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Abstract 17 

Fitness is not well estimated from growth curves of individual isolates in 18 

monoculture. Rather, competition experiments, which measure relative growth in 19 

mixed microbial cultures, must be performed to better infer relative fitness. However, 20 

competition experiments require unique genotypic or phenotypic markers, and thus 21 

are difficult to perform with isolates derived from a common ancestor or non-model 22 

organisms. Here we describe Curveball, a new computational approach for predicting 23 

relative growth of microbes in a mixed culture utilizing mono- and mixed culture 24 

growth curve data. We implemented Curveball in an open-source software package 25 

(http://curveball.yoavram.com) and validated the approach using growth curve and 26 

competition experiments with bacteria. Curveball provides a simpler and more cost-27 

effective approach to predict relative growth and infer relative fitness. Furthermore, 28 

by integrating several growth phases into the fitness estimation, Curveball provides a 29 

holistic approach to fitness inference from growth curve data. 30 

  31 
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Growth curves are commonly used in microbiology, genetics, and evolutionary 32 

biology to estimate the fitness of individual microbial isolates. Growth curves 33 

describe the density of cell populations in liquid culture over a period of time and are 34 

usually acquired by measuring the optical density (OD) of one or more cell 35 

populations. The simplest way to infer fitness from growth curves is to estimate the 36 

growth rate during the exponential growth phase by inferring the slope of the log of 37 

the growth curve1 (see example in Figure 1). Indeed, the growth rate is often used as a 38 

proxy of the selection coefficient, s, which is the standard measure of relative fitness 39 

in population genetics2,3. However, exponential growth rates do not capture the 40 

dynamics of other phases of a typical growth curve, such as the length of lag phase 41 

and the cell density at stationary phase4 (Figure 1). Thus, it is not surprising that 42 

growth rates are often poor estimators of relative fitness5,6. 43 

 44 

 45 
Figure 1. Fitting an exponential model to growth curve data. The growth rate is calculated as the derivative 46 

of a polynomial function fitted to the mean of the data N(t): the time point of maximum growth rate tmax is found; 5 47 
time points surrounding tmax are taken; a line of the form b+at is fitted to the log of the mean of the data log(N(t)) 48 
at these time points; the intercept b and the slope a are interpreted as the initial density N0=eb  and the growth rate 49 
r=a in an exponential growth model N(t)=N0ert. (A) The red markers represent N(t) the mean density in 22 growth 50 
curves. The solid red line represents the fitted polynomial. The dashed black line represents the exponential model 51 
N0ert fitted to the data, with N0=0.058 and r=0.27. The dotted vertical line denotes tmax, the time of max growth 52 
rate. (B) The red solid curve shows dN/dt, the derivative of the mean density (calculated as the derivative of the 53 
fitted polynomial). The dotted vertical line denotes tmax, the time of max growth rate. Data in this figure 54 
corresponds to the red growth curves from Figure 2A. 55 

 56 

Evolutionary biologists use competition experiments to infer relative fitness in a 57 

manner that accounts for all growth phases7. In pairwise competition experiments, two 58 

strains are grown together in a mixed culture: a reference strain and a strain of 59 

interest. The frequency of each strain in the mixed culture is measured during the 60 

course of the experiment using  specific markers7 such as the expression of drug 61 

resistance markers on colony counts, fluorescent markers monitored by flow 62 

cytometry8 or by deep sequencing read counts9,10. The selection coefficient of the 63 
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strains of interest can then be estimated from changes in their frequencies during the 64 

competition experiments. These methods can infer relative fitness with high 65 

precision8, as they directly estimate fitness from changes in isolate frequencies over 66 

time. However, competition experiments are more laborious and expensive than 67 

monoculture growth curve experiments, requiring the development of genetic or 68 

phenotypic assays (see Concepción-Acevedo et al.5 and references therein). 69 

Moreover, competition experiments are often impractical in non-model organisms. 70 

