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Abstract

Cancer arises from accumulation of somatic mutations and accompanying evo-

lutionary selection for growth advantage. During the evolutionary process, an

ancestor clone branches into multiple clones, yielding intratumor heterogeneity.

However, principles underlying intratumor heterogeneity have been poorly un-

derstood. Here, to explore the principles, we built a cellular automaton model,

termed the BEP model, which can reproduce the branching cancer evolution

in silico. We then extensively searched for conditions leading to high intratu-

mor heterogeneity by performing simulations with various parameter settings

on a supercomputer. Our result suggests that multiple driver genes of moderate

strength can shape subclonal structures by positive natural selection. Moreover,

we found that high mutation rate and a stem cell hierarchy can contribute to

extremely high intratumor heterogeneity, which is characterized by fractal pat-
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terns, through neutral evolution. Collectively, This study identified the possible

principles underlying intratumor heterogeneity, which provide novel insights into

the origin of cancer robustness and evolvability.

Introduction

Cancer is a heterogeneous disease. Its molecular characteristics differ among

patients, who therefore require personalized therapies. In addition to this inter-

tumor heterogeneity, another level of heterogeneity, called intratumor hetero-

geneity, exists; within even in a single tumor, genetically distinct clones co-exist.

Understanding intratumor heterogeneity is clinically important, since high in-

tratumor heterogeneity presumably leads to therapy resistance, increasing a

probability that a tumor harbors resistant clones. Intratumor heterogeneity

can be shaped by branched evolution of the cancer genome [29, 51].

During evolution of the cancer genome. multiple driver mutations are accu-

mulated, which give a selective advantage to clones through either increasing its

survival or reproduction. We also observe many passenger mutations, which oc-

cur in the same genome with driver mutations, but have no effect on the fitness

of clones. While driver mutations tend to cause clonal expansions, passenger

mutations may be associated with a clonal expansion just by ‘hitchhiking’ driver

mutations [43]. Classically, it has been assumed that multiple driver mutations

are acquired in some specified order and cancer evolution has been viewed as a

linear process where successive clonal expansions are caused by acquisition of

each driver mutation.

On the other hand, many studies have also observed extensive intratumor

heterogeneity, which cannot be explained by such a linear model. Recently,

multiregional sequencing, which profiles cancer genomes obtained from geo-

graphically separated multiple regions in a single tumor, has revealed extensive

inratumor heterogeneity for several types of solid tumors, and established that

cancer evolution is a highly branched process [50, 16, 15, 44, 52, 8]. From mul-
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tiregional sequencing data, a new categorization of mutations, which is different

from the above-described drive/passenger categorization, has emerged: fonder

and progressor mutations. Founder mutations are observed in all regions, while

progressor mutations are not shared by all regions and shapes intratumor het-

erogeneity. For an evolutionary view, the two types of mutations are seen as

follow. early in the evolution, founder mutations are accumulated to establish

an single ancestor clone. the ancestor clone is then branched into multiple sub-

clones while accumulating progressor mutations. Depending on studies, founder

and progressor mutations are referred as to trunk and branch mutations, by po-

sitioning them on evolutionary trees. Also, multiregional sequencing studies

suggest that the degree of intratumor heterogeneity is associated with the ma-

lignancy of cancer [52]; however, further studies are necessary to clarify this

point.

Mathematical modeling have a long history in cancer research and is a pow-

erful tool for studying cancer evolution [4]. For example, cancer evolution has

been analytically studied as Moran process, Wright-Fisher process and branch-

ing process[11, 20, 36, 7, 10, 18, 3, 34]. However, those analytical approaches

have limitations for build a realistic biological model: e.g., the limited numbers

of states in branched evolution and assumption of constant population size. On

the other hand, although analytical results are generally unavailable, a cellular

automaton model (or referred as to a agent-based model) has the advantage that

evolutionary rules are explicitly and flexibly modeled [12]. To date, various sim-

ulation studies employing cellular automaton models succeeded in reproducing

intratumor heterogeneity [17, 40, 13, 28, 41, 42]. However, to our best knowl-

edge, there exists no model that reproduces the recently emerging view of highly

branched cancer evolution, and evolutionary principles underlying intratumor

heterogeneity have not been fully explored.

