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Abstract

A dominant approach to genetic association studies
is to perform univariate tests between genotype-
phenotype pairs. However, analysing related traits to-
gether increases statistical power, and certain complex
associations become detectable only when several variants
are tested jointly. Currently, modest sample sizes of in-
dividual cohorts and restricted availability of individual-
level genotype-phenotype data across the cohorts limit
conducting multivariate tests.

We introduce metaCCA, a computational frame-
work for summary statistics-based analysis of a single
or multiple studies that allows multivariate represen-
tation of both genotype and phenotype. It extends
the statistical technique of canonical correlation analysis
to the setting where original individual-level records are
not available, and employs a covariance shrinkage algo-
rithm to achieve robustness.

Multivariate meta-analysis of two Finnish studies

of nuclear magnetic resonance metabolomics
by metaCCA, using standard univariate output from
the program SNPTEST, shows an excellent agreement
with the pooled individual-level analysis of original data.
Motivated by strong multivariate signals in the lipid
genes tested, we envision that multivariate association
testing using metaCCA has a great potential to provide
novel insights from already published summary statistics
from high-throughput phenotyping technologies.

Code is available at https://github.com/aalto-ics-
kepaco.

1 Introduction

Most human diseases and traits have a strong ge-
netic component. Genome-wide association stud-
ies (GWAS) have proven effective in identifying ge-
netic variation contributing to common complex dis-
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orders, including type 2 diabetes (Mahajan et al.,
2014), cardiovascular disease (Deloukas et al., 2013),
schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014), and quan-
titative traits, such as lipid levels (Global Lipids Ge-
netics Consortium, 2013; Surakka et al., 2015) and
metabolomics (Kettunen et al., 2012; Shin et al.,
2014).

A dominant approach to GWAS is to test
one single-nucleotide polymorphism (SNP)
at a time against one quantitative phenotype
measure or a binary disease indicator. This univari-
ate approach is unlikely to be optimal when millions
of SNPs and a growing number of phenotypes,
including serum metabolomic profiles (Kettunen
et al., 2012; Shin et al., 2014), three-dimensional
images (Wang et al., 2013), and gene expression
data (Ardlie et al., 2015) become available simulta-
neously. Indeed, a recent comparison demonstrated
that utilising multivariate phenotype representation
increases statistical power and leads to richer
findings in the association tests compared to the
univariate analysis (Inouye et al., 2012). Moreover,
some complex genotype-phenotype correlations
can be detected only when testing several genetic
variants simultaneously (Marttinen et al., 2014).

Unfortunately, restricted availability of complete
multivariate individual-level records across the co-
horts currently limits multivariate analyses. Often,
only the univariate GWAS summary statistics from
individual cohorts are publicly available. Hence,
a major question is how we can use the univari-
ate results to carry out a multivariate meta-analysis
of GWAS (Evangelou and Ioannidis, 2013), which is
crucial to increase the power to identify novel genetic
associations.

Recently, two kinds of approaches for utilising
univariate summary statistics in multivariate test-
ing have been proposed: 1) one SNP against mul-
tiple traits (Stephens, 2013; Vuckovic et al., 2015;
Zhu et al., 2015) and 2) multiple SNPs against
one trait (Vaitsiakhovich et al., 2015; Feng et al.,
2014; Yang et al., 2012). We propose a new frame-
work, metaCCA, that unifies both of the existing
approaches by allowing canonical correlation anal-
ysis (CCA) of multiple SNPs against multiple traits
based on univariate summary statistics and publicly
available databases.

CCA is a well-established statistical technique

for identifying linear relationships between two sets
of variables, and has been successfully applied
to GWAS (Inouye et al., 2012; Marttinen et al., 2013;
Ferreira and Purcell, 2009; Tang and Ferreira, 2012).
Our metaCCA method extends CCA to the setting
where original individual-level measurements are not
available. Instead, metaCCA works with three
pieces of the full data covariance matrix, and applies
a covariance shrinkage algorithm to achieve robust-
ness. We demonstrate the performance of metaCCA
using SNP and metabolite data from three Finnish
cohorts. In summary, this paper makes the following
contributions.

• To our knowledge, we provide the first compu-
tational framework for association testing be-
tween multivariate genotype and multivariate
phenotype based on univariate summary statis-
tics from single or multiple GWAS. Our imple-
mentation is freely available.

• We demonstrate how to accurately estimate cor-
relation structures of phenotypic and genotypic
variables without an access to the individual-
level data.

• We avoid false positive associations by a covari-
ance shrinkage algorithm based on stabilisation
of the leading canonical correlation.

• Our approach, metaCCA, is a general frame-
work to conduct CCA when full data are not
available, and therefore it is widely applicable
also outside GWAS.

2 Methods

This section is organised as follows. First, section
2.1 explains univariate GWAS, the results of which,
in the form of cross-covariance matrix, constitute
an input to metaCCA described in section 2.2; sec-
tion 2.3 demonstrates how a meta-analysis of sev-
eral studies is conducted in our framework; section
2.4 outlines a procedure for choosing SNPs repre-
sentative of a given locus; finally, section 2.5 intro-
duces the data we used to test metaCCA in the meta-
analytic setting.
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Figure 1: Schematic picture showing an overview of metaCCA
framework for summary statistics-based multivariate associa-
tion testing using canonical correlation analysis. A) metaCCA
operates on three pieces of the full covariance matrix Σ: ΣXY

of univariate genotype-phenotype association results, ΣXX

of genotype-genotype correlations, and ΣY Y of phenotype-
phenotype correlations. B) Σ̂XX is estimated from a ref-
erence database matching the study population, e.g. the
1000 Genomes, and phenotypic correlation structure Σ̂Y Y

is estimated from ΣXY . C) A covariance shrinkage algorithm
is applied to add robustness to the method. Numbers in brack-
ets refer to subsections in Methods. Meta-analysis of several
studies is performed by pooling covariance matrices of the
same type, before step C), as described in section 2.3. The
data reduction achieved by metaCCA can be seen in Supple-
mentary Figure 1.

2.1 Univariate GWAS

Let X and Y denote genotype and phenotype ma-
trices of dimensions N×G and N×P , respectively,
storing the individual-level data; N the number
of samples; G and P the number of genotypic and
phenotypic variables, respectively. The columns
of X and Y are standardised to have mean 0 and
standard deviation 1.

Typically, univariate GWAS analysis of quantita-
tive traits tests for an association between each pair
of genotype xxxg∈ RN and phenotype yyyp∈ RN sepa-

rately using a linear model:

yyyp = αgp + xxxgβgp + εεε. (1)

Coefficient βgp, corresponding to the slope of the
regression line, is the parameter of interest, since
it depicts the size of the effect of the genetic vari-
ant xxxg on the trait yyyp. Parameter αgp is an inter-
cept on the y-axis, and εεε indicates a Gaussian er-
ror term or noise. The model is fit by the method
of least squares that leads to a closed-form estimate
for the unknown parameter βgp:

βgp =
xxxTg yyyp

xxxTg xxxg
=

(N − 1)sxy
(N − 1)sxx

= sxy, (2)

where sxy is a sample covariance of xxxg and yyyp, and
sxx = 1 is a sample variance of xxxg. Hence, the cross-
covariance matrix ΣXY between all genotypic and
phenotypic variables is made of univariate regression
coefficients βgp:

ΣXY =
XTY

N − 1
=


β11 β12 · · · β1P
β21 β22 · · · β2P
...

...
. . .

...
βG1 βG2 · · · βGP

 . (3)

An important note is that if the individual-level
data sets X and Y were not standardised before ap-
plying the linear regression, the standardisation can
be achieved afterwards by a transformation

βSTANDR
gp =

1√
N SEgp

× βgp, (4)

where SEgp indicates the standard error of βgp,
as given by GWAS software. (Typically, SEgp ≈
σp/

(√
N
√

2fg(1− fg)
)

, where σp is the standard

deviation of the trait p, and fg is the minor allele
frequency of SNP g, but uncertainty in the genotype
imputation causes deviations from this expression.)

2.2 metaCCA

Conducting multivariate association tests requires
estimates of the dependencies between genotypic and
phenotypic variables, denoted ΣXX and ΣY Y , re-
spectively. Typically, they are calculated based on
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the individual-level measurements X and Y :

ΣXX =
XTX

N − 1
, (5)

ΣY Y =
Y TY

N − 1
. (6)

metaCCA operates on the cross-covariance matrix
ΣXY (eq. 3) and correlation structures Σ̂XX , Σ̂Y Y ,
estimated without an access to the individual-level
data X and Y (Figure 1A-B). To make the resulting
full covariance matrix Σ a valid covariance matrix,
metaCCA applies a shrinkage algorithm (Figure 1C).

The rest of this section describes the details
of metaCCA framework.

2.2.1 Estimation of genotypic correlation
structure

Genetic variation is organized in haplotype blocks,
whose structure is determined by mutation and re-
combination events, together with demographic ef-
fects, including population growth, admixture and
bottlenecks (Wall and Pritchard, 2003). Hence,
correlation structure of genetic variants differs be-
tween populations, such as, e.g., the Finns, Ice-
landers or Central Europeans. In metaCCA, Σ̂XX

is calculated using a reference database represent-
ing the study population, such as the 1000 Genomes
database (1000 Genomes Project Consortium (2012),
www.1000genomes.org), or other genotypic data
available on the target population. In the Results
section, we demonstrate that estimating Σ̂XX from
the target population (in our case the Finns) leads
to better results than utilising the data compris-
ing individuals across distinct populations (e.g. the
Finns and other Europeans). However, since ref-
erence data on the target population may not al-
ways be at hand, we also present a robust but less
powerful solution to multivariate association testing
by simply using genotypes of all individuals from
a certain broader geographical region (e.g. a con-
tinent) available under the 1000 Genomes Project.

2.2.2 Estimation of phenotypic correlation
structure

In our framework, phenotypic correlation structure
Σ̂Y Y is computed based on ΣXY . Each entry of Σ̂Y Y

corresponds to a Pearson correlation coefficient be-
tween two column vectors of ΣXY - univariate sum-

mary statistics of two phenotypic variables s and t
across G genetic variants:

Σ̂Y Y (s, t) =

∑G
g=1(βgs − µs)(βgt − µt)√∑G

g=1(βgs − µs)2
√∑G

g=1(βgt − µt)2
,

(7)

where µs and µt are the mean values computed
as µs=

1
G

∑G
g=1 βgs, and µt=

1
G

∑G
g=1 βgt. (The de-

tailed justification is provided in Supplementary
Data.) In Supplementary Data, we demonstrate that
the higher the number of genotypic variables G, the
lower the error of the estimate (Supplementary Ta-
ble 2). Thus, Σ̂Y Y should be calculated from sum-
mary statistics for all available genetic variants, even
if only a subset of them is taken to the further anal-
ysis.

2.2.3 Canonical Correlation Analysis

CCA (Hotelling, 1936) is a multivariate tech-
nique for detecting linear relationships between
two groups of variables X ∈ RN×G and
Y ∈ RN×P , where X and Y constitute two differ-
ent views of the same object. The objective is to find
maximally correlated linear combinations of columns
of each matrix. This corresponds to finding vectors
aaa ∈ RG and bbb ∈ RP that maximise

r =
(Xaaa)T (Y bbb)

‖Xaaa‖ ‖Y bbb‖
=

aaaTΣXY bbb√
aaaTΣXXaaa

√
bbbTΣY Y bbb

. (8)

The maximised correlation r is called canonical cor-
relation between X and Y . We provide the technical
details of the method, as well as its extension to sub-
sequent canonical correlations and their significance
testing in Supplementary Data.

2.2.4 Shrinkage

At this point, we have three covariance matrices,
namely ΣXY , Σ̂XX and Σ̂Y Y . However, in most
cases, the resulting full covariance matrix

Σ =

(
Σ̂XX ΣXY

ΣT
XY Σ̂Y Y

)
is not positive semidefinite (PSD), and therefore its
building blocks cannot be just plugged into the CCA
framework (eq. 8). To overcome this problem,
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in metaCCA, we apply shrinkage to find a nearest
valid Σ (Ledoit and Wolf, 2003). We use an iterative
procedure where the magnitudes of the off-diagonal
entries are being shrunk towards zero until Σ be-
comes PSD (Algorithm 1).

Algorithm 1

while Σ notPSD
Σ = 0.999× Σ;
diag(Σ) = 1;

;

Guaranteeing the PSD property of the full covari-
ance matrix is necessary, although, as we demon-
strate in the Results section, not sufficient to ob-
tain reliable results of the association analysis when
the estimate Σ̂XX (and/or Σ̂Y Y ) is noisy. In or-
der to address this issue, we propose a variant
of metaCCA, called metaCCA+, where the full co-
variance matrix Σ is shrunk beyond the level guar-
anteeing its PSD property. A challenge, however,
is to find an optimal shrinkage intensity. Shrinkage
applied without any stopping criterion would lead
to gradual removal of all dependencies between geno-
typic and phenotypic variables. Ledoit and Wolf
(2003) introduced an analytic approach for determin-
ing the optimal shrinkage level, but it requires the
individual-level data sets X and Y . In metaCCA+,
we monitor the leading canonical correlation value
r, and we continue the shrinkage of the full co-
variance matrix Σ until r stabilises. Specifically,
we track the percent change pc of r between subse-
quent shrinkage iterations, and we determine an ap-
propriate amount of shrinkage using an elbow heuris-
tic, similar to the criterion for finding the number
of clusters, frequently used in the literature (Tib-
shirani et al., 2001). The idea is that the slope
of the graph should be steep to the left of the elbow,
but stable to the right of it. We find an elbow, and
thus the appropriate number of shrinkage iterations,
by taking the point closest to the origin of the plot
of pc versus iteration number, as schematically
shown in Supplementary Figure 2.

Building blocks Σ̂XY , Σ̂XX , Σ̂Y Y of the resulting
full covariance matrix Σ, shrunk until it became PSD
or beyond, are then plugged into the CCA framework
to get the final genotype-phenotype association re-
sult. In the Discussion section, we further elaborate
on choosing the shrinkage mode in practical applica-
tions.

2.2.5 Types of the multivariate association
analysis

We consider the following two types of the multivari-
ate analysis.

1. Univariate genotype – multivariate phenotype
One genetic variant tested for an association
with a set of phenotypic variables (matrix Σ̂XX

not needed).

2. Multivariate genotype – multivariate phenotype
A set of genetic variants tested for an association
with a set of phenotypic variables.

The first type corresponds to a standard multi-trait
analysis. The second type takes into account the
effects across genomic variants on multiple traits,
which are ignored when analysing only a single SNP
or a single trait at a time.

2.3 Meta-analysis

metaCCA allows to conduct summary statistics-
based multivariate analysis of one or multiple
GWAS. In the meta-analytic setting, covariance

matrices Σ
(i)
XY , Σ̂

(i)
XX and Σ̂

(i)
Y Y corresponding

to i=1,...,M independent studies on the same topic
are pooled using a weighted average:

ΣXY =
(N1 − 1)Σ

(1)
XY + ...+ (NM − 1)Σ

(M)
XY

N −M
, (9)

whereNi denotes the number of samples in the ith co-
hort, and N = N1 + ...+NM . This step is performed
before applying the shrinkage to the full covariance
matrix. As is typical for a fixed-effects meta-analysis,
the weighted average is used in order to account for
the varying precision of the estimates. The formulas
for Σ̂XX and Σ̂Y Y are analogous to (9). However,
if all cohorts included in the meta-analysis have the
same underlying population, only one genotypic cor-
relation estimate is needed.

2.4 Choosing SNPs representing a locus

When analysing multiple genetic variants together,
we use a procedure for selecting from a given locus
a set of SNPs that jointly capture a maximal amount
of genetic variation in the locus, as measured
by a linkage disequilibrium (LD) score.
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In each iteration, a SNP g that maximises
LD-score, which we defined as

∑
k r̂

2
gkσ

2
k, is selected,

where the sum is over all SNPs k that have not yet
been chosen; r̂gk denotes a partial correlation be-
tween SNPs g and k; σ2k indicates empirical variance
of the residuals for SNP k after the effects of the
selected SNPs have been regressed out. The resid-
ual variance σ2k gets smaller, if the SNP has already
been well explained by the previously chosen ones;
hence, highly correlated SNPs will not be selected
together. In the first iteration, r̂gk is just a Pearson
correlation coefficient between SNPs g and k, and σ2k
equals 1.

This procedure was used for choosing sets
of SNPs representative of genes in the application
of metaCCA to summary statistics from the program
SNPTEST, described in section 3.2.

2.5 Data sets

In order to test our approach, we used genotypic and
phenotypic data from three Finnish population co-
horts: the Cardiovascular Risk in Young Finns Study
(YFS, N1=2390; Raitakari et al. (2008)), the FIN-
RISK study survey of 1997 (N2=3661; Vartiainen
et al. (2010)), and the Northern Finland Birth Co-
hort 1966 (NFBC, N3=4702; Rantakallio (1969)).
The detailed description of the cohorts can be found
in Supplementary Data.

Our phenotype data consist of 81 lipid measures
(Supplementary Table 1) from a high-throughput nu-
clear magnetic resonance (NMR) platform (Soini-
nen et al., 2009, 2015). As a pre-processing step,
within each cohort, each trait was quantile nor-
malised, and the effects of age, sex and ten lead-
ing principal components of the genetic population
structure were regressed out using a linear model.
All cohorts were genotyped using Illumina arrays,
and imputed by IMPUTE2 (Howie et al., 2009) us-
ing the 1000 Genomes Project reference panel (1000
Genomes Project Consortium, 2012). In the anal-
yses, we included 455 521 SNPs on chromosome 1
and, additionally, the SNPs in the following 5 genes:

• APOE (apolipoprotein E), 259 SNPs on chr 19;

• CETP (cholesteryl ester transfer protein),
387 SNPs on chr 16;

• GCKR (glucokinase (hexokinase 4) regulator),
160 SNPs on chr 2;

• PCSK9 (proprotein convertase subtilisin/kexin
type 9), 265 SNPs on chr 1;

• NOD2 (nucleotide-binding oligomerization do-
main containing 2), 145 SNPs on chr 16.

We expected that this set of genes would provide
a comprehensive spectrum of associations with our
phenotypes, since APOE, CETP, GCKR and PCSK9
have well-known associations to lipid levels, whereas
NOD2 is not known to have such an association
(NHGRI GWAS catalogue, Hindorff et al. (2011)).
All SNPs used were of good quality: IMPUTE2 info
≥ 0.8 (Marchini and Howie, 2010) and minor allele
frequency ≥ 0.05.

For multi-SNP models, we compared the results
from Finnish genotype data with those obtained
by estimating the genotypic correlation structure
Σ̂XX from the 1000 Genomes Project data on 503
European individuals (release 20130502).

For each cohort, genotypic and phenotypic corre-
lation structures computed based on X(i) and Y (i),
as shown in the eq. (5) and (6), can be found
in Supplementary Figures 3-4.

3 Results

3.1 Performance assessment

The purpose of this section is to validate that
metaCCA applied to summary statistics produces
similar results to the standard CCA (MATLAB func-
tion canoncorr) applied to the individual-level data.

For metaCCA, we always use Σ̂Y Y estimated
by the method described in section 2.2.2 using sum-
mary statistics of the entire chromosome 1.

We focus on the effects of:

• the amount of shrinkage applied to the full co-
variance matrix (metaCCA/metaCCA+);

• estimating Σ̂XX from the population underly-
ing the analysis (here, Finnish), or from a more
heterogeneous panel (here, European individu-
als from the 1000 Genomes database).
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Figure 2: Scatter plots of -log10 p-values between the pooled individual-level analysis of original data sets (full data CCA) and
metaCCA (first row), metaCCA+ (second row). a,b) Univariate genotype – multivariate phenotype; meta-analysis of NFBC,
FINRISK and YFS cohorts; c-f) Multivariate genotype – multivariate phenotype; meta-analysis of NFBC and YFS cohorts;
metaCCA/metaCCA+ was used with Σ̂XX computed from FINRISK (FIN, c,d), or from the 1000 Genomes database (1000G,
503 EUR individuals, e,f). In all the cases, lipid correlation structure Σ̂Y Y was calculated from univariate summary statistics for
SNPs from the entire chromosome 1. Single point corresponds to the result of one out of a-b) 178 752, c-f) 4 050 multivariate
tests. Numbers at the top of each plot indicate percentages of at least 0.5 unit overestimated metaCCA’s/metaCCA+’s -log10
p-values in the ranges [0, 10] (purple) or (10, max(-log10 p-value)] (red). This threshold is represented by purple and red lines.
Supplementary Figure 5 shows these results restricted to the x-axis range of [0, 10].

3.1.1 Univariate genotype – multivariate
phenotype

We conducted a meta-analysis of the three cohorts
(YFS, FINRISK and NFBC) by testing associa-
tions between each SNP in the five genes with dif-
ferent numbers of traits, ranging from 2 to 50.
Multi-trait analyses are most useful for correlated
traits (Stephens, 2013). To reflect this, for each
SNP, we started with a randomly selected trait, and
at each step of the analysis, added the trait mostly
correlated with the already chosen ones, excluding
correlations with absolute values above 0.95. For
each SNP, we repeated the procedure three times
with different starting lipid measures.

The scatter plot in Figure 2a shows that metaCCA

applied to the cohort-wise summary statistics pro-
vides an excellent agreement with the standard CCA
of the pooled individual-level data. Thus, in the one-
SNP analysis, we can base the inference on metaCCA
and put less weight on metaCCA+ (Figure 2b) that,
as expected, produces conservative p-values.

The wide range of the observed -log10 p-values
(0 to 88) shows that multivariate association tests
can be very powerful in realistic settings, and that
our example assesses the performance of metaCCA
throughout the range that is important in practi-
cal analyses. Supplementary Figure 5 further re-
fines the behaviour of metaCCA within the range
most encountered in genome-wide association studies
(0 to 10).
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3.1.2 Multivariate genotype – multivariate
phenotype

When both genotype and phenotype are multi-
variate, genotypic correlation structure Σ̂XX needs
to be estimated in addition to Σ̂Y Y . We conducted
the meta-analysis of two study cohorts (YFS and
NFBC), and computed Σ̂XX either from FINRISK
(FIN) or from 1000 Genomes European individu-
als (1000G). (Supplementary Table 3 shows errors
of Σ̂XX estimates.) We analysed together between
2 to 10 highly correlated lipid measures, chosen se-
quentially as in the single-SNP tests in section 3.1.1.
For each of the five genes, we analysed together
between 2 to 10 SNPs that were chosen to be ap-
proximately uncorrelated to cover a large propor-
tion of genetic variation within the gene. Each set
of SNPs was tested for an association with each
group of correlated lipid measures. We repeated the
procedure ten times for each gene, with different
starting phenotypes and SNPs.

The results are summarised in Figure 2c-f.
Figure 2c shows that when genotypic correlation
Σ̂XX is estimated from the target population,
metaCCA produces highly consistent results with
the standard CCA based on individual-level data.
When Σ̂XX is estimated from a less well matching
population (Figure 2e), the accuracy is reduced, and
some -log10 p-values become clearly overestimated.
In both cases, further shrinkage by metaCCA+
removes almost completely any overestimation
(Figure 2d,f). This property is expected to be im-
portant in genome-wide association studies, where
metaCCA+ can protect from false positives when
genotypic correlation structure cannot be accurately
estimated. metaCCA+ has less statistical power
than the individual-level CCA, but it is still able
to detect strong true associations.

Figure 3 illustrates the impact of the number
of genotypic and phenotypic features included in the
analysis on the accuracy of metaCCA/metaCCA+.
It shows that further improvement of the agreement
with the results of pooled-individual-level analysis
is achieved by testing a smaller number of variables
jointly.

Figure 3: Multivariate genotype – multivariate phenotype;
Contour plots showing an evolution of root mean square error
(RMSE) for a) metaCCA’s, b) metaCCA+’s -log10 p-values
as a function of the number of genotypic and phenotypic fea-
tures included in the analysis. Σ̂XX was calculated from
a) FINRISK cohort, b) the 1000 Genomes database (EUR
individuals), and Σ̂Y Y was estimated from summary statistics
for SNPs within chromosome 1. Contour plots for up to 25
variables are shown in Supplementary Figure 6.

3.2 Application to summary statistics
from SNPTEST

In the genetics community, established software
packages like SNPTEST (Marchini and Howie,
2010) are used to perform univariate genome-wide
tests. In this section, we conduct a meta-analysis
of univariate results from standard SNPTEST runs
on NFBC and YFS cohorts by metaCCA. These
cohorts have been meta-analysed previously us-
ing individual-level genotypes and the same serum
metabolomic profiles that we consider here (Inouye
et al., 2012). This single-SNP GWAS highlighted
candidate genes for atherosclerosis, and demon-
strated the power of incorporating multiple re-
lated traits into the analysis. Here, we show that
by metaCCA we obtain those same results without
the access to the individual-level data, and on top
of that we can also analyse multiple SNPs jointly
by using only summary statistics from the original
studies.

We wanted to choose a set of correlated traits
for the joint analysis, and therefore we proceeded
as follows. By an agglomerative hierarchical cluster-
ing (average linkage) of ΣY Y (81 traits) we identified
groups of related lipid measures. From the largest
of 6 distinct clusters, we selected a set of traits in
such a way that no pair exhibited correlation above
0.95. We ended up with a group of 9 lipid measures
related to 8 VLDL particles of different sizes and
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Table 1: Multi-SNP: Comparison between -log10 p-values of CCA on pooled individual-level data sets (NFBC+YFS) and the
meta-analyses conducted using metaCCA and metaCCA+. For each gene, a set of 5 SNPs was tested for an association with the
group of 9 related lipid measures. Top single-SNP: For each gene, the largest -log10 p-value from single-SNP–multi-trait (CCA)
and all possible single-SNP–single-trait (univariate) tests are shown (with details in Supplementary Table 4). The number of tests
in each gene is 1 for multi-SNP tests, G for CCA and 9 ×G for univariate, where G is the number of SNPs in that gene.

gene
multi-SNP top single-SNP

CCA metaCCA metaCCA+ CCA univariate

(multi-trait) (single-trait)

APOE 8.36 8.51 8.25 11.54 8.60
CETP 9.60 10.60 8.51 23.77 10.04
GCKR 3.95 3.89 3.80 9.64 14.21
PCSK9 0.12 0.13 0.12 6.58 4.63
NOD2 0.22 0.27 0.20 0.97 2.46

one HDL particle (XXL.VLDL.PL, XXL.VLDL.P,
XL.VLDL.PL, L.VLDL.PL, VLDL.D, M.VLDL.FC,
S.VLDL.PL, XS.VLDL.TG, S.HDL.TG described in
Supplementary Table 1).

We conducted two types of meta-analyses
of NFBC and YFS:

1. Univariate genotype – multivariate phenotype
Each SNP from chromosome 1 tested for an as-
sociation with the set of 9 correlated lipid mea-
sures.

2. Multivariate genotype – multivariate phenotype
For each of the 5 genes (APOE, CETP, GCKR,
PCSK9, NOD2), a group of 5 SNPs, chosen
by maximising variation covered with the gene
(see Methods 2.4), tested for an association with
the set of 9 correlated lipid measures.

The input summary statistics for metaCCA were
obtained by performing univariate tests for each
SNP-trait pair separately using SNPTEST ap-
plied to the individual-level data, and transform-
ing the resulting regression coefficients using (4).
The correlation structure of analysed traits Σ̂Y Y was
estimated based on summary statistics for SNPs
across the entire genome. The genotypic correlation
structure for multi-SNP analyses, Σ̂XX , was calcu-
lated from the FINRISK cohort.

We compared the results of metaCCA and
metaCCA+ with the pooled individual-level CCA
of original data sets. Figure 4 shows scatter plots
of -log10 p-values for 455 521 SNPs from chromo-
some 1. The results of metaCCA demonstrate an ex-
cellent agreement with the original p-values, validat-
ing that metaCCA can conduct reliable multivariate

meta-analysis from standard univariate GWAS soft-
ware output. As anticipated, metaCCA+ produces
conservative p-values. Manhattan plots illustrating
p-values along the chromosome are shown in Supple-
mentary Figure 7. Genome-wide significant associa-
tions (at the threshold of p = 5×10−8 standard in the
field) are located within two regions: USP1/DOCK7
and FCGR2A/3A/2C/3B, which are known to be
associated with lipid metabolism (NHGRI GWAS
catalogue, Hindorff et al. (2011)). metaCCA iden-
tified both regions, and metaCCA+ found the
stronger out of the two signals (DOCK7/USP1).
For top-SNP in FCGR2A/3A/2C/3B, metaCCA+’s
-log10 p-value is 6.11, compared to 7.73 produced
by CCA on individual-level data.

Figure 4: Scatter plots of -log10 p-values from the pooled
individual-level CCA of NFBC and YFS and a) metaCCA,
b) metaCCA+. Each point corresponds to one genetic vari-
ant from the chromosome 1, tested for an association with
the group of 9 correlated lipid measures. In total, 455 521
SNPs were analysed. Red lines indicate the significance level
of 5 × 10−8 (7.301 on -log10 scale).
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Table 1 summarizes the results of the meta-
analysis where sets of 5 SNPs, representing each
gene, were tested for an association with the
group of 9 related lipid measures. Both metaCCA
and metaCCA+ produced very accurate p-values
(error < 0.2 on -log10 scale) for the four genes with
signals below 9. For the largest signal, 9.60 (CETP),
-log10 p-values were about one unit overesti-
mated (metaCCA) or underestimated (metaCCA+).
Any of these differences would be unlikely
to lead to false inferences when a reference sig-
nificance level in a gene-based analysis was set
to 0.05/20000 = 2.5×10−6, i.e., 5.61 on -log10 scale,
based on there being about 20 000 protein-coding
genes in the human genome. At this level, both
metaCCA and metaCCA+ found an association be-
tween APOE and CETP and the network of VLDL
and HDL particles studied. For GCKR and PCSK9,
the gene-based test did not yield strong signals, even
though Table 1 shows that there are individual SNPs
in these genes with relatively strong signals. Thus,
some other procedure for picking SNPs for a joint
analysis might be more fruitful at these genes (see
Discussion). An advantage of metaCCA framework
is its adaptability to any such procedure. Note that
NOD2 has no (known) association with metabolic
traits, and therefore it serves as a negative control
in Table 1.

4 Discussion

The advantage of multivariate testing of genetic as-
sociation is well reported in the literature (Stephens,
2013; Inouye et al., 2012), and also demonstrated
in our results (e.g. CETP in Table 1 that has multi-
variate p-value 13 orders of magnitude smaller than
any of the univariate p-values). Optimal use of cor-
related traits is becoming increasingly important as
high-throughput phenotyping technologies are being
more widely applied to individual study cohorts and
large biobanks (Soininen et al., 2015).

We introduced metaCCA, a computational ap-
proach for the multivariate meta-analysis of GWAS
by using univariate summary statistics and a ref-
erence database of genetic data. Thus, our frame-
work circumvents the need for complete multi-
variate individual-level records, and tackles the
problem of low sample sizes in individual cohorts

by a built-in meta-analysis approach. To our knowl-
edge, metaCCA is the first summary statistic-based
framework that allows multivariate representation
of both genotypic and phenotypic variables.

In large meta-analytic efforts, the ability to work
with summary statistics is beneficial, even when
there is an access to the individual-level data. For
example, with a study design of the Global Lipids
Genetics Consortium (2013), we estimate that the
reduction in the size of input data between metaCCA
and standard CCA could be over 750-fold (Supple-
mentary Figure 1).

We provided two variants of the algorithm:
metaCCA and metaCCA+. Based on our results,
metaCCA is the method of choice when the accu-
racy of estimated correlation matrices Σ̂XX and Σ̂Y Y

is good, e.g., Σ̂Y Y estimated from at least one chro-
mosome, and Σ̂XX estimated from genetic data from
the target population. In such cases, p-values from
metaCCA were accurate, meaning that false pos-
itive and false negative rates are close to those
of standard CCA applied to the individual-level data.
When the quality of the estimates Σ̂XX and Σ̂Y Y was
reduced, metaCCA+ proved useful to protect from
an increase of false positive associations (Figure 2
and Supplementary Figure 8). This is important
in GWAS context, where false positives could lead
to considerable waste of resources in subsequent ex-
perimental and functional studies. A topic for future
work would be to further develop our current elbow
heuristic of metaCCA+ to decrease its false negative
rate without sacrificing its good false positive rate.

We derived the framework assuming that all traits
within each cohort have been measured on the same
number of individuals (N). While a small propor-
tion of missing data for each trait could be han-
dled by statistical imputation methods, further work
is required to study how metaCCA should be ap-
plied when the sample sizes between the traits vary
considerably. We note that the distribution of the
test statistic depends on N (Supplementary Data),
as do the effect sizes transformation (eq. 4) and
meta-analysis approach (section 2.3).

For multivariate phenotype data, several types
of association tests are possible. Natural question
is which one should we prefer in practice. It is ev-
ident that single-SNP–multi-trait tests can detect
much stronger signals at some SNPs than any of the
univariate tests separately (e.g. CETP in Table 1),
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and identify associations not found by univariate ap-
proach (Inouye et al., 2012). On the other hand,
for some other SNPs, the highest univariate sig-
nal may be clearly higher than the multi-trait one,
even after accounting for the increase in the number
of tests. For example, in GCKR (Table 1), the top
SNP’s (rs1260326) association was explained already
by one of the traits individually (M.VLDL.FC).
Given the difference in degrees of freedom of the
tests, this led to a 4.6 units higher -log10 p-value
in the univariate test compared to the multivariate
one. Thus, for single-SNP tests, univariate and mul-
tivariate tests complement each other and neither
should be excluded from consideration.

When also genotypes are multivariate, even more
possibilities for association testing emerge. Multi-
genotype tests are common practice in rare variant
association studies, where statistical power to detect
any single variant is very small (Lee et al., 2014; Feng
et al., 2014). The set of variants is often chosen
based on functional annotation, such as predicted
nonsense or missense effects. In this paper, we have
rather focused on common variants (MAF > 5%)
to ensure the accuracy of the summary statis-
tics and genotypic correlations used in metaCCA.
To illustrate our multi-SNP approach, we chose
a fixed number of SNPs that tag a maximal amount
of genetic variation within a gene. However,
metaCCA could equally well incorporate any other
way of choosing the SNPs, for example, motivated
by functional annotation (ENCODE Project Consor-
tium, 2012), known expression effects (Ardlie et al.,
2015) or previous GWAS results on other traits (Hin-
dorff et al., 2011). A topic for further research could
be to extend the covariance matrix-based analyses
from CCA to dynamic approaches that learned from
the data the set of variants and traits to be con-
sidered together. This would circumvent the need
to restrict the subset of variables before the analy-
sis.

We envision that multivariate association test-
ing using metaCCA has a great potential to pro-
vide novel insights from already published sum-
mary statistics of large GWAS meta-analyses
on multivariate high-throughput phenotypes, such
as metabolomics and transcriptomics. Finally, we
hope that our work helps extending the application
area of CCA to summary-statistic data also in other
data-rich fields outside genetics.
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