Therefore, many investigators prefer to use proxies of fitness such as growth rates. 71 

Even when competition experiments are a plausible approach (for example, in 72 

microbial lineages with established markers7), methods for interpreting and 73 

understanding how differences in growth contribute to differences in fitness are 74 

lacking. Such differences have a crucial impact on our understanding of microbial 75 

fitness and the composition of microbial populations and communities. 76 

Here we present Curveball, a new computational approach implemented in an 77 

open-source software package (http://curveball.yoavram.com). Curveball provides a 78 

predictive and descriptive framework for estimating growth parameters from growth 79 

dynamics, predicting relative growth in mixed cultures, and inferring relative fitness. 80 

Results  81 

Curveball consists of three stages: (a) fitting growth models to monoculture growth 82 

curve data, (b) fitting competition models to mixed culture growth curve data and 83 

using the estimated growth and competition parameters to predict relative growth in a 84 

mixed culture, and (c) inferring relative fitness from the predicted relative growth. 85 

The following experimental setting was used to test this approach. 86 

a. Monoculture growth 87 

In each experiment, two Escherichia coli strains, each labeled with a green or red 88 

fluorescent protein (GFP or RFP), were propagated in a monoculture and in a mixed 89 

culture, and the cell density was measured for each strain for at least 7 hours (Figure 90 

2). 91 
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Growth	model	92 

The Baranyi-Roberts model11 is used to model growth composed of several phases: 93 

lag phase, exponential phase, deceleration phase, and stationary phase1. The model 94 

assumes that growth rate accelerates as cells adjust to new growth conditions, then 95 

decelerates as resources become scarce, and finally halts when resources are depleted. 96 

The model is described by the following ordinary differential equation [see eqs. 1c, 97 

3a, and 5a in11]: 98 

 99 
!"
!#
= 𝑟 ⋅ 𝛼 𝑡 ⋅ 𝑁 1 − "

,

-
                                           [1] 100 

 101 

where 𝑡 is time, 𝑁 = 𝑁(𝑡) is the population density at time 𝑡,  𝑟 is the specific growth 102 

rate in low density, 𝐾 is the maximum density, 𝜈 is a deceleration parameter, and 𝛼 𝑡  103 

is the adjustment function. For a derivation of eq. 1 and further details, see Supporting 104 

text 1. 105 

The adjustment function 𝛼(𝑡) = 23
2345678 describes the fraction of the population 106 

that has adjusted to the new growth conditions by time 𝑡 (𝛼 𝑡 ≤ 1). Typically, an 107 

overnight liquid culture of microorganisms that has reached stationary phase is diluted 108 

into fresh media. Following dilution, cells enter lag phase until they adjust to the new 109 

growth conditions. We chose the specific adjustment function suggested by Baranyi 110 

and Roberts11, which is both computationally convenient and biologically  111 

interpretable: 𝑞; characterizes the physiological state of the initial population, and 𝑚 112 

is the rate at which the physiological state adjusts to the new growth conditions. 113 

The Baranyi-Roberts differential equation (eq. 1) has a closed form solution: 114 

 115 

𝑁(𝑡) = ,

=> => ?
@3

A
56B	AD 8 	

E A
                                                 [2] 116 

 117 

where 𝑁; = 𝑁(0) is the initial population density. For a derivation of eq. 2 from eq. 118 

1, see Supporting text 1. 119 
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Model	fitting	120 

We estimated the growth model parameters by fitting the model (eq. 2) to the 121 

monoculture growth curve data of each strain. The best fit is shown in Figure 2D-F 122 

