admixture proportions

c(-D) Evaluation of a parameter while excluding information for individual i (c could be any of the
parameters listed above)

c(-ilp) Evaluation of a parameter while excluding information for gene copy a at locus [ in individual
i (c could be any of the parameters listed above)

r() Gamma function

Estimating K in Genetic Mixture Models
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the assumptions of Hardy-Weinberg and linkage equilibrium it
is possible to write down the probability of the observed data
given the known values of these free parameters, Pr(x | z, p).
Combining this likelihood with a Dirichlet(Ay,...,A},) prior on
the allele frequencies at each locus we can derive the conditional
posterior distribution of the allele frequencies given the known
group allocation, Pr(p | x, z). Alternatively, multiplying by an
equal 1/K prior on the allocation of individuals to demes we can
derive the conditional posterior distribution of the group alloca-
tion given the known allele frequencies, Pr(z | x, p). Algorithm
1 of Pritchard et al. (2000) works by alternately sampling from
each of these conditional distributions, resulting (after sufficient
burn-in) in a series of draws from the full posterior distribution.
More often than not we are interested in the posterior alloca-
tion, in which case the posterior allele frequencies can simply be
ignored.

However, as stated in the original derivation of Rannala and
Mountain (1997) and reiterated by Huelsenbeck et al. (2011), it
is possible to integrate over the allele frequencies analytically,
thereby greatly reducing the dimensionality of the problem. The
new likelihood, conditional only on the group allocation, can be
written

K L (A I T (Agj + yiaj)
, _ 10) ] IZ . @10
r(x | z) IEHF)\IOJFVH)H (A7) a0

11=1

This expression is extremely useful to us, as it means the likeli-
hood can be calculated without having to take into account an
explicit representation of the unknown allele frequencies — our
uncertainty in the allele frequencies has already been integrated
out of the problem.

Rather than using (10) directly, Huelsenbeck et al. (2011) used
this analytical solution to define an efficient MCMC algorithm.
Dividing the probability of the data x by the probability of the
data with the ith observation removed, denoted x('i), we obtain
the conditional probability of observation i given all others. This
can be written

i r(/\zj + y,((;]’:) +si17)
T(Aj+ y,((;;))

L T(Mg +y( ")
r(xl |Z1 =k, Yk = H (i )kl
1=1 T(Aig +yyy " +sir) j=
(1

which is equivalent to formula 4 in Huelsenbeck et al. (2011),
although derived via a slightly different route. Computing (11)
for all k and normalising we obtain the conditional posterior
probability that individual i belongs to deme k:

1 A )
Pr(zi=k|x,y{") = KPrla ==k vy 3_1-) - (12
Zu 1 11<Pr(xl-|z,-=u,yu )

By repeatedly drawing new group allocations for all individ-
uals from (12) we obtain a series of draws from the posterior
distribution without ever needing to invoke the unknown al-
lele frequencies. Thus, the two-step algorithm of Pritchard et
al. Pritchard ef al. (2000) can be reduced to the more efficient
one-step algorithm of Huelsenbeck et al. (2011).

We can make use of the same gains in efficiency when de-
signing an MCMC algorithm for the purposes of TI. In fact, the
only difference when carrying out TI is that the likelihood in
(10) should be raised to the power f, allowing us to draw from
the power posterior. On making this change we find that the
conditional posterior distribution in (11) should also be raised to
the power S (this follows from the fact that (11) can be derived
as a ratio of two ordinary likelihoods). Thus, we arrive at a new
expression for the probability of individual i being assigned to
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group k:

1 )
Pg(zi=k|x;, v o= KPrxi| 5=k e zﬁ) . (13)

ho kPr(xi | zi=u,y, )P

By repeatedly sampling new group allocations for all individu-
als from (13) we obtain a series of allocation vectors drawn from
the power posterior (notice that when p=0 we are essentially
drawing from the prior). The likelihood of each vector can then
be computed using (10), at which point we have everything we

need to calculate ﬁﬁ as in (7). Carrying out this entire procedure

for a range of values 8; we obtain a series of points ﬁl;,. which

can be used to calculate the TI estimator TK, as in (8). The
complete TI algorithm for the model without admixture can be
defined as follows:

Algorithm 1 (without admixture)

1. For r distinct values of B; spanning the interval [0, 1]

(a) Perform MCMC by repeatedly drawing from (13) for
alli € {1,...,n}. This results (after discarding burn-in
and thinning) in t approximately independent draws
from the power posterior group allocation.

(b) Calculate the likelihood of each group allocation using
(10).
(c) Calculate ﬁﬁ‘ as the average log-likelihood, as in (7).

2. Use the values f)ﬁ‘. to calculate Tk in a suitable numerical
integration scheme, for example using the trapezium rule
as in (8).

MCMC under the admixture model

The model with admixture described by Pritchard et al. (2000)
is slightly complicated by the fact that each gene copy is free to
originate from a different deme. However, we can still apply the
same basic logic described above to arrive at a simple one-step
algorithm for sampling from the power posterior. First we note
that the probability of the data conditional on the known group
allocation is identical in this model to the probability in the
without-admixture model, and is given by (10). This is true be-
cause we make the same assumption of gene copies being drawn
independently from demes, and we apply the same Dirichlet
priors on allele frequencies, meaning the final likelihood does
not change. The difference in the admixture model is that the
group allocation takes place at the level of the gene copy, rather
than at the level of the individual, and so the values z;;, are no
longer restricted to being the same for all (I, a). This is reflected
in the yy values used to keep track of the gene copies allocated
to a particular deme, which are now free to contain only a partial
contribution of the genome of each individual.

Following the same approach as for the without-admixture
model, we can obtain the conditional probability of gene copy
x;1, by dividing through the probability of the complete data
set by the probability of the data set with this element removed
(denoted x('il”)). Most of the terms in the resulting expression
cancel out, leading to the following simple result:

(-ila)
-i My + Y
Pr(xi, | zita =k, Y;(< ”a)) = (w . (14)
Ao+ Yy
As before, this likelihood should be combined with the prior
probability of assignment to each deme. If the admixture propor-
tions for individual i are given by the vector q; then, under the


https://doi.org/10.1101/022988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/022988; this version posted July 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

assumptions of the model described by Pritchard et al. (2000),
the number of gene copies in this individual that are allocated
to each deme can be considered a multinomial draw from q;. In-
tegrating over a Dirichlet(«, , . .., a) prior on these frequencies
we obtain

I'(Ka)

< T(a + i)
Pr(z|v,a) = .
(z]v.a) 1131 I'(Ka +v;)

T'(«)

=

(15)
k

II
—_

We can use this expression to write down the prior probability
of a single gene copy being allocated to deme k:

) (—ilu)
Pr(zj, =k | v,(-lla>,vc) = (W) . (16)
Ka + vf ila)

Bringing together the prior with the likelihood raised to the
power B we obtain the following expression for the power pos-
terior probability of an individual gene copy being allocated to
deme k:
Pg(ziia=k| xizn,yl(c_il”),Vf_”ﬂ),“) =
Pr(zj, =k | Vz(_ﬂa)r @)Pr(xi, | ziia =k, Y;((_ilﬂ))ﬁ
K i i
Y Pr(zig=u| Vf 1), 0)Pr(xig | Zita =11, Y;(( 1))

u=1

. (17)

By repeatedly sampling new allocations for all gene copies at
all loci within all individuals (i.e. all z;;,) we obtain a series
of draws from the power posterior group allocation under the
admixture model. Again, this algorithm is made more efficient
by the fact that the unknown allele frequencies in all populations
and the unknown admixture proportions in all individuals have
been integrated out of the problem at an early stage.

A common extension to the basic admixture model is to leave
« as a free parameter, updating it as part of the MCMC. This can
be accommodated within the TI framework by using a simple
Metropolis-Hastings step. If &’ is a new value of «, drawn from
some suitable proposal distribution g(a’ | &), then the acceptance
probability under Metropolis-Hastings is given by

N[ Przlva)g(ala)
Pr(e > a') = min <1'Pr(z|v,zx)g(zx/a)> . (18)

Notice that the core probability that drives this expression is the
prior probability of the allocation z, which is given in (15). The
actual probability of the data —i.e. the expression that is raised
to the power 8 in the power posterior calculation — does not
feature here. Thus, we can use the same Metropolis-Hastings
step to update « irrespective of the value of .

The complete TI algorithm for the model with admixture can
be defined as follows:

Algorithm 2 (with admixture)

1. For r distinct values of §; spanning the interval [0, 1]

(a) Perform MCMC by repeatedly drawing from (17) for
all gene copies at all loci in all individuals (all 4,1, 7).
If « is a free parameter then update this value using a
Metropolis-Hastings step, as in (18). This results (after
discarding burn-in and thinning) in t approximately
independent draws from the power posterior group
allocation.

(b) Calculate the likelihood of each group allocation using
(10).

(c) Calculate f)/;‘. as the average log-likelihood, as in (7).

2. Use all the values ﬁﬁi to calculate TK in a suitable numerical
integration scheme, for example using the trapezium rule
as in (8).

Finally, we note that the expressions derived in this section can
be used to obtain the exact model evidence by brute force in
restricted settings. For example, focussing on the model without
admixture, we could sum over the likelihood of all possible
group allocations to obtain the true model evidence:

Pr(x) = ) Pr(x|z)Pr(z), (19)

where Pr(x | z) is given by (10), and for this model Pr(z) =1/K"
for all group allocations. Although this is possible in theory, the
sheer number of allocations that we are required to sum over
makes this method impractical in all but the simplest situations.
Even if we exploit redundancies in the labelling of different
allocations we are still restricted to values of n and K not much
larger than 10. This method is therefore only really useful as a
way of checking the accuracy of other estimation methods.
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