In this study, we propose a new mathematical model of highly branched

cancer evolution. Our branching evolutionary process (BEP) model is a cellu-

lar automaton model where an automaton represents a biological cell having
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dozens of mutable genes. A state in branched evolution is defined by the com-

bination of mutated genes, which can produce the virtually infinite number of

branched states. Also, some of the genes are assumed as driver genes whose mu-

tation confer growth advantage to the cell, and simulation results are compatible

with the driver/passenger mutation paradigm. Moreover, running thousands of

simulations with different parameter settings on our supercomputer [32], we ex-

tensively searched for conditions producing high intratumor heterogeneity. Our

BEP simulation successfully identified several possible evolutionary principles

underlying intratumor heterogeneity.

Result

Summary of our methodology

To reproduce genomic intratumor heterogeneity in silico, we modeled branched

evolution as the BEP model using a cellular automaton model (Figure 1). We

assumed that each cell in a tumor acts as a cellular automaton. Each cell

contains n genes, of which d genes are driver genes. At each time step, each cell

dies with a probability q and divides into two daughter cells with a probability

p. At each cell division, each gene is mutated with a probability r. A mutation

in a driver gene is referred to as a diver mutation and, if a cell obtains one driver

mutation, the division probability is increased by 10f -fold from the next time

step, where the parameter f represents the strength of the driver genes. We also

extended the model and analyzed effects of a stem cell hierarchy as described

later.

Starting from c0 normal cells, having no mutation, we grew the tumor until

the number of cells in the tumor (hereafter referred as to population size) reached

cmax. In our simulation, a set of mutated genes in a cell is referred to as a

genotype, while a set of cells that have an identical genotype is referred to as

a clone. To visualize tumor growth, we spread the dividing cells over a two-

dimensional space and colored each clone in the tumor so that color similarity
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represents similarity between the genotypes of clones.

To assess intratumor heterogeneity, we randomly sampled m cells from the

simulated tumor and visualized their genome as a mutation profile matrix. As a

quantitative measure of intratumor heterogeneity, we calculated entropy statis-

tic from a distance matrix among genotypes of the m cells, utilizing singular

value decomposition [33]. We termed the statistic population entropy, which is

represented by ε. Several existing measures are available for the same purpose

[17, 40, 42]; however, they treat different clones equally. Since each pair of

clones can be differently similar in our model, we employed a new measure that

can consider genotype similarity among clones. In addition to ε, we calculated

the number of founder mutations ρ to characterize mutation profiles. We also

obtained a number of other statistics, including the average count of mutation

per cell µ, population fitness λ, and the time step τ at which the tumor size

reaches cmax.

To search for principles underlying intratumor heterogeneity, we performed

simulations with various parameter settings and examined parameter depen-

dence of the statistics. In this study, we examined 2610 parameter settings in

total. For each parameter settings, we repeated the simulation 20 times and

calculated the average of each statistic. The simulations were performed in par-

allel on our supercomputer system [32], which enabled an extensive parameter

search in a practical time. On average, each simulation took about 2.75 CPU

core hours. In total, our study needed 2.75 × 2610 × 20 =143550 CPU core

hours ≈ 16.4 CPU core years. However, by parallelizing thousands of simula-

tions, they finished within a couple of days. Results from the simulations can

be interactively explored at a supplementary website: http://bep.hgc.jp/.

Effects of driver gene size and strength

From the results of the extensive parameter search, we found several conditions

that yield high intratumor heterogeneity. First, hypothesizing that differences

in the number and strength of driver genes contribute to different degrees of
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intratumor heterogeneity among cancer types, we focused on parameters d and

f , which control driver gene size and strength, respectively. A heat map of ε

in Figure 2A (hereafter, called a d-f heat map) showed that a multiple number

of driver genes of moderate strength (e.g., 8 ≤ d ≤ 10, 0.4 ≤ f ≤ 0.5) lead

to high intratumor heterogeneity. On the other hand, when cells harbor any

strong driver gene, i.e., f is high, intratumor heterogeneity is low for any d.