(see Table S1 for the estimated growth parameters). From this model fit we also 123 

estimate the maximum specific growth rate max =
"
⋅ !"
!#

	 , the minimal specific 124 

doubling time, and the lag duration (Table 1). The strains differ in their growth 125 

parameters; for example, in experiment A (Figure 2A,D), the red strain grows 40% 126 

faster than the green strain, has 23% higher maximum density, and a 60% shorter lag 127 

phase. 128 

 129 

 130 
Figure 2. Fitting the growth model to growth curve data from three experiments with E. coli. (A-C) The 131 

top panels show the optical density (OD) of two strains growing in a monoculture (green lines for GFP labeled 132 
strain; red lines for RFP labeled strains) and a mixed culture (blue lines). Each of 30+ experimental replicates is 133 

represented by a separate line. (D-F) The bottom panels show the best model fit (solid black lines) for the growth 134 
curve data (markers, data corresponds to the curves in the top panels) of two strains (green and red) growing in 135 

monoculture. (A,D) Strain DH5α labeled with GFP, strain TG1 labeled with RFP. Experiment started by diluting 136 
stationary phase bacteria into fresh media, yielding a lag phase culture in which lag phase is longer for the green 137 

strain. (B,E) Strain DH5α labeled with GFP, strain TG1 labeled with RFP. Bacteria were pre-grown in fresh media 138 
for 4 hours before the experiment and then diluted into fresh media, such that there is no observable lag phase. 139 

(C,F) Strain JM109 labeled with GFP and, strain K12 MG1655-Δfnr labeled with RFP. Experimental conditions as 140 
described for (A,D). 141 

  142 
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 Experiment A Experiment B Experiment C 

Strain 

Parameter 

GFP RFP GFP RFP GFP RFP 

Initial 

density 

𝑵𝟎  

0.125 0.124 0.286 0.23 0.188 0.204 

Max density 

(𝑲) 

0.528 (0.525, 

0.532) 

0.650 (0.643, 

0.658) 

0.619 (0.612, 

0.625) 

0.627 (0.623, 

0.631) 

0.633 (0.627, 

0.638) 

0.741 (0.735, 

0.746) 

Max 

specific 

growth rate 

(𝝁) 

0.268 (0.262, 

0.274) 
0.376 (0.371, 

0.381) 

0.256 (0.251, 

0.261) 

0.369 (0.354, 

0.384) 

0.228 (0.226, 

0.23) 

0.416 (0.392, 

0.427) 

Min 

doubling 

time (δ) 

2.699 (2.636, 

2.766) 

1.843 (1.809, 

1.88) 

4.372 (4.276, 

4.474) 

2.450 (2.397, 

2.506) 

3.120 (3.087, 

3.147) 

2.075 (2.035, 

2.124) 

Lag 

duration 

𝝀  

3.925 (3.822, 

4.03) 

1.578 (1.515, 

1.639) 

0.005 (0.002, 

0.012) 

0.014 (0.002, 

0.029) 

0.714 (0.684, 

0.748) 

0.045 (0.033, 

0.081) 

Table 1. Estimated growth parameters. 95% confidence intervals, calculated using bootstrap (1000 143 
samples), are given in parentheses. Densities are in OD595; growth rate in hours-1, doubling time and lag duration in 144 

hours. See Table S2 for additional parameter estimates. 145 

 146 

b. Mixed culture growth 147 

Competition	model	148 

To model growth in a mixed culture, we assume that interactions between the 149 

strains are solely due to resource competition. We derived a new two-strain Lotka-150 

Volterra competition model12 based on resource consumption (see Supporting text 2): 151 

 

𝑑𝑁=
𝑑𝑡 = 𝑟=𝛼= 𝑡 𝑁= 1 −

𝑁=
-E

𝐾=
-E − 𝒂𝟐 ⋅

𝑁R
-S

𝐾=
-E

𝑑𝑁R
𝑑𝑡 = 𝑟R𝛼R 𝑡 𝑁R 1 − 𝒂𝟏 ⋅

𝑁=
-E

𝐾R
-S −

𝑁R
-S

𝐾R
-S

 

[3a] 

 

[3b] 

𝑁U is the density of strain 𝑖 = 1,2 and 𝑟U, 𝐾U, 𝜈U, 𝛼U, 𝑞;,U, and 𝑚U are the values of the 152 

corresponding parameters for strain 𝑖 obtained from fitting the monoculture growth 153 

curve data. 𝑎U are competition coefficients, the ratios between inter- and intra-strain 154 

competitive effects. 155 

This competition model explicitly assumes that interactions between the strains are 156 

solely due to resource competition. Therefore, all interactions are described by the 157 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 3, 2016. ; https://doi.org/10.1101/022640doi: bioRxiv preprint 

https://doi.org/10.1101/022640
http://creativecommons.org/licenses/by-nc/4.0/


 

8 

 

deceleration of the growth rate of each strain in response to growth of the other strain. 158 

Of note, each strain can have a different limiting resource and resource efficiency, 159 

based on the maximum densities 𝐾U  and competition coefficients 𝑎U determined for 160 

each strain. 161 

Eq. 3 is fitted to the growth curve of a mixed culture that includes both strains, in 162 

which the combined OD of the strains is recorded over time (but not the frequency or 163 

density of each individual strain). This fit is performed by minimizing the squared 164 

differences between 𝑁= + 𝑁R (eq. 3) and the observed OD from the mixed culture and 165 

yields estimates for the competition coefficients 𝑎U (Figure 3A-C). 166 

Using the estimated parameters, eq. 3 is solved by numerical integration, providing 167 

a joint prediction for the densities 𝑁=(𝑡) and 𝑁R 𝑡 . From the predicted densities, the 168 

frequencies of each strain over time can be inferred: 𝑓U 𝑡 = "\ #
"E # 4"S #

. 169 

Prediction	validation	170 

To test this method, we performed growth curve and competition experiments with 171 

two different sets of E. coli strains marked with fluorescent proteins. In experiments A 172 

and B we competed DH5α-GFP vs. TG1-RFP; in experiment C we competed JM109-173 

GFP with MG1655-Δfnr-RFP (see Figure 2A-C).  174 

In each experiment, 32 replicate monocultures of the GFP strain, 30 replicate 175 

monocultures of the RFP strain alone, and 32 replicate mixed cultures containing the 176 

GFP and RFP strains together, were grown in a 96-well plate, under the same 177 

experimental conditions. The optical density of each culture was measured every 15 178 

minutes using an automatic plate reader. Samples were collected from the mixed 179 

cultures every hour for the first 7-8 hours, and the relative frequencies of the two 180 

strains were measured using flow cytometry (see  181 

Materials and Methods). 182 

Empirical competition results (green and red error bars), Curveball predictions 183 

(green and red dashed lines), and exponential model prediction (dashed black lines; 184 

see Figure 1 for details) for three different experiments are shown in Figure 3D-F. 185 

Curveball performs well and clearly improves upon the exponential model for 186 

predicting competition dynamics in a mixed culture. 187 

 188 
 189 
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 190 
Figure 3. Predicting growth in a mixed culture. Growth of two E. coli strains competing for resources in a 191 

mixed culture. (A-C) Competition model fit (solid blue lines; eq. 3) for mixed culture growth curve data (triangles, 192 
data of blue lines in Figure 2A-C). Error bars show standard deviation from 30 replicates (extremely small in B); 193 

dashed black lines represent the exponential model prediction (see Figure 1). (D-F) Comparison of empirical 194 
(circles) and predicted (dashed lines; see Figure S3 for confidence intervals) strain frequencies in a mixed culture, 195 
corresponding to the growth curves in A-C. Green and red dashed lines show Curveball predictions; dashed black 196 
lines show exponential model predictions. Error bars show standard deviation (hardly seen in D and F). Root mean 197 

squared error of mixed culture fit (solid blue line to blue triangles): A, 0.011; B, 0.01; C, 0.008.  Estimated 198 
competition coefficients: D, a1=10, a2=0.77; E, a1=3.7, a2=1.9; F, a1=0.31, a2=0.56. Inferred mean selection 199 

coefficients: D, 0.011; E, 0.01; F, 0.021.  200 
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c. Fitness inference 201 

The best way to infer the relative fitness of two strains is to perform pairwise 202 

competition experiments7: growing both strains in a mixed culture and measuring the 203 

change in their frequencies over time. Using Curveball, pairwise competitions can be 204 

predicted by simply measuring the optical density during growth in mono- and mixed 205 

cultures, without directly measuring strain frequencies.  206 

Relative fitness (given by 1+s,where s is the selection coefficient of the strain of 207 

interest) can be estimated from pairwise competition results using3: 208 

𝑠(𝑡) = !
!#
log "S #

"E #
,                                         [4] 209 

where 𝑁=(𝑡) and 𝑁R(𝑡) are the frequencies or densities of the strains and 𝑡 is time. 210 

Using Curveball, we inferred the average selection coefficient of the red strain based 211 

upon eq. 4 applied to the predicted densities of the strains (Figure 3D-F): s=0.011, 212 

0.01, and 0.021 in experiments A, B, and C, respectively. 213 

Discussion 214 

We developed Curveball, a new computational approach to predict relative growth 215 

in a mixed culture from growth curves of mono- and mixed cultures, without 216 

measuring frequencies of single isolates within the mixed culture. We tested and 217 

validated this new approach, which performed far better than the model commonly 218 

used in the literature. Curveball only assumes that the assayed strains grow in 219 

accordance with the growth and competition models: namely, that growth only 220 

depends on resource availability. Therefore, this approach can be applied to data from 221 

a variety of organisms, experiments, and conditions. 222 

We have released an open-source software package which implements Curveball 223 

(http://curveball.yoavram.com). This software is written in Python13 and includes a 224 

user interface that does not require prior knowledge in programming. It is free and 225 

open, such that additional data formats, growth and competition models, and other 226 

analyses can be added by the community to extend its utility. 227 

Growth curve experiments, in which only optical density is measured, require 228 

much less effort and resources than pairwise competition experiments, in which the 229 

cell frequency or count of each strain must be determined5,7,8,14. Current approaches to 230 

estimating fitness from growth curves mostly use the growth rate or the maximum 231 
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population density as a proxy for fitness. However, the growth rate and other proxies 232 

for fitness based on a single growth parameter cannot capture the full scope of effects 233 

that contribute to differences in overall fitness15. 234 

In contrast, Curveball integrates several growth phases into the fitness estimation, 235 

allowing a more holistic approach to fitness inference from growth curve data and 236 

providing information on the specific growth traits that contribute to differences in 237 

fitness. We hope that Curveball will improve and ideally standardize the way fitness 238 

is estimated from growth curves, thereby improving communication between 239 

empirical and theoretical evolutionary biologists and ecologists. 240 

Conclusions 241 

We developed and tested a new method to analyze growth curve data, and applied 242 

it to predict growth of individual strains within a mixed culture and to infer their 243 

relative fitness. The method improves fitness estimation from growth curve data, has a 244 

clear biological interpretation, and can be used to predict and interpret growth in a 245 

mixed culture and competition experiments. 246 

 247 

Materials and Methods 248 

Strains and plasmids. Escherichia coli strains used were DH5α (Berman lab, Tel-249 

Aviv University), TG1 (Ron lab, Tel-Aviv University), JM109 (Nir lab, Tel-Aviv 250 

University), and K12 MG1655-Δfnr (Ron lab, Tel-Aviv University). Plasmids 251 

containing a GFP or RFP gene and genes conferring resistance to kanamycin (KanR) 252 

and chloramphenicol (CapR) (Milo lab, Weizmann Institute of Science16). All 253 

experiments were performed in LB media (5 g/L Bacto yeast extract (BD, 212750), 10 254 

g/L Bacto Tryptone (BD, 211705), 10 g/L NaCl (Bio-Lab, 190305), DDW 1 L) with 255 

30 µg/mL kanamycin (Caisson Labs, K003) and 34 µg/mL chloramphenicol (Duchefa 256 

Biochemie, C0113). Green or red fluorescence of each strain  was confirmed by 257 

fluorescence microscopy (Nikon Eclipe Ti, Figure S1). 258 

Growth and competition experiments. All experiments were performed at 30°C. 259 

Strains were inoculated into 3 ml LB+Cap+Kan and grown overnight with shaking. 260 

Saturated overnight cultures were diluted into fresh media so that the initial OD was 261 

detectable above the OD of media alone (1:1-1:20 dilution rate). In experiments that 262 
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avoided a lag phase, cultures were pre-grown until the exponential growth phase was 263 

reached as determined by OD measurements (usually 4-6 h). Cells were then 264 

inoculated into 100 µL LB+Cap+Kan in a 96-well flat-bottom microplate (Costar): 265 

• 32 wells contained a monoculture of the GFP-labeled strain 266 

• 30 wells contained a monoculture of the RFP-labeled strain 267 

• 32 wells containing a mixed culture of both GFP- and RFP-labeled strains 268 

• 2 wells contained only growth medium 269 

 The cultures were grown in an automatic microplate reader (Tecan infinite F200 270 

Pro), shaking at 886.9 RPM, until they reached stationary phase. OD595 readings were 271 

taken every 15 minutes with continuous shaking between readings. 272 

Samples were collected from the incubated microplate at the beginning of the 273 

experiment and once an hour for 6-8 hours: 1-10 µL were removed from 4 wells 274 

(different wells for each sample), and diluted into cold PBS buffer (DPBS with 275 

calcium and magnesium; Biological Industries, 02-020-1). These samples were 276 

analyzed with a fluorescent cell sorter (Miltenyi Biotec MACSQuant VYB) with GFP 277 

detected using the 488nm/520(50)nm FITC laser and RFP detected with the 278 

561nm/615(20)nm dsRed laser. Samples were diluted further to eliminate "double" 279 

event (events detected as both "green" and "red" due to high cell density) and noise in 280 

the cell sorter8. 281 

Fluorescent cell sorter output data was analyzed using R17 with the flowPeaks 282 

package that implements an unsupervised flow cytometry clustering algorithm18. 283 

Data analysis. Growth curve data were analyzed using Curveball, a new open-284 

source software written in Python13 that implements the approach presented in this 285 

manuscript. The software includes both a programmatic interface (API) and a 286 

command line interface (CLI), and therefore does not require programming skills. The 287 

source code makes use of several Python packages: NumPy19, SciPy20, Matplotlib21, 288 

Pandas22, Seaborn23, LMFIT24, Scikit-learn25, and SymPy26.  289 

Model fitting. To fit the growth and competition models to the growth curve data 290 

we use the leastsq non-linear curve fitting procedure20,24. We then calculate the 291 

Bayesian Information Criteria (BIC) of several nested models, defined by fixing some 292 

of the parameters (see Supporting text 1, Figure S2, and Table S1). BIC is given by: 293 

𝐵𝐼𝐶 = 𝑛 ⋅ log " #\ >" #\
Se

\fE
g

+ 𝑘 ⋅ log 𝑛, 294 
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where 𝑘 is the number model parameters, 𝑛 is the number of data points, 𝑡U are the 295 

time points, 𝑁 𝑡U  is the optical density at time point 𝑡U, and 𝑁 𝑡U 	is the expected 296 

density at time point 𝑡U according to the model. We selected the model with the lowest 297 

BIC27,28. 298 

Data availability. Data deposited on figshare (doi:10.6084/m9.figshare.3485984). 299 

Code availability. Source code will be available upon publication at 300 

https://github.com/yoavram/curveball ; an installation guide, tutorial, and 301 

documentation will be available upon publication at http://curveball.yoavram.com. 302 

Figure reproduction. Data was analyzed and figures were produced using a 303 

Jupyter Notebook29 that will be available as a supporting file. 304 
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Supporting material 411 

Supporting text 1: Monoculture model 412 

We derive our growth models from a resource consumption perspective30,31.  We 413 

denote by 𝑅, the density of a limiting resource and by 𝑁 the density of the population 414 

cells, both in total mass per unit of volume.  415 

We assume that the culture is well-mixed and homogeneous and that the resource 416 

is depleted by the growing population without being replenished. Therefore, the intake 417 

of resources occurs when cells meet resource via a mass action law with resource 418 

intake rate ℎ. Once inside the cell, resources are converted to cell mass at a rate 𝜖. 419 

Cell growth is assumed to be proportional to 𝑅 ⋅ 𝑁, whereas resource intake is 420 

proportional to a power of cell density, 𝑅 ⋅ 𝑁-. We denote 𝑌 ∶= 𝑁-. 421 

We can describe this process with differential equations for 𝑅 and 𝑁: 422 

 
!n
!#
= −ℎ𝑅𝑁-

!"
!#
= 𝜖ℎ𝑅𝑁

, 
[A1a] 

[A1b] 

These equations can be converted to equations in 𝑅 and 𝑌: 423 

𝑌 = 𝑁- ⇒ 424 

𝑑𝑌
𝑑𝑡 = 𝜈𝑁->= 𝑑𝑁

𝑑𝑡 = 425 

𝜈𝑁->= ⋅ 𝜖ℎ𝑅𝑁 = 𝜈𝜖ℎ𝑅𝑁-, 426 

which yields: 427 

 
!n
!#
= −ℎ𝑅𝑌

!p
!#
= 𝜇ℎ𝑅𝑌

. 
[A2a] 

[A2b] 

with 𝜇 = 𝜖𝜈.  428 

To solve this system, we use a conservation law approach by setting 𝑀 = 𝜇𝑅 +429 

𝑌32. We find that M is constant: 430 
!s
!#
= 𝜇 !n

!#
+ !p

!#
≡ 0, 431 

and so we can substitute 𝜇𝑅 = 𝑀 − 𝑌 in eq. A2b: 432 

 !p
!#
= ℎ𝑌 𝑀 − 𝑌 = ℎ𝑀𝑌 1 − p

s
. [A3] 

Substituting again 𝑁- = 𝑌, !p
!#
= 𝜈𝑁->= !"

!#
, and defining 𝐾 = 𝑀

E
A, 𝑟 = u

-
𝐾-, we get 433 
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 !"
!#
= 𝑟 ⋅ 𝑁 ⋅ 1 − "

,

-
, [A4] 

which is the Richards differential equation33, with the maximum population density K 434 

and the specific growth rate in low density	𝑟: to the best of our knowledge this the 435 

first derivation of the Richards differential equation from a resource consumption 436 

perspective.  437 

We solve eq. A4 via eq. A3, which is a logistic equation and therefore has a known 438 

solution. Setting the initial cell density 𝑁 0 = 𝑁;: 439 

𝑁 𝑡 = ,

=> => ?
@3

A
56BA8

E
A
	. 440 

Eq. A4 is an autonomous differential equation (𝑑𝑁 𝑑𝑡 doesn't depend on 𝑡). To 441 

include a lag phase, Baranyi and Roberts11 suggested to add an adjustment function 442 

𝛼 𝑡 , which makes the equation non-autonomous (dependent on 𝑡): 443 

 !"
!#
= 𝑟 ⋅ 𝛼 𝑡 ⋅ 𝑁 ⋅ 1 − "

,

-
. [A5] 

Baranyi and Roberts suggested a Michaelis-Menten type of function 𝛼 𝑡 =444 
23

2345678 
34, which has two parameters: q0 is the initial physiological state of the 445 

population, and m is rate at which the physiological state adjusts to growth conditions. 446 

Integrating 𝛼(𝑡) