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Abstract 

Genomic selection is an accurate and efficient method of estimating genetic merits by 

using high-density genome-wide single nucleotide polymorphisms (SNPs).In this study, 

we investigate an approach to increase the efficiency of genomic prediction by using 

genome-wide markers. The approach is a feature selection based on genomic best linear 

unbiased prediction (GBLUP),which is a statistical method used to predict breeding 

values using SNPs for selection in animal and plant breeding. The objective of this 

study is the choice of kinship matrix for genomic best linear unbiased prediction 

(GBLUP).The G-matrix is using the information of genome-wide dense markers. We 

compare three kinds of kinships based on different combinations of centring and scaling 

of marker genotypes.And find a suitable kinship approach that adjusts for the resource 

population of Chinese Simmental beef cattle.Single nucleotide polymorphism (SNPs) 

can be used to estimate kinship matrix and individual inbreeding coefficients more 

accurately. So in our research a genomic relationship matrix was developed for 1059 

Chinese Simmental beef cattle using 640000 single nucleotide polymorphisms and 

breeding values were estimated using phenotypes about Carcass weight and Sirloin 

weight. The number of SNPs needed to accurately estimate a genomic relationship 

matrix was evaluated in this population. Another aim of this study was to optimize the 

selection of markers and determine the required number of SNPs for estimation of 

kinship in the Chinese Simmental beef cattle. 

We find that the feature selection of GBLUP using Xu’s and the Astle and Balding’s 

kinships model performed similarly well, and were the best-performing methods in our 

study. Inbreeding and kinship matrix can be estimated with high accuracy using 

≥12,000s in Chinese Simmental beef cattle. 
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Introduction 

With the development of genetic markers, especially high throughput genotyping 

technology, it becomes available to estimate breeding value at genome level, i.e. 

genomic selection (GS)[1,2].Genomic selection increases the rate of genetic 

improvement and reduces cost of progeny testing by allowing breeders to preselect 

animals that inherited.Several approaches of genomic prediction have been presented. 

One of them is the genomic best linear unbiased prediction (GBLUP), which uses 

Genomic information in the form of a genomic relationship matrix that defines the 

additive genetic covariance between individuals[3,4]. The genomic relationship 

coefficients are estimated with higher accuracy than when using pedigree information 

because genomic information can capture of Mendelian sampling across the genome. 

GBLUP has become popular approach in genomic selection of dairy cattle [5,6], 

because it is simple and has low computational requirements[7,8].Traditionally 

relationships are encoded in pedigrees of known relatives[9-11], but for more distantly 

related individuals, pedigree information can sometimes be erroneous or difficult to 

obtain. Relatedness can also be calculated from large panels of genetic markers[12-16]. 

The other is to predict GEBV with genetic relationship matrix, which constructs genetic 

relationship matrix via high throughput genetic markers and then predicts GEBV 

through linear mixed model (GBLUP)[17]. Genomic predictions can be based on a 

BLUP-GS model in which the average relationship matrix based on pedigree in the 

traditional BLUP model is replaced by a genomic relationship matrix based on 

markers[18]. The expected relationship matrix among individuals in the population is 

replaced with the realized relationship matrix (or genomic relationship matrix) derived 

from markers[19]. 

At the same time new genotyping technologies have contributed to a reduction of 
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genotyping costs. However, the cost of genotyping with a large number of markers is 

still a barrier for practical application of a G matrix in Chinese Simmental beef cattle 

breeding programs. A reduced set of markers which could estimate an accurate G matrix 

would contribute to substantial cost reduction of genomic selection schemes. Our 

research also find the number of markers we can get to estimate genomic inbreeding 

coefficient and kinship matrix accurately in Chinese Simmental beef cattle. To have a 

comparison, we also used a least absolute shrinkage and selection operator (LASSO) 

approach to estimate marker effects for genomic selection. Compare with the GBLUP 

approach to find their superiorities. 

In this article, cross validation (CV) is applied to assess prediction ability[20,21]. In the 

cross validation method, the basic idea is to divide a data set into a training set and a 

validation set, to omit any kind of information of the validation set and to predict this 

information. However, in animal breeding applications individuals present vary degrees 

of genetic relationships, and obtaining independent training and validation sets is 

seldom possible. 

Genomic relationships can better estimate the proportion of chromosomes segments 

shared by individuals because high-density genotyping identifies genes identical in 

state that may be shared through common ancestors not recorded in the pedigree. A 

genomic relationship matrix (G) can be calculated by different methods. We investigate 

three kinship matrices within genetic best linear unbiased prediction (GBLUP). And we 

find a suitable kinship approach that adjusts for the resource population of Chinese 

Simmental beef cattle.The another aim of this study was to optimize the selection of 

SNPs and determine the number of informative SNPs necessary to estimate genomic 

inbreeding and kinship matrix accurately in Chinese Simmental beef cattle. 
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Materials and methods 

Ethics statement 

The whole procedures we do for animals were in strict accordance with the guidelines 

proposed by the China Council on Animal care, and all protocols were approved by the 

Science Research Department of the Institute of Animal Science, Chinese Academy of 

Agricultural Sciences (CAAS) (Beijing, China). The use of animals and private land 

used in this study were approved by the owners. And samples were collected along with 

the regular quarantine inspection on the farms. 

 

Animal resource and phenotypes 

Our resource population of the Simmental cattle was established in Ulgai, Xilingol 

league, Inner Mongolia of China,the mapping population consisted of 1059young 

Simmental bulls born in 2009-2014. After weaning, the cattle was moved to Beijing 

Jinweifuren cattle farm for feedlot finishing under the same feeding and management 

system. Each individual bull was observed for growth and developmental traits until 

slaughtered at 16-18 months of age. This study mainly focused on the phenotypic traits 

associated with cattle meet production, so during the period of slaughter, carcass traits 

and meat traits were measured according to the Institutional Meat Purchase 

Specification for fresh beef guide lines. Two carcass related traits were studied in the 

study. Carcass weight (CW) was measured after slaughter and bloodletting by 

eliminating the hide, head, feet, tail, entrails and gut fill. And sirloin weight(SW) were 

measured directly from carcass anatomy. 

Phenotypic correction 

After collecting the original data, phenotypes should be correctedin advance. With the 

fixed effects, including years, farms and fatten daysof birthentering weight using the 
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following equation: 

i j k mijkm Fattendays Eweight Year Season ey        

Where ijkmy is the phenotypic value, μ is the population mean, Both of iFattendays  

and jEweight are continue variables, Fattendays is the days since entering fattening 

farm to slaughtering and jEweight  is the live weight when entering fattening farm. 

kYear is the slaughtering year, which are divided into three groups (2009, 2010 and 

2011, 2012, 2013, 2014). mSeason  is the calving season including the three levels 

(November to April, May to August and September to October). e was the random 

residual. which was exerted for the subsequent association study with SNP. 

 

SNP data 

Semen or blood samples were collected along with regular quarantine inspection of the 

farms. Genomic DNA was extracted from blood samples using a TIANamp Blood DNA 

Kit (Tiangen Biotech Company limited, Beijing, Chain), and DNAs with an A260/280 

ratio ranging between 1.8 and 2.0 were subject to further analysis. All individuals were 

genotyped using the Illumina BovineSNP BeadChip containing 774660 SNPs, 

Genotyping and quality control 

Blood samples we collected along with regular quarantine inspection of the farms. 

Genomic DNA was extracted from blood samples using a TIANamp Blood DNA Kit 

(Tiangen Biotech Company limited, Beijing, Chain), and DNAs with an A260/280 ratio 

ranging between 1.8 and 2.0 were subject to further analysis. the mean value of distance 

between each marker is 3.43Kb and variance value of distance between each marker is 

19.19Mb The Illumina BovineHD BeadChip[22] contains 774,660 SNPs were 

manufactured for individuals genotyping. 

About quality control. We used The PLINK software (v1.9, 

http://pngu.mgh.harvard.edu/~purcell/plink/)  to exclude individuals and remove 
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undesired SNPs. The procedure about quality control was conducted as follows: firstly, 

when call rates are less than 90%, minor allele frequencies are less than 5%, genotype 

appearances are less than five individuals or departure from Hardy-Weinberg 

equilibrium is severe (with lower than 10-6 probability). Then an individual would be 

excluded with missing genotypes above 10% or Mendelian error of SNP genotype more 

than 2%. Additionally, all of the misplaced SNPs were excluded from the analysis. 

 

Model 

We explored the effects of the GBLUP with different kinship matrixes on the predictive 

power of GS models using Chinese beef cattle real data sets including continuous 

phenotypic traits about Carcass weight and sirloin weight. 

Mixed model for GBLUP 

y =μ + Zg + e                g∼N (0,
2

gG )                   (1) 

where g are the random effects and Z is a design matrix that can be used for example 

to indicate the same genotype exposed to different environments. Any positive definite 

matrix can be used for G. Fixed effects can also be included in (1) in order to capture 

purely environmental effects. where G is the realized genomic relationship matrix, 

calculated from marker genotypes without using pedigree information. Following 

VanRaden[18]. 

Kinship Estimation 

Genomic relationships can better estimate the proportion of chromosomes segments 

shared by individuals because high-density genotyping identifies genes identical in 

state that may be shared through common ancestors not recorded in the pedigree. The 

SNP-based kinship of two individuals is usually based on the average over SNPs of the 

product of their genotypes, coded as 0, 1 and 2 according to the count of one of the two 

alleles. By design, it can only capture the additive components of kinship, and it has 

very low power in identifying non-additive ones. In the following, we denote this 
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genotype matrix with X, with rows corresponding to individuals and columns to SNPs, 

and with ix its ith  column. 

The first study that presented a marker based relationship matrix was VanRaden et al., 

[18]. They calculated the relationship based on the concept of a similarity index. When 

the marker data have been collected on a sample of individuals, we can estimate the 

VanRaden’s kinship matrix[18,23] as  

 

1
1

1
( )2 2( )

Tn

i ii
i

in
ppG XX


                               (2) 

In this kinship matrix.n is the number of markers and
ip is a vector with every entry 

equal to the population allele fraction. Centring improves interpretability, since kinship 

values can be interpreted as an excess or deficiency of allele sharing compared with 

random allocation of alleles. and so zero can be interpreted as “unrelated”. However, 

the requirement to estimate the 
ip , usually from the same data set, can cause problems 

in some settings. 

One criticism of the kinship matrix is that the sharing of a rare allele between two 

individuals counts the same as the sharing of a common allele. On enatural approach to 

giving more weight to the sharing of a rare allele is to standardize over SNPs. So we 

can estimate the Astle and Balding’s kinship matrix[16,24]as  

 

2
1

1 Tn

i
i

inG X X


    where 
(1 2 )

2

2

i i
i

i i

pX
X

p p





           （3） 

The (i, j) entry of 2G can be interpreted as an average over SNPs of the correlation 

coefficient estimated from a single pair of individuals, i and j. 

For the kth marker from the jth animal, the SNP genotype was numerically coded as

1jkX  , 0jkX   and 1jkX   , respectively, for the homozygote of minor allele, 

the heterozygote and the homozygote of major allele，
jjX  is the situation of j  
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equal k .Therefore, the genotype data are represented by a Z matrix with a 

dimensionality n m , where 1059m   the sample is size and 640000n   is the 

number of SNP markers. The marker generated Xu’s kinship matrix[25] calculated 

using 

 

1
3

1

( )

Tn
jk jk

i jj

X X

n mean X
G



                         （4） 

 

Least absolute shrinkage and selection operator (LASSO) 

LASSO (citation) is a variable selection approach in statistics, but it has been used for 

genomic prediction (citation). Here, we adopted this method as the standard for 

comparison. Although Bayes B (citation) is a more desirable standard method for 

comparison, it may take unreasonable amount of time to finish the data analysis for 

such a large number of markers in the data. 

Cross validation 

Cross validation (CV)[20,21], sometimes called rotation estimation, is a technique for 

assessing how the results of a statistical analysis will generalize to an independent data 

set. It is mainly used in settings where the goal is prediction, and one wants to estimate 

how accurately a predictive model will perform in practice. In k-fold cross-validation, 

the original sample is randomly partitioned into k equal size subsamples.  

In this study, we used five types (2、4、6、8、10) of cross validation to analysis the 

impacts of varying the training set size on the predictive ability. Each type of CV was 

replicated 200 times, resulting 200 average predictive abilities. In one replicate of a 

CV, the entire set is randomly divided into a training set, which is used for parameter 

estimation; and a validation set, for which genetic values are predicted. The predictive 

abilities are then averaged to obtain one average correlation per CV replicate. 

Construction of Marker Panel Subsets 

The R software was used to test the number of markers necessary to precisely predicted 
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breeding values withthe approach of GBLUP in Chinese Simmental beef cattle. Subsets 

(n= 600, 1500, 3000, 6000, 12000, 3000, 60000, 120000, 240000, 360000, 680000.)of 

markers were randomly sampled with replacement from the full set of 680000 markers 

to ensure a random representation of the entire genome within the marker subset. We 

choose equal markers from every chromosome(30) for all 1059 cattle. And using the 

subsets of markers to estimate the kinship matrix.  

Results  

Effect of predictive correlations with different number of markers 

The first we use different marker sets (n= 600, 1500, 3000, 6000, 12000, 3000, 60000, 

120000, 240000, 360000, 680000.) to estimate kinship matrix. And then from the 

GBLUP we can get the predictive correlations10-fold
cvp ( i.e. the correlations 

obtained from cross-validation), cross validation (CV) is applied to assess prediction 

ability with different number of markers. As can be seen from Figure S1. While 

estimates of genomic relationship matrix based upon at least 12,000 SNPs appear to be 

extremely stable, the predictive correlations can be robust. Estimating appear to be very 

sensitive to SNP sample size when fewer than 6,000 SNP are used. It has very 

significant consequences for both conservation genetic and GS applications because 

there are currently a question about cost of the high throughput sequencing.  

The results suggest that the small sets of SNPs are also likely to be commercialized 

within the beef and dairy cattle industries. It will have some utility for the estimation 

of genomic relationship matrix and that will allow the estimation of molecular breeding 

values for traits other than those targeted by the SNPs within the panels. However, our 

results also indicate that the greatest benefits of the technology will not be realized until 

inexpensive assays can be produced which query ≥12000 SNPs. 
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Choose a suitable kinship matrix estimation for Chinese Simmental beef cattle 

We evaluated predictive ability for CW and SW using three kinds of kinship matrix 

approaches via a series of 2、4、6、8、10-fold CVs with all markers and get 200 

replicates. From figure S2 and S3 we see that the predictive performance of GBLUP 

improves as the kinship matrices progress from G1 through to G3. G2.The results are 

illustrated in table. S1. The means of the predicted correlations of G3 in the 2 4 8-fold 

are higher than G2 on the trait of CW, and they are both more accuracy than G1. While 

in the trait of SW from table. S2, the predicted correlations of 4 6 8 10-fold are higher 

than G3, and they both have a better effect than the G1. Although small differences 

were observed in the ranks obtained with different genomic matrices. However, these 

differences have direct implications on selection decisions and genetic progress. 

Comparison with the method of LASSO 

Another aim of this study was to compare the predictive abilities for CW and SW using 

GBLUP method and the LASSO method. And we can compare them to find their 

superiorities. In our study, the candidate population GEBV accuracy with the all 

markers was compared with using CV-GBLUP and CV-LASSO approaches (Table S3) 

via a series of 10-fold CVs with 100 replicates and 20 replicates. The accuracy obtained 

by GBLUP exceeded that of LASSO. Table 3 also shows the computing time needed to 

run LASSO was more than for GBLUP. A large proportion of the time in LASSO is 

spent in cross-validation used to define the markers size. 

Discussion and conclusions 

Simmental beef producers select for meat yield and quality to increase their income 

from steer feedlots and sold sirloin. Estimated breeding values (EBVs) for Carcass 

weight (CW), sirloin weight(SW) are commonly used as selection criteria in attempts 

to increase meat yield and quality, which determine profitability for the Simmental beef 

industry[26].To our knowledge, this is the first application of genomic prediction on a 
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real set of SNP genotyping data in Chinese beef Simmental cattle. Moreover we have 

used two approaches of cv-LASSO and cv-GBLUP (with three kinship matrix methods) 

to obtain it. 

Due to the huge number of SNPs, it is interesting to compare the accuracy with different 

number of markers to construct the kinship matrices. SNP density is an important factor 

affecting accuracy of prediction in previous papers[27].Based on the result of our real 

Simmental data analysis, the predictability was almost constant until the number of 

markers reduced to about 12000, below which the curve started to drop rapidly. That is 

to say we could get a stable estimation of kinship with no less than 12000 markers. In 

the current study it was shown that 2,500-10,000 SNPs were needed for robust 

estimation of genomic relationship matrices with high accuracy in 

cattle[28,29].Furthermore 10,000 SNPs the genomic relationship coefficients seemed 

to be extremely robust while building the G matrix with 2,500 SNPs seemed to be very 

sensitive to SNP sample size. The inappropriate selection of marker numbers is a 

consequence of our previous real data result and other reports. They all provide the 

evidence that little change of predictive accuracy will occur when the number of 

markers used to construct the kinship is over 10,000. In another way some studies 

[30,31] found that little decrease in accuracy was obtained when the selected markers 

are low in useful LD with causal polymorphisms. The underlying mechanism therefore 

seems to depend on a sufficient number of SNPs being in low LD with causal 

polymorphisms, rather than few SNPs in close physical association and high LD. The 

present study confirmed that dcreasing the number of markers didn’ t result in reduction 

of information . Thus ,using a reduced set of markers is possible to estimate accurate 

genomic inbreeding and kinship matrix estimation and makes it possible to reduce 

genotyping costs as well. 

Second, the objective of this study was to apply different genomic matrices to analyses 

of high density SNP panel in a Simmental population and evaluate the impact of those 

G matrix on predictive correlations. It is obvious that different methods used to 

construct the kinship matrix may result in a totally different results. From the previous 

paper we find three methods of kinship matrix estimation. The first empirical formula 
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proposed by VanRaden is widely accepted that it could efficiently reflect the genetic 

relationship[18].But through the results, we know that the accuracy of predictive 

correlations is not quite good for Chinese Simmental beef cattle population. So the 

VanRaden kinship estimation approach isn’t suitable for the population compare with 

the other two methods. The Astle and Balding’s model is another widely adopted 

method to estimate the kinship matrix with markers[24].The first reason why we choose 

the method is the use of Astle and Balding’s model instead of identityby-state (IBS) 

model (another approach ) slightly increased the observed reliability of the predictions. 

The second theAstle and Balding’s model often used in GWAS research and proved it 

had a very good effect[32-34]. Compared with the two models, Xu’s model also can 

provide the close relationship with markers. We first attempt to introduce this method 

for our research. At last we find this method also has an equal function with the Astle 

and Balding’s method. So the feature selection of GBLUP using the last two kinships 

performed similarly wellon Chinese Simmental beef cattle. 

We also compared the performance of two different statistical methods to ensure that 

there are no artifacts caused by human errors in any single method. Two methods 

produced very similar results. Our results demonstrate that GBLUP can accurately 

estimate the effects of SNPs associated with QTL in dense SNP data, leading to 

accurately predicative correlation for genomic selection, in GBLUP, all SNP effects are 

assumed to be distributed normally, and the effects are fitted using a single distribution. 

But in LASSO, major SNPs can be selected from high-throughput SNPs, in this method, 

most SNPs are shrunk to zero and only a few key SNPs are retained, and thus LASSO 

can be used for selecting potential candidate SNPs. But in our results, we also find the 

method of cv-LASSO isn’t stable, the result prove it slightly floating, on the other hand 

the LASSO spend more time than GBLUP.  
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 Fig. 1 The predicted correlations with different SNP densities. The GBLUP of relationship 

matrix methods G2 we can get the 10-fold with 200 replicates to assess predicted 

correlations with different number of markers on the trait of sirloin weight (SW). 
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Fig. 2 The predicted correlations of GBLUP with 2, 4, 6, 8, 10 cv-fold of CW using G1, G2, G3. 

Each Column chart illustrates the average predictive correlations for 200 replicates of CV procedure 

using GBLUP.  

 

Fig. 3 predicted correlations of GBLUP with 2, 4, 6, 8, 10 cv-fold of SW using G1, G2, G3. Each 

Column chart illustrates the average predictive correlations for 200 replicates of CV procedure using 

GBLUP.  
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CV G1(sd) G2(sd) G3(sd) 

2 0.2673(0.0271) 0.2698(0.0232) 0.2757(0.0255) 

4 0.2880(0.0158) 0.2898(0.0143) 0.2939(0.0163) 

6 0.2933(0.0122) 0.2957(0.0105) 0.2950(0.0122) 

8 0.2963(0.0102) 0.2983(0.0096) 0.2994(0.0108) 

10 0.2968(0.0095) 0.2997(0.0082) 0.2989(0.0100) 

Table 1. The mean of predicted correlations and with the Standard Deviations of GBLUP with 

2, 4, 6, 8, 10 cv-fold of CW using G1, G2, G3 

 

 

CV G1(sd) G2(sd) G3(sd) 

2 0.2708(0.0250) 0.2799(0.0251) 0.2833(0.0261) 

4 0.2945(0.0147) 0.2994(0.0157) 0.2969(0.0155) 

6 0.2982(0.0113) 0.3045(0.0105) 0.3000(0.0133) 

8 0.2997(0.0107) 0.3082(0.0089) 0.3018(0.0104) 

10 0.3010(0.0083) 0.3094(0.0084) 0.3020(0.0090) 

Table 2. The mean of predicted correlations and with the Standard Deviations of GBLUP 

with 2, 4, 6, 8, 10 cv-fold of SW using G1, G2, G3.  
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method CW SW Computing time 

(min) 

Allocated memory 

 (kb) 

GBLUP 0.2997(0.0082) 0.3094(0.0084) 00:08:39 46368326 

LASSO 0.2970(0.0427) 0.2953(0.0412) 02:03:29 44352028 

Table 3. Predicted correlations, total computational time and memory resources required 

for the two methods used.  

They were calculated at 10-fold CV procedure for the SW trait with the similar computer, and get 

200 replicates with GBLUP, 20 replicates with LASSO. 
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CV G1(sd) G2(sd) G3(sd) 

2 0.2673(0.0271) 0.2698(0.0232) 0.2757(0.0255) 

4 0.2880(0.0158) 0.2898(0.0143) 0.2939(0.0163) 

6 0.2933(0.0122) 0.2957(0.0105) 0.2950(0.0122) 

8 0.2963(0.0102) 0.2983(0.0096) 0.2994(0.0108) 

10 0.2968(0.0095) 0.2997(0.0082) 0.2989(0.0100) 

Table 1. The mean of predicted correlations and with the Standard Deviations of GBLUP with 

2, 4, 6, 8, 10 cv-fold of CW using G1, G2, G3.  

 

CV G1(sd) G2(sd) G3(sd) 

2 0.2708(0.0250) 0.2799(0.0251) 0.2833(0.0261) 

4 0.2945(0.0147) 0.2994(0.0157) 0.2969(0.0155) 

6 0.2982(0.0113) 0.3045(0.0105) 0.3000(0.0133) 

8 0.2997(0.0107) 0.3082(0.0089) 0.3018(0.0104) 

10 0.3010(0.0083) 0.3094(0.0084) 0.3020(0.0090) 

Table 2. The mean of predicted correlations and with the Standard Deviations of GBLUP 

with 2, 4, 6, 8, 10 cv-fold of SW using G1, G2, G3.  

 

method CW SW Computing time 

(min) 

Allocated memory 

 (kb) 

GBLUP 0.2997(0.0082) 0.3094(0.0084) 00:08:39 46368326 

LASSO 0.2970(0.0427) 0.2953(0.0412) 02:03:29 44352028 

Table 3. Accuracy of prediction, total computational time and memory resources required 

for the two methods used.  

They were calculated at 10-fold CV procedure for the SW trait with the similar computer, and get 

200 replicates with GBLUP, 20 replicates with LASSO. 
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