These observations can be interpreted by focusing on different modes of selective

sweeps, which are phenomenons of positive natural selection driving alleles to

fixation. If a cell has a strong driver gene, a clone that acquires the driver

mutation rapidly dominates in the population, yielding a clonal tumor (Figure

3). In contrast, if cells harbor multiple driver genes of moderate strength,

cells gradually increase their growth rate, which provides cells with chances to

acquire different combinations of driver mutations and accompanying passenger

mutations (Figure 4). These two different modes of selective sweeps are hereafter

referred to as the clonal and subclonal selective sweep, respectively, and the

heterogeneity generated by subclonal selective sweep is referred to as selective

sweep-derived heterogeneity. Note that when cells with small d or f cannot

accumulate driver mutations necessary for clonal expansion, the ‘almost normal’

cells proliferate until population size reaches at cmax. This case is marked by

a lack of founder mutations, low population fitness and longer growth time, as

shown by d-f heat maps of ρ, λ, and τ (Figure 2B) .

Effects of mutation rate

It is also natural to assume a high mutation rate as a cause of intratumor hetero-

geneity. In addition to a low mutation rate r = 0.0001, which is a setting used

for the above-mentioned analysis, we tested increased mutation rates, r = 0.001

and r = 0.01; as expected, we found that an increase in r leads to a marked

increase in ε on the average of the d-f space (Figure 5A). Additionally, we found

that dependence of ε on d and f changes with increasing r; the parameter de-

pendency observed when r = 0.0001 appears to vanish when r = 0.001. On the

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2015. ; https://doi.org/10.1101/022806doi: bioRxiv preprint 

https://doi.org/10.1101/022806


other hand, when r is increased to 0.01, a different parameter dependency ap-

pears, where ε is relatively high in areas with low d or low f . Moreover, cluster

heat maps of mutation profile matrices demonstrated that cell-wise dendrograms

tended to show fractal-like patterns harboring self-similarity, as r increased (Fig-

ure 6C). In fact, we calculated the rate of cell-wise dendrograms having such

self-similarity (hereafter represented by θ) for each parameter setting, and found

that θ is almost 1 when r = 0.01 (Figure 5B). We termed intratumor hetero-

geneity observed in such cases fractal heterogeneity [27]. Close inspection of

mutation profile matrix heat maps suggested that the fractal heterogeneity was

caused by neutral evolution [24]; that is, numerous neutral mutations that do

not affect growth rate were produced by hypermutation and diverse subclones

harboring different neutral mutations underwent genetic drift (Figure 7). Note

that, depending on d and f , we observed substantial variations of fractal het-

erogeneity: e.g., some have large blocks of neutral mutations in the mutation

profile (e.g, Figure 6C iii d=6, f=0.6 ), but others do not (e.g, Figure 6C v d=2,

f=1.3). The number of funder mutations is also dependent on the parameters as

shown by the d-f heat maps of ρ (Figure 6B and the supplementary web site).

Effects of a stem cell hierarchy

Over the last decade, many studies accumulated evidence that cancer cells have

a stem cell hierarchy, similarly to normal cells [30]. By definition, the stem cell

hierarchy generates intratumor heterogeneity in the functional and phenotypic

contexts, while this study focused on intratumor heterogeneity in the genomic

context. The cancer stem cell concept is also well studied by mathematical

modeling [35, 1, 49, 47, 26]. Among them, several studies have suggested a

stem cell hierarchy as a mechanism generating genomic intratumor heterogene-

ity [37, 40]. Inspired by these studies, we extended the BEP model so that it

harbors a simple stem cell hierarchy, and examined its effect on genomic intra-

tumor heterogeneity (Figure 8). The extended BEP model assumes two types

of cells: stem cells and differentiated cells. Stem cells divide symmetrically and
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asymmetrically, and the rate of symmetric division is specified by parameter s.

Differentiated cells, which are produced by asymmetric division, have a shorter

life span than stem cells. Namely, the death probability of differentiated cells

qd is larger than that of stem cells q0. Note that when s =1, the extended

model does not have a stem cell hierarchy and becomes identical to the model

employed so far.

We evaluated how a decrease in s (i.e., enhancement of the stem cell hier-

archy) affects ε and θ, as evaluated for mutation rate r (Figure 9). We found

that the dependency of ε on d and f varies with decreasing s. With s = 0.01, A

fraction of the d-f parameter space starts to increase ε and, with s = 0.01, the

parameter space is divided into two distinct areas with high and low ε (Figure

10A). In the large area associated with high d and high f , ε scored low, which

was caused by clonal or subclonal selective sweeps. On the other hand, the

smaller area associated with low d and low f , ε scored distinctively high, and

the d-f heat map of θ suggests that this was derived from fractal heterogeneity.

