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Abstract 

 In a long-term evolution experiment with Escherichia coli, bacteria in one of 

twelve populations evolved the ability to consume citrate, a previously unexploited 

resource in a glucose-limited medium. This innovation led to the frequency-dependent 

coexistence of citrate-consuming (Cit+) and non-consuming (Cit–) ecotypes, with Cit– 

bacteria persisting on the exogenously supplied glucose as well as other carbon molecules 

released by the Cit+ bacteria. After more than 10,000 generations of coexistence, 

however, the Cit– lineage went extinct; cells with the Cit– phenotype dropped to levels 

below detection, and the Cit– clade could not be detected by molecular assays based on its 

unique genotype. We hypothesized that this extinction event was a deterministic outcome 

of evolutionary change within the population, specifically the appearance of a more-fit 

Cit+ ecotype that competitively excluded the Cit– ecotype.  We tested this hypothesis by 

re-evolving the population from one frozen sample taken just prior to the extinction and 

from another sample taken several thousand generations earlier, in each case for 500 

generations and with 20-fold replication. To our surprise, the Cit– type did not go extinct 

in any of these replays, and Cit– cells also persisted in a single replicate that was 

propagated for 3,000 generations. Even more unexpectedly, we showed that the Cit– 

ecotype could reinvade the Cit+ population after its extinction. Taken together, these 

results indicate that the extinction of the Cit– ecotype was not a deterministic outcome 

driven by competitive exclusion by the Cit+ ecotype.  The extinction also cannot be 

explained by demographic stochasticity, as the population size of the Cit– ecotype should 

have been many thousands of cells even during the daily transfer events. Instead, we infer 
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that the extinction must have been caused by a rare chance event in which some aspect of 

the experimental conditions was inadvertently perturbed.  

 

Introduction 

 

 In studying patterns of extinction over the course of evolutionary history, a key 

question is the extent to which extinctions are random or deterministic events [1, 2]. Very 

small populations can go extinct as a consequence of demographic stochasticity [3-5], 

that is, random fluctuations in population size that reflect the discrete nature of birth and 

death processes in finite populations. In the case of sexually reproducing organisms, 

inbreeding depression can also contribute to the extinction of small populations [6, 7].  

Other causes of extinction, such as asteroid impacts and anthropogenic changes, may also 

be random (at least insofar as they are exogenous to the affected organisms), yet they can 

eliminate large populations and even extinguish entire clades [1, 8]. In other cases, 

though, extinctions might be more or less deterministic in the following sense: if the 

extinctions reflect processes that are endogenous to the organisms and the communities in 

which they are embedded, then the extinctions would be predictable and repeatable if the 

same system could be observed multiple times.  For example, one lineage may be fated to 

extinction because it cannot evolve and adapt as well as its competitors or other 

biological enemies [9, 10]. These different causes of extinction may also have different 

consequences for how an ecosystem recovers from extinction [11, 12].  

Unfortunately, it is difficult to identify definitively the causes of most extinctions 

in geological history. Even for contemporary extinctions, one cannot generally 
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manipulate and test possible causes of extinction by taking the extinct organisms and 

reintroducing them into the same ecosystems. However, as we will show, when an 

extinction occurs during a controlled laboratory experiment with microbes, it is possible, 

at least in principle, to perform replay experiments to test certain causes of extinction 

directly and determine whether the extinction was a random or deterministic event. 

 Here we examine possible causes of an extinction event in a long-term evolution 

experiment with E. coli (LTEE). Because E. coli can be revived from frozen stocks [13], 

the LTEE has a living fossil record with which a population’s evolution can be replayed, 

starting from one or more frozen samples, under conditions that are as close as possible to 

those of the original evolutionary event [10, 14]. In the event of a lineage’s extinction, 

these samples allow the population to be revived from a point prior to the extinction and 

re-evolved in many parallel replicates to determine the frequency with which that 

lineage’s extinction happens again. Microbes have the additional advantages of short 

generation times and large population sizes, allowing observation of substantial 

evolutionary change over tractable time spans [13, 15].  

 The LTEE consists of 12 independently evolving populations, each of which was 

founded from one of two E. coli strains that differ by a selectively neutral marker [13]. 

Growth in the LTEE is carbon-limited, with glucose as the primary carbon source. The 12 

populations had been evolving for more than 50,000 generations at the time of the 

experiments reported here. In one of the 12 populations (called Ara-3), the novel ability 

to grow aerobically on citrate evolved after more than 30,000 generations [14]. The 

inability to grow aerobically on citrate is one of the identifying traits of E. coli [16], so 

the abundant citrate present in the LTEE culture medium was previously unavailable to 
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the bacteria. The population size increased several-fold after citrate consumption evolved 

[14], and the evolution of that new ability substantially altered the ecological conditions 

of the population [17]. 

The citrate-consuming lineage (Cit+) did not fix in the population but instead 

coexisted with a clade that could not grow on citrate (Cit–). These two clades coexisted in 

a negative frequency-dependent fashion for more than 10,000 generations. The initial 

phase of coexistence involved a tradeoff, whereby the Cit+ cells grew more slowly on 

glucose than their Cit– counterparts during part of the daily growth cycle (Blount et al. 

2008).  In particular, the Cit+ cells exhibited a longer lag phase prior to commencing 

growth after the daily transfers into fresh medium. Following the emergence of the Cit+ 

lineage, each clade continued to evolve, though with a different suite of mutations 

accumulating in each [18]. Notably, the Cit+ clade evolved a higher mutation rate and 

accumulated many more mutations than did the Cit– clade [18]. The Cit– cells adapted to 

the presence of the Cit+ lineage, at least in part, by evolving the ability to consume 

additional energy-containing carbon molecules released by the Cit+ bacteria [17]. The 

physiological mechanism for the evolution of citrate consumption in the Cit+ lineage was 

a mutation causing aerobic expression of the CitT transporter protein [18]. CitT is an 

antiporter that allows the Cit+ bacteria to import citrate in exchange for various C4-

dicarboxylic acids including succinate, malate, and fumarate [19]. The Cit– ecotype 

evolved improved growth on these C4-dicarboxylic acids, which enabled the coexistence 

of the Cit– and Cit+ ecotypes [17]. 

Beginning at 44,000 generations, however, we were unable to detect Cit– cells in 

the population. Here we document that the Cit– ecotype went extinct in the population. 
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Prior to that time, the Cit– lineage was present at frequencies of one or more percent of 

the total population, which had increased to >108 cells per mL (and >109 cells in the 10-

mL of medium in the flask) at the end of the daily growth cycle.  Even after the 100-fold 

daily dilution, a lineage that comprised 1% of the total population would include many 

thousands of cells.  Therefore, the extinction of the Cit– ecotype cannot be explained by 

demographic stochasticity (i.e., as a statistical fluctuation associated with a simple birth-

death process). We therefore hypothesized that the extinction was caused by the on-going 

evolutionary adaptation of the Cit+ lineage. Given the larger population size and higher 

mutation rate of the Cit+ lineage, such an outcome would not be unexpected.  There are 

multiple ecophysiological scenarios whereby the Cit+ lineage could have evolved to drive 

the Cit– ecotype extinct. If the Cit+ bacteria had evolved to export fewer or less valuable 

C4-dicaboxylate molecules, then this would have reduced the carbon and energy available 

to the Cit– cells. Similarly, if the Cit+ bacteria, or a subpopulation within the Cit+ clade, 

had evolved improved ability to compete for either the glucose or the C4-dicaboxylates, 

then that shift also could have driven the Cit– ecotype extinct.  

Beneficial mutations in the LTEE require hundreds, if not thousands, of 

generations to achieve fixation, with progressively longer periods required in later 

generations as the opportunity for further fitness improvement declines (Wiser et al. 

2013). Therefore, if the hypothesis that the on-going adaptation of the Cit+ lineage drove 

the Cit– lineage extinct was correct, then we would expect the responsible Cit+ mutants to 

have been well-established numerically (even if still a minority genotype) long before the 

extinction played out; and we would therefore also expect the extinction to be highly 
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reproducible if we replayed evolution from the sample taken within 500 generations 

before the extinction of the Cit– ecotype. 

We tested whether the extinction of the Cit– lineage was deterministic, in the 

sense of being repeatable going forward from the 43,500-generation sample, by (i) 

reviving that population sample along with an earlier one from generation 40,000; (ii) 

propagating 20 replicate populations derived from each of those samples for 500 

generations; and (iii) determining whether the Cit– ecotype was present after each of the 

40 total replays.  Based on the considerations above, we predicted that the Cit– type 

would persist in most or all of the replay populations started from the 40,000-generation 

sample, whereas the Cit– lineage would go extinct in most or all of the replays started 

with the 43,500-generation sample. We also tested whether a Cit– clone could invade and 

thereby re-establish its frequency-dependent coexistence with Cit+ clones and populations 

from after the extinction event.  

 

Methods 

 

Long-term evolution experiment with E. coli 

 The LTEE is an ongoing experiment in which 12 independent populations of E. 

coli are evolving in a glucose-limited Davis-Mingioli minimal medium, called DM25. 

Six of the populations were founded from REL606, a clone that cannot grow on 

arabinose (Ara–) and six were founded from REL607, a clone that differs from REL606 

by a point mutation that confers the ability to grow on arabinose (Ara+). DM25 does not 

contain arabinose, and REL606 and REL607 have equal fitness in the LTEE 
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environment. The focal population in this chapter, Ara-3, was founded from REL606 and 

is Ara–. In addition to having 25 ml/L glucose, DM25 contains 326.6 mg/L citrate, an 

additional carbon source that E. coli cannot consume under aerobic conditions. However, 

a lineage in Ara-3 evolved the ability to consume citrate after more than 30,000 

generations [14]. The Cit+ lineage coexisted with a Cit– lineage for at least 10,000 

generations. Cit+ and Cit– clones used in our experiments were identified as described in 

Blount et al. (2012). More details on the LTEE methods are described in Lenski et al. 

(1991). 

 

Assays for presence of the Cit– phenotype and genotype 

 We tested for the extinction of the Cit– lineage using two methods. First, we 

measured the frequency of cells with the Cit– phenotype in both DM25, the standard 

culture medium of the LTEE, and DM25 without citrate. We used DM25 without citrate 

in addition to the standard culture medium because the proportion of Cit– cells is higher 

when populations are grown in medium without citrate, thus increasing the probability of 

detecting them. We knew from prior experiments that Cit– cells were present in the 

population through at least 43,000 generations [17], and so we revived frozen population 

samples at 1,000 generation intervals from 40,000 to 46,000 generations as well as 

populations from 43,500 and 50,000 generations. Revived samples were grown overnight 

in Luria-Bertani medium (LB), then diluted 10,000-fold into DM25 or DM25 without 

citrate and grown for 24 h. The cultures were then diluted 100-fold into the same two 

media and grown again for 24 h. We diluted and plated samples from each culture onto 

tetrazolium arabinose (TA) indicator agar plates [13, 20]. From the TA plates, we tested 
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64 colonies from each culture for growth on minimal citrate plates [14]. For any colony 

that did not grow on minimal citrate, we confirmed the Cit– phenotype using 

Christensen’s agar [21], which produces a color reaction in response to growth on citrate.  

We tested for the presence of the Cit– genotype in populations from the same time 

points using the polymerase chain reaction (PCR) to amplify a segment of the genome 

known to have been deleted in the Cit+ clade [18]. In addition to serving as a 

confirmation of the results from the phenotypic assay, the PCR assay also tested the 

possibilities that (i) the Cit– phenotype was still present in the population, but had lost the 

ability to form colonies, and (ii) the Cit– clade was still present but had evolved the 

ability to consume citrate.  

 

Replays of the extinction event 

 We hypothesized that ongoing adaptation of the Cit+ lineage caused the extinction 

of the Cit– lineage. If this were the case, then the Cit+ genotypes that drove the Cit– 

lineage extinct should already have been present in the population sample collected and 

frozen within the 500 generations prior to extinction, given the time required for new 

beneficial mutations to fix in an LTEE population. To test whether adaptation of the Cit+ 

lineage had, in fact, caused the Cit– extinction, we conducted evolutionary replay 

experiments with the samples from 40,000 and 43,500 generations of population Ara-3. 

Based on our hypothesis, we expected Cit– to go extinct in many or all of the replay 

populations founded from the 43,500-generation sample, but no or few extinctions in 

replay populations founded from the 40,000-generation sample. We maintained 20 

replicate populations started from each sample for 500 generations under the same 
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conditions as the LTEE. Samples from these populations were frozen every 100 

generations. We then tested for the presence of the Cit– lineage in the final, 500-

generation samples by the PCR assay.  

 To test for Cit– extinction over a longer time period, we also propagated one 

population revived from the 43,000-generation sample of population Ara-3 for 2,500 

generations. Samples of this population were frozen every 500 generations. We tested for 

the presence of the Cit– lineage by the PCR assay at each 500-generation interval. 

 

Invasion experiments 

 If our hypothesis that ongoing adaptation of the Cit+ lineage caused the extinction 

of the Cit– lineage were correct, then Cit– cells should not be able to reinvade the Cit+ 

lineage after the extinction. We considered two possible cases of adaptation of the Cit+ 

lineage. In one, the trait that allowed the Cit+ lineage to exclude the Cit– lineage spread to 

fixation or near fixation in the Cit+ clade. In that case, we would expect that a Cit– 

invader could not reinvade cultures of either individual Cit+ clones or entire Cit+ 

populations from after the extinction event. Alternatively, the Cit+ trait that led to 

exclusion of Cit– might have spread only into a subpopulation of the Cit+ clade, perhaps 

because the fitness benefit of the trait was frequency dependent or perhaps because its 

benefit was small and therefore slow to spread. If this were the case, then we would 

expect that a Cit– invader could reinvade cultures of at least some Cit+ clones, but not Cit+ 

populations from after the extinction event.   

To test whether the extinction of the Cit– lineage was caused by changes in the 

Cit+ lineage that eliminated the Cit– ecotype’s advantage when rare, we tracked whether a 
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Cit– clone could become established when introduced at low and high frequencies to 

cultures of Cit+ bacteria after the extinction event. To monitor the abundance of the Cit– 

clone in the population, we used a selectively neutral Ara+ mutant of a Cit– clone from 

43,000 generations as the invading strain. Because the Ara-3 population is Ara–, the Cit+ 

bacteria cannot grow on citrate-free minimal arabinose plates (same recipe as minimal 

citrate, but with 4 g/L L-arabinose in place of citrate), allowing us to track the population 

size of the initially rare Cit– clone.  

The invading Cit– clone was added to three replicate cultures of Cit+ clones from 

40,000, 42,000, 43,000, 44,000, 45,000 and 50,000 generations at initial densities of ~3 x 

103 (low) and ~3 x 108 cells/mL (high). We included time points before the extinction as 

controls, because we expected that the Cit– clone could invade those Cit+ clones.  In 

addition, we added the same Cit– strain to whole-population samples from generations 

44,000, 45,000, and 50,000. We did not include whole-population samples from time 

points before the extinction, because the Cit– cells already present in those samples would 

confound the assay. In all cases, the clones and populations were revived from frozen 

stocks and acclimated in DM25 for two days prior to the start of the experiment, as 

described for the experiments above. Each day for 7 days, we transferred the cultures via 

1:100 dilutions and maintained them under the same conditions as the LTEE. Each day 

we measured the Cit– population size by plating on citrate-free minimal arabinose agar. 

All reported cell densities are based on colony-forming units.  

Data availability 

 Data will be deposited to the Dryad digital repository upon acceptance. 
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Results 

 

Assays for presence of the Cit– genotype and phenotype 

 The PCR assay for the presence of the Cit– genotype produced clear bands at all 

time points up to and including 43,500 generations (Fig 1). At 44,000 generations and 

beyond, we did not observe any amplification. Examination of phenotypes also indicated 

that the Cit– lineage went extinct between 43,500 and 44,000 generations. Cit– cells were 

present through 43,500 generations in all cultures, but they were not detected at any later 

time point. Prior to the 44,000-generation sample, on average 4 of the tested 64 colonies 

(~6%) had the Cit– phenotype when cultures were grown in DM25 medium (Fig 1). Note 

that this proportion does not necessarily represent the proportion of Cit– bacteria in the 

population because plating efficiency (the proportion of cells that form colonies) might 

vary between lineages and over time. We also tested the Cit+/Cit– phenotype of colonies 

produced by cells from cultures that were grown in DM25 without citrate, a medium that 

selects for Cit– bacteria in the population. In DM25 without citrate, 41 of 64 tested 

colonies (~64%) had the Cit– phenotype, on average, prior to the extinction. There was no 

indication of a downward trend in the proportion of Cit– bacteria in the generations before 

the extinction. 
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Fig 1: Recovery of Cit– bacteria by generation from the Ara-3 population of the LTEE. 
The bar graph shows the percentage of clones with a Cit– phenotype recovered in two 
media, DM25 and DM25 without citrate. The lower grid indicates the presence (green) or 
absence (red) of the Cit– genotype, as determined by a PCR assay. Taken together, these 
data show that the Cit– lineage went extinct between 43,500 and 44,000 generations. 
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Replays of the extinction event 

 Twenty replicate populations founded from the 43,500-generation population 

sample evolved for 500 generations under the standard LTEE conditions. PCR assays 

showed that the Cit– clade persisted in all 20 cases through the end of the experiment. 

The Cit– lineage also persisted in all 20 of the control populations founded from the 

40,000-generation population sample as well as in the population founded from the 

43,000-generation population sample that evolved for 2,500 generations.  

 

Invasion experiments 

 When a 43,000-generation Cit– strain was introduced at a low density (~3 x 103 

cells per mL) to a culture containing a single Cit+ genotype from several time points 

before and after the extinction, the population of the Cit– clone increased by about 1000-

fold, reaching an average density of ~4 x 106 cells per mL after 7 days (Fig 2A). When 

the same Cit– clone was added at a high density (~3 x 107 cells per mL), the Cit– 

population declined to the same average population size of ~4 x 106 cells per mL on day 

7. These results indicate that Cit– and Cit+ clones can coexist owing to a negative 

frequency-dependent interaction, regardless of whether the Cit+ clone was isolated before 

or after the extinction of the Cit– lineage. 
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Fig 2: A Cit– clone can reinvade the Ara-3 population after the extinction event. A. 
Trajectory of the mean population density of the Cit– clone over 7 days, starting from 
both high and low initial densities and introduced into Cit+ clones or populations as 
indicated in the legend at right. Error bars are omitted for clarity. B. Mean density of the 
Cit– clone on day 7 of the invasion experiments, including both high and low initial 
density treatments. The generation of the resident Cit+ clone (gray bars) or population 
(colored bars) is shown along the x-axis. Error bars are 95% confidence intervals. 
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We also observed invasions and coexistence mediated by negative frequency-

dependent selection when the same Cit– clone was added to cultures containing the 

complete mixture of Cit+ genotypes present in the population at 44,000, 45,000, and 

50,000 generations. When using the 44,000- and 45,000-generation populations, the final 

density of the Cit– clone was within the general range observed when it invaded the Cit+ 

clones, although its initial rate of increase when rare was noticeably slower (Fig 2A). The 

equilibrium density of the Cit– clone was also slightly lower (Fig 2B) when it invaded the 

entire population than when it invaded a clone from the same generation.  When added to 

the 50,000-generation population—more than 6,000 generations after the extinction of 

the Cit– lineage—the 43,000-generation Cit– clone could still invade the Cit+ population 

(Fig 2A). However, the final Cit– population size was an order of magnitude lower (3 x 

105 cells per mL, mean of high and low initial density treatments) than the final density of 

Cit– cells in any other treatment (Fig 2B). 

 

Discussion 

 

 Three lines of evidence indicate that the Cit– ecotype, which had coexisted with 

the Cit+ ecotype for more than 10,000 generations, went extinct between 43,500 and 

44,000 generations. First, no clones with the Cit– phenotype were isolated from 44,000 

generations or later (Fig 1), indicating that the Cit– phenotype was absent from (or at least 

much rarer in) the population. Second, PCR assays also failed to amplify a Cit– lineage-

specific locus from population samples collected after 43,500 generations. Third, if the 
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Cit– ecotype remained in the population, then the Cit– ecological niche would be occupied 

and the Cit– bacteria would be at a frequency-dependent equilibrium with Cit+. In this 

case, a Cit– strain from an earlier generation, when added at low density, should not be 

able to invade the population. In contrast to this prediction, however, a Cit– clone from 

43,000 generations reinvaded the Ara-3 populations at multiple time points tested after 

the Cit– extinction, including even 6,000 generations later (Fig 2). 

 The ability of a Cit– clone to reinvade the population long after the Cit– ecotype 

went extinct also implied that, contrary to our predictions, the Cit– extinction was not 

caused by the Cit+ bacteria evolving to exclude the Cit– ecotype from the population. Our 

evolution replay experiments also supported this result. The Cit– lineage persisted for 500 

generations in all 20 replicate populations founded from the last population sample prior 

to the Cit– extinction, as well as in 20 replicate populations started from an earlier point. 

Moreover, in an additional population that was founded from the 43,000-generation 

population, the Cit– lineage has continued to coexist with the Cit+ ecotype through at least 

generation 45,500, which is more than 1,500 generations after the Cit– lineage went 

extinct. The Cit– extinction in Ara-3 therefore appears to be a rare occurrence, and not a 

repeatable outcome of competitive exclusion by Cit+. 

 As explained in the Introduction, we expected that, if the extinction of the Cit– 

lineage had been driven by on-going adaptive evolution of the Cit+ lineage, then that 

adaptation would be captured in the population sample collected immediately prior to 

extinction. However, our results also eliminate the possibility that the extinction of the 

Cit– lineage was caused by some rare, highly beneficial mutation that arose in the Cit+ 

lineage at some point after the prior population sample and spread quickly through the 
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population. The presence of such a mutation in the Cit+ population would have prevented 

the reinvasion of the population by Cit– cells in subsequent generations. 

 Thus, the cause of the Cit– extinction remains unknown. We have rejected our 

hypothesis that evolutionary changes in the Cit+ bacteria drove the extinction. Moreover, 

a purely stochastic extinction of the Cit– lineage is also extremely unlikely. The LTEE is 

propagated by 1:100 daily transfers, and the total number of Cit– cells in the culture prior 

to transfer (i.e., after 24 h) was consistently measured at >107 prior to their extinction. 

Therefore, the probability that no Cit– cells would be present in the population after a 

transfer, given that each cell has a 99% chance of not being transferred, is less than 

0.9910,000,000 ≈ 10-43,700. Even if some perturbation were to cause a moderate decline in the 

Cit– population size, its density should then have tended to increase back towards its 

equilibrium owing to the negative frequency-dependent relationship between the Cit+ and 

Cit– ecotypes [14, 17], making a stochastic extinction even more unlikely.  

In populations large enough that demographic stochasticity is unlikely to cause 

extinction, the most likely causes of random extinction are environmental stochasticity 

and random catastrophes [3]. Environmental stochasticity refers to changes in population 

size caused by environmental variation over time, which should be minimal in the context 

of a controlled laboratory experiment like the LTEE. Furthermore, the large size of the 

Cit– population should have made it robust to environmental stochasticity caused by the 

typical fluctuations that simply cannot be avoided in any experimental setting. We 

propose, therefore, that the most likely cause of the Cit– extinction was a “random 

catastrophe”, that is a large, rare event that reduced the size of the Ara-3 population as a 

whole or, at least, the Cit– lineage within it. We do not know the nature of this random 
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catastrophe, but it could have been some unusual variation in laboratory conditions, such 

as soap residue in a flask or problems with the deionized water used to make the culture 

medium. Although the Cit– population was too large for purely stochastic extinction from 

demographic fluctuations, its population size was substantially smaller than that of the 

Cit+ population, making the Cit– lineage more vulnerable to such occurrences [22, 23]. 

 In addition to demonstrating that the extinction of the Cit– population was not a 

deterministic event, we also found evidence that there has been ecological diversification 

in the Cit+ clade. The equilibrium Cit– population density was significantly lower when it 

was grown with the whole Cit+ population than when it was grown with a single Cit+ 

clone at each time point tested. This result suggests that some Cit+ genotypes in the 

population were better at competing with the Cit– invader for shared resources than were 

the particular Cit+ clones tested individually at those time points. The effect of this 

diversity was particularly pronounced at 50,000 generations, where the equilibrium 

population size of the Cit– cells when grown together with the Cit+ population was nearly 

an order of magnitude lower than in earlier generations (Fig 2). This decline in the 

reinvasion ability of the Cit– clone indicates that, by 50,000 generations, a subpopulation 

of Cit+ bacteria had evolved improvements that exploited or otherwise impacted the niche 

previously occupied by the Cit– bacteria. Thus, rather than the Cit– lineage having been 

driven extinct by the Cit+ bacteria evolving into its niche, it instead appears that the 

extinction of the Cit– lineage opened a niche that a Cit+ subpopulation has begun to 

exploit. 

The occurrence of this extinction during an evolution experiment allowed us to 

test the hypothesis that the extinction was caused by the evolution of other organisms, 
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something that would not be possible to test in natural systems. Having found that the 

extinction of the Cit– lineage was likely caused by a rare environmental perturbation—a 

random catastrophe, as it were—we can take advantage of another feature of 

experimental evolution.  In particular, we can now study, going forward, the 

consequences of that extinction event by following two ‘alternative histories’ of 

evolution, one with and one without the extinction.  To that end, we are continuing to 

propagate the population that was founded from a sample taken before the Cit– extinction 

and evolved for 2,500 generations. We have designated it Ara-7, and it is the thirteenth 

population in the LTEE, although it is well behind the other populations in terms of its 

total elapsed generations owing to the fact that it was only re-started from the 43,000-

generation sample of Ara-3 when that population was at generation 56,500. In the future, 

Ara-3 and Ara-7 together will allow us to compare the outcomes in these two 

populations, which differ in the occurrence of the extinction of the Cit– bacteria. Will the 

continued presence of the Cit– cells in Ara-7 prevent members of the Cit+ clade from 

diversifying and occupying the Cit– niche, as the Cit+ clade appears to be doing in Ara-3? 

Will the Cit+ bacteria in Ara-3 eventually evolve to occupy fully the Cit– niche, such that 

pre-extinction members of the Cit– clade can no longer re-invade the Cit+ population? 

Might a new clade with a Cit– phenotype emerge from within the Cit+ clade in Ara-3? All 

this remains to be seen. 

  

Acknowledgments  

 We thank Neerja Hajela, Daniel Mitchell, Maia Rowles, and Jennifer Jimenez for 

laboratory assistance. This research was supported, in part, by an EPA STAR Fellowship 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2015. ; https://doi.org/10.1101/022798doi: bioRxiv preprint 

https://doi.org/10.1101/022798
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

and a MSU Distinguished Graduate Student Fellowship to C.T., an NSF grant (DEB-

1019989) to R.E.L., a grant from the John Templeton Foundation to R.E.L. and Z.D.B., 

and the BEACON Center for the Study of Evolution in Action (NSF Cooperative 

Agreement DBI-0939454). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2015. ; https://doi.org/10.1101/022798doi: bioRxiv preprint 

https://doi.org/10.1101/022798
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

References 

 

1. Jablonski D. Background and mass extinctions: the alternation of 

macroevolutionary regimes. Science. 1986;231(4734):129-33. 

2. Yedid G, Stredwick J, Ofria CA, Agapow P-M. A comparison of the effects of 

random and selective mass extinctions on erosion of evolutionary history in communities 

of digital organisms. PloS one. 2012;7(5):e37233. 

3. Lande R. Risks of population extinction from demographic and environmental 

stochasticity and random catastrophes. Am Nat. 1993;142(6):911-27. 

4. Wootton JT, Pfister CA. Experimental separation of genetic and demographic 

factors on extinction risk in wild populations. Ecology. 2013;94(10):2117-23. 

5. Melbourne BA, Hastings A. Extinction risk depends strongly on factors 

contributing to stochasticity. Nature. 2008;454(7200):100-3. 

6. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. 

Inbreeding and extinction in a butterfly metapopulation. Nature. 1998;392(6675):491-4. 

7. O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R. 

Realistic levels of inbreeding depression strongly affect extinction risk in wild 

populations. Biol Conserv. 2006;133(1):42-51. 

8. Alvarez LW, Alvarez W, Asaro F, Michel HV. Extraterrestrial cause for the 

Cretaceous-Tertiary extinction. Science. 1980;208(4448):1095-108. 

9. Bengtsson J, Milbrink G. Predicting extinctions: interspecific competition, 

predation and population variability in experimental Daphnia populations. Oecologia. 

1995;101(4):397-406. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2015. ; https://doi.org/10.1101/022798doi: bioRxiv preprint 

https://doi.org/10.1101/022798
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

10. Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE. Second-

Order selection for evolvability in a large Escherichia coli population. Science. 

2011;331(6023):1433-6. doi: 10.1126/science.1198914. 

11. Yedid G, Ofria Charles A, Lenski Richard E. Selective press extinctions, but not 

random pulse extinctions, cause delayed ecological recovery in communities of digital 

organisms. The American Naturalist. 2009;173(4):E139-E54. doi: 10.1086/597228. 

12. Solan M, Cardinale BJ, Downing AL, Engelhardt KA, Ruesink JL, Srivastava DS. 

Extinction and ecosystem function in the marine benthos. Science. 2004;306(5699):1177-

80. 

13. Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution 

in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat. 

1991;138(6):1315-41. 

14. Blount ZD, Borland CZ, Lenski RE. Historical contingency and the evolution of a 

key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci 

USA. 2008;105(23):7899-906. doi: 10.1073/pnas.0803151105. 

15. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. 

Experimental evolution. Trends Ecol Evol. 2012;27(10):547-60. doi: 

10.1016/j.tree.2012.06.001. 

16. Koser SA. Correlation of citrate utilization by members of the colon-aerogenes 

group with other differential characteristics and with habitat. J Bacteriol. 1924;9(1):59. 

17. Turner CB, Blount ZD, Mitchell DH, Lenski RE. Evolution and coexistence in 

response to a key innovation in a long-term evolution experiment with Escherichia coli. 

Evolution. In review. http://biorxiv.org/content/early/2015/06/17/020958 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2015. ; https://doi.org/10.1101/022798doi: bioRxiv preprint 

https://doi.org/10.1101/022798
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

18. Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key 

innovation in an experimental Escherichia coli population. Nature. 2012;489(7417):513-

8. 

19. Pos KM, Dimroth P, Bott M. The Escherichia coli citrate carrier CitT: a member 

of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator 

from spinach chloroplasts. J Bacteriol. 1998;180(16):4160-5. 

20. Levin BR, Stewart FM, Chao L. Resource-limited growth, competition, and 

predation: a model and experimental studies with bacteria and bacteriophage. Am Nat. 

1977;111(977):3-24. 

21. Reddy C, Beveridge TJ, Breznak JA, Marzluf G. Methods for General and 

Molecular Microbiology. Washington, D.C.: American Society for Microbiology Press; 

2007. 

22. Schoener TW, Spiller DA, Losos JB. Predators increase the risk of catastrophic 

extinction of prey populations. Nature. 2001;412(6843):183-6. 

23. Spiller DA, Losos JB, Schoener TW. Impact of a catastrophic hurricane on island 

populations. Science. 1998;281(5377):695-7. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2015. ; https://doi.org/10.1101/022798doi: bioRxiv preprint 

https://doi.org/10.1101/022798
http://creativecommons.org/licenses/by-nc-nd/4.0/