Mutation profiles also show that the parameter area generated heterogenous tu-

mors similar to those generated by the models with high mutation rates (Figure

10C). However, if d or f is small, the cell populations could not attain high

growth rate enough to reach the size limitation cmax before simulation stopped.

Collectively, our data demonstrated that, dependent on d and f , the model with

a stem cell hierarchy could generate fractal heterogeneity.

Disscussion

Here, by simulating branched cancer evoution, we identified three important

factors that could be critical for generation of intratumor heterogeneity: 1)

the number and strength of driver genes; 2) mutation rate; and 3) a stem

cell hierarchy. First, our BEP simulation demonstrated that the number and

strength of driver genes are important factors controlling two modes of selec-

tive sweeps: clonal and subclonal selective sweeps. If a cell obtains any strong
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driver mutations, a clone derived from the cell rapidly becomes dominant in the

population leading to a clonal tumor. On the other hand, if a cell harbors mul-

tiple driver genes of moderate strength, the cell gradually accumulates multiple

combinations of mutations and generates selective sweep-derived heterogeneity.

Our BEP simulation also showed that a high mutation rate could contribute

to extremely high intratumor heterogeneity characterized by fractal patterns of

cluster dendrograms; therefore, we termed it fractal heterogeneity. Finally, we

extended the BEP model to find that fractal heterogeneity can also be generated

by a stem cell hierarchy.

It is a well established fact that cancer genomes accumulate multiple driver

mutations during carcinogenesis [19, 51]. The necessity of multiple driver mu-

tations for carcinogenesis could delay development of cancer; it acts as a tumor

suppressive mechanism in multicellular organisms. Intriguingly, it has been re-

ported that a stem cell hierarchy could also play an important role in suppress-

ing the development of cancer [31]. Simulations assuming a stem cell hierarchy

also required more time steps than those not assuming a stem cell hierarchy,

especially for parameter settings generating heterogeneous tumors (see the sup-

plementary web site). Taken together with these facts, our observation suggests

that, ironically, intratumor heterogeneity is an inevitable consequence of the

implementation of these tumor suppressive mechanisms. In other words, there

is a trade-off relationship between intratumor heterogeneity and these tumor

suppressive mechanisms.

Acceleration of the mutation rate is a hallmark of cancer [19, 51]; as intu-

itively expected, our BEP simulation showed that the mutation rate is strongly

associated with intratumor heterogeneity. Notably, we found that an increase

in the mutation rate leads to extremely high intratumor heterogeneity, which

demonstrates a fractal structure. Fractal heterogeneity is generated by neutral

evolution; numerous subclones are generated by accumulating neutral muta-

tions and undergo genetic drift. This is in contrast to selective sweep-derived

heterogeneity, where a limited number of subclones are generated by positive
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natural selection. We found that a stem cell hierarchy can similarly produce the

fractal heterogeneity. Although further studies are needed to understand why

a stem cell hierarchy can generate fractal heterogeneity, one possibility is that

the decrease in population size accelerates genetic drift, which is as the founder

effect [6, 40].

Our analysis of parameter dependence unveiled transitions between different

phases of cancer evolutionary dynamics. For example, an increase of r drasti-

cally rises ε and θ, which represents a transition from clonal/subclonal selective

sweep to neutral evolution generating fractal heterogeneity (Figure 5). A d-f

heat map of ε with s = 0.01 also shows a clear boundary between the two

distinct phases (Figure 10A). Intriguingly, it has been reported that complex

systems often undergo such drastic phase transitions as observed in our data.

Langton found that, while changing a system parameter, cellular automata in-

terchange between highly ordered and highly disordered dynamics, and termed

their boundary the edge of chaos [25]. Kauffman studied mathematical models

of evolving systems and proposed that the rate of evolution is maximized near

the edge of chaos [23]. In the BEP model, the clear phase boundary in the d-f

heat map of ε with s = 0.01 (Figure 10A) could be compared to the edge of

chaos. Taken together, it is tempting to hypothesize that cancer is also evolving

at the edge of chaos, which underlies its extraordinary evolvability.

As stated in the introduction, recent multiregional genomic studies have

revealed highly branched evolution in a number of solid tumors; renal clear

cell carcinoma and low-grade glioma tend to have subclonal driver mutations,

which are often located in different positions of known driver genes [16, 15, 44].

Although this observation may support selective sweep-derived heterogeneity,

most of the terminal branches in the evolutionary trees lack clear subclonal

driver mutations. It has been also reported that pancreatic tumors harbor

established driver mutations only as founder mutations, although many pro-

gressor mutations accumulate before metastasis occurs [50]. Recently, multi-

regional sequencing of non-small cell lung cancer is reported; lung cancer ap-
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peared to harbor founder mutations only in founder mutation [52, 8]. Similarly,

we performed multiregional sequencing of colorectal cancers to find that col-

orectal cancer evolution demonstrates highly branched patterns without clear

subclonal driver mutations. Moreover, when a parameter set leading to neutral

evolution is used, in silico multiregional sequencing of a simulated tumor from

the BEP model well reproduced the experimental result (Uchi et al. in submis-

sion). Another recent multiregional study of colorectal cancer also showed an

absence of selective sweeps [39]. From these observations, we hypothesize that

branched cancer evolution is mainly drived by neutral evolution and intratu-

mor heterogeneity is essentially fractal. Fractal heterogeneity also appeared to

be consistent with emerging evidence that resistance to some targeted cancer

drugs may result from the outgrowth of preexisting low frequency cancer cell

populations [9]. If a tumor has fractal heterogeneity, numerous subclones with

different neutral mutations would expand a repertoire of potentially resistant

clones in the presence of therapeutic selection. This point is clinically important

and should be addressed in detail in future studies.

In this study, we employed a cellular automaton model to simulate branched

cancer evolution. Although there have exist many excellent cellular automaton

models models that reproduce various sides of humor biology like microenvi-

ronmental interaction and cellular movement [22, 21, 46, 14, 2, 45], we stuck to

make the BEP model as simple as possible, aiming to explore principles behind

branched evolution. The simplification of the model is necessary to suppress the

curse of dimensionality in the parameter dependence analysis on our supercom-

puter, which successfully provided us insights into the principles. However, our

analysis is far from covering the whole of the parameter space; more fine-grained

parameter analyses are needed to obtain a complete phase diagram of the evo-

lutionary dynamics. Another limitation of this study should also be noted: we

set some of the parameter values to different orders of magnitude from realistic

values. For example, we set genome size n = 50, but the human genome has

2× 104 genes and 3× 109 bases. Corresponding to the smaller number of genes,
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we also use high mutation rate rate (r = 10−4–10−2), compared to that assumed

in previous works [3, 53, 5]. We simulated tumor growth until the population

size reached cmax = 106; however, the actual tumor size is estimated from 109 to

1010. Memory limitation forced us to use these unrealistic parameter settings:

because even a model with n = 50 can produce the virtually infinite number

of the branched states, even keeping the branched stets of millions of cell needs

several gigabytes of memory in our current implementation. To overcome these

problems, better implementation of the BEP model or analytical solution of the

BEP model are awaited.

Moreover, although we believe that our simple model catches the essence of

branched cancer evolution, many points should be improved to to obtain a more

realistic model. For example, although we assumed that each driver mutations

has equal and independent effects on growth rate, the effects should be different

genes, epistatic gene interactions should exist, and some of the driver muta-

tions should affect death rate. It is also probable that the parameters could

change in the spatial and temporal scales of tumor evolution: the mutation rate

would be elevated after caretaker genes are mutated and genomic instability is

incurred. Assuming these conditions, we propose that a tumor first undergoes

clonal/subclonal selective sweep, and later expands heterogeneously by neutral

evolution. There would also exist interactions between cells and microenviron-

ments; a mutation conferring a growth advantage in a specific microenvironment

could be a subclonal driver mutation, further enhancing intratumor heterogene-

ity. Competition and interaction between cells should be considered and a real

tumor grows in a three dimensional space. we will address these extension of

the BEP model as a future work.

In conclusion, this study introduced the BEP model, a novel mathematical

model of cancer evolution. Moreover, employing our supercomputer, we per-

formed the extensive parameter dependance analysis of the BEP model, which

brought a number of intriguing insights into branched cancer evolution. Among

these, the hypothesis that cancer has fractal heterogeneity could be the most
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important key for understanding cancer evolvability; this awaits experimental

validation. Combined with recent advance in experimental technologies, such

as single cell sequencing [48], our BEP simulation will be a insightful tool for

understanding heterogenous cancer evolution and the resulting malignancy.

Method

Simulating cancer evolution

To simulate branched cancer evolution, we employed a cellular automaton model,

assuming that a cell in the tumor acts as a cellular automaton. A cell has a

genome containing n genes, each of which is represented as a binary value, 0

(wild) or 1 (mutated). Namely, the genome is represented as a binary vector g

of length n. In a unit time step, each cell in the simulated tumor dies with a

probability q. If the cell does not die, the cell then divides with a probability

p. Before the cell division, we mutate the genome vector g: each of 0 elements

of g is set to 1 with a probability r . The first d genes in g are assumed as

driver genes,whose mutations accelerate the division speed. A normal cell with-

out any mutations has a division probability p0, and acquisition of one driver

mutation increases p by 10f -fold in the next time step; i.e., p = p0 · 10fk, where

k =
∑d
i=1 gi, the number of mutated driver genes. The death probability is

fixed as q = q0. Let c and t denote the size of the simulated cell population

and the number of the time steps, respectively. We started a simulation with

c0 normal cells and repeated the unit time step while population size c ≤ cmax

and time step t ≤ tmax. A flowchart of the simulation is shown as Figure 11A.

Moreover, we incorporated the cancer stem cell concept into the BEP model.

We assumed two different types of cells: stem cells and differentiated cells. we

assumed that a differentiated cell has a shorter life span, compared to a stem

cell: the death probability of stem cells is q0 while that of differentiated cells

is qd > q0. A stem cell divides asymmetrically to produce one stem cell and

one differentiated cell, or otherwise symmetrically to produce two stem cells.
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Namely, a stem cell to be divided divides symmetrically and asymmetrically

with probabilities s and (1− s), respectively. A differentiated cell divides only

symmetrically to produce two differentiated cells. Note that when s = 1, the

model becomes identical to the model without a stem cell hierarchy. A flowchart

of the simulation with stem a cell hierarchy is shown as Figure 11B.

Visualizing simulated tumors

We designed a simulated tumor to grow in a two-dimensional square lattice

where each cell occupies one lattice point. In the beginning, c0 cells are initial-

ized as close as possible to the center of the lattice. when a cell die, the occupied

point is cleared and becomes empty. When a cell divides, we place the daughter

cell in the neighborhood of the parent cell, assuming the Moore neighborhood

(i.e., eight points surrounding a central point). If empty neighbor points exist,

we randomly select one point from them. Otherwise, we create an empty point

in either of the eight neighboring points by the following procedure. First, for

each of the eight directions, we count the number of the consecutive occupied

points that range from each neighboring points to immediately before the near-

est empty cell as indicated in Figure 11C. Next, either of the eight directions

is selected with a probability proportional with 1/li, where li(1 ≤ i ≤ 8) is

the count of the consecutive occupied points for each direction. The consecu-

tive occupied points in the selected direction are then shifted by one point so

that an empty neighboring point appears as shown in Figure 11D. Note that

simulation results are dependent on the order of the division operation in the

two-dimensional square lattice. We first marked cells to be divided, and applied

the division operation to the marked cells along an outward spiral starting from

the center. In each round on the spiral, the direction was randomly flipped in

order to keep spatial symmetry. An example of such spirals was shown in Figure

11E.

From a simulated tumor, we randomly sampled m cells to obtain an n×m

mutation profile matrix M, each of whose m columns is the n-dimensional

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 20, 2015. ; https://doi.org/10.1101/022806doi: bioRxiv preprint 

https://doi.org/10.1101/022806


genome vector g for each cell. We applied principle component analysis to

M and obtained the first, second and third loading vectors. By multiplying

these loading vectors, n-dimensional genome vectors were reduced into three-

dimensional vectors. RGB colors used for sample labels are then prepared by

mixing red, green and blue proportionally to the three vector elements. Each

cell on the two-dimensional square lattice was colored with the color correspond-

ing to its genotype. M was visualized using a cluster heat map, to which we

appended a colored bar representing the genotype of each cell.

Calculating statistics of simulation results

To quantify intratumor heterogeneity, we defined a population entropy statistic,

ε, based on our previously reported approach for measuring information content

in a matrix [33]. From M, we calculated similarities among m cells and obtained

a similarity matrix S. Similarity Sij between two cells gi and gj is calculated as

Sij = 1−
∑n
k=1 |gik − g

j
k|/n. We applied singular value decomposition to S and

obtained a singular value vector s. We then defined ε by ε = −
∑m
i=1 pi log(pi),

where pi = si/
∑m
j=1 sj . ε is 0 when the population is composed of one clone,

but increase with genetic variation of the population.

Similarly, a number of statistics were obtained to evaluate simulation results.

From the mutation profile matrix M, we obtained the average mutation count

as follows: µ =
∑m
j=1

∑n
i=1Mij/m. Assuming mutations occurring in more

than 95 percent of a population as founder mutations, we also calculated the

average founder mutation count: ρ = |{i|1 ≤ i ≤ n,
∑m
j=1Mij/m > 0.95}|.

Population fitness was measured by: λ =
∑n
j=1 10fkj/n, where kj =

∑d
i=1Mij ,

and the number of time steps required for the population size c to reach cmax

was recorded as τ .

Testing self-similarity of mutation profiles

We performed hierarchical clustering of randomly sampled m′ cells by apply-

ing Ward’s method to a distance matrix Dij =
∑n
k=1 |gik − g

j
k|/n. A cluster
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dendrogram is then obtained and examined for self-similarity. Our approach is

based on a ‘box-counting’ method for measuring fractal dimensions [38]. Given

a, which is less than the height of the dendrogram, we can obtain b clusters by

cutting the dendrogram at the height a. If the dendrogram exhibits self simi-

larity, the following relationship holds: b ∝ a−δ, where δ is a fractal dimension.

To evaluate whether the dendrogram has this relationship, we obtained a from

1000 points with equal intervals between the minimum and maximum height to

calculate b for each a. We then performed linear regression between log(a) and

log(b), and assumed that the dendrogram has self-similarity if R2 > 0.95

Analyzing parameter dependence

To examine the parameter dependance of each statistic, we varied d, f , r and

s while others were fixed, as summarized in Table 1. We prepared 10 inte-

gers from 1 to 10 as d; 29 numbers from 0.1 to 1.5 incremented by 0.05 as

f ; 1, 0.1 and 0.01 as s; and 0.01, 0.001 and 0.0001 as r, and take every

combinations of the parameter values as done in grid search. This leads to

10 × 29 × 3 × 3 = 2610 parameter settings, for each of which simulation was

repeated 20 times. 2610 × 20 = 52200 simulations were performed parallelly

on our supercomputer system [32]. For each parameter setting, we obtained

the averaged statistics of the 20 simulations. The proportion of simulated tu-

mors whose cell-wise dendrograms have self-similarity was also obtained as a

statistic, θ. The obtained statistics are summarized in Table 2. The results

of the parameter dependence analysis were subject to interactive visualization

using the D3 JavaScript library (http://d3js.org/), which can be assessed at the

supplementary website: http://bep.hgc.jp/.
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Table 1: Parameter values used in this study

parameter description used value

n genome size 50
d number of driver genes 1, 2, 3, ..., 10
r mutation probability 0.01, 0.01, 0.0001
p0 initial division probability 0.001
q0 death probability 0.0000001
qd death probability of differentiated cells 0.01
s symmetric division probability 0.01, 0.1, 1
f division probability increase per driver 0.1, 0.15, 0.2, 0.25,

mutation (i.e. strength of driver mutations) ..., 1.45, 1.5
c0 initial population size 10
cmax final population size 1000000
tmax maximum time step 5000000
m the number of cells in mutation profile matrices 500
m′ the number of cells used for calculation of θ 3000

Table 2: Statistics of simulation results

statistics description

ε population entropy
µ average count of mutations per cell
ρ count of founder mutations
λ population fitness
τ number of time step needed for tumor growth
θ self similarity rate of cell-wise dendrograms
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Figures

Figure 1: A schema of the BEP model. A cell has n genes, d out of which are
driver genes. In this schema, n = 10 and d = 4, and red and blue boxes denote
driver and non-drive genes, respectively. In a unit time step, a cell divides or
dies with probabilities p and q, respectively. During each cell division, each gene
is randomly mutated with a probability r, and one driver mutation, which is
denoted by a red cross, increases p by 10f -fold.
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Figure 2: Statistics and mutation profiles. (A) and (B) Population entropy
ε and the number of founder mutations ρ were measured for different combi-
nations of d and f and shown as d-f heat maps (C) Representative mutation
profiles from simulations with indicated combinations of d and f . Rows and
columns of the mutation profile matrices index genes and cells, respectively,
and blue bars denote driver genes.
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Figure 3: Clonal selective sweep. (A) Snap shots of growing tumors in a
simulation with indicated parameter sets. Differently colored cell populations
represent each clone. (B) A growth curve of the simulated tumor. The snap
shots were obtained at each plotted point. (C) Mutation profiles of the simulated
tumor during growth (indicated by red dashed rectangles, plotted points and
under lines) and the end point (indicated by green dashed rectangles, plotted
points and under lines). Colored bars on the columns represent each clone.

Figure 4: Subclonal selective sweep. shown as in Figure 3.
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Figure 5: Transitions of heterogeneity caused by an increase of mu-
tation rate. (A) Three left d-f heat maps shows Population entropy ε from
simulations with three different values of r. Note that scales are different for
each heat map. The distributions of the values in each d-f heat map is shown in
the right box plot. (B) self similarity rate of cell-wise dendrograms θ is shown
as in A.
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Figure 6: Statistics and mutation profiles from simulation with a high
mutation rate. Results from rom simulation with r = 0.01 are shown as in
Figure 2.
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Figure 7: Neutral evolution generating fractal heterogeneity. shown as
in Figure 3.

Figure 8: A schema of the BEP model with a stem cell hierarchy. A stem
cell divides symmetrically or asymmetrically, and the rate of symmetric division
is specified by parameter s. The asymmetric division produces a differentiated
cell, whose death probability qd is larger than that of stem cells q0. The model
with s =1 is identical to the model without a stem cell hierarchy shown in Figure
1.
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Figure 9: Transitions of heterogeneity caused by enhancing a stem cell
hierarchy. Transitions of Population entropy ε and self similarity rate θ in
response to changes of the rate symmetric division rate s are shown as in Figure
5. Gray areas in d-f heat maps represent cases where tumors grow slowly and
simulations stopped before population size reaches cmax.
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Figure 10: Statistics and mutation profiles from simulation with a stem
cell hierarchy. Results from simulation with s = 0.01 are shown as in Figure 2.
Gray areas in d-f heat maps indicate that simulations stopped before population
size reaches cmax.
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Figure 11: Illustration of our simulation method (A,B) Flowcharts of our
simulation without (A) and with a stem cell hierarchy (B). In each time step,
first, cell dies with a probability q and, if the cell survives, the cell divides with a
probability p. Before the cell division, the genome is subject to mutagenesis. In
simulation with a stem cell hierarchy, a differentiated cell to be divided always
undergoes symmetric division. a stem cell to be divided undergoes symmetric di-
vision with a probability s. Otherwise, it undergoes asymmetric division, which
generates a stem cell and a differentiated cell. (C, D, E) Division operation.
We randomly select one point from in the eight neighbor points, if empty points
exist. Otherwise, we create an empty point neighboring the targeted point (a
red point in C) by: 1) for each of the eight directions (red dotted arrows in
C), obtaining li(1 ≤ i ≤ 8), the number of the consecutive occupied points that
range from each neighboring points to immediately before the nearest empty cell
(numbered points in C), and 2) selecting either of the 8 directions with a prob-
ability proportional with 1/li. In the case shown in C, l1 = 2, l2 = 1, l3 = 1, ...
The consecutive occupied points in the selected direction are then shifted by
one point so that an empty neighboring point appears. A case where the first
direction is selected in C is shown in D. This operation is applied to each cell
to be divided along an outward spiral starting from the center, whose direction
is randomly flipped in each round. E shows an example of such a spiral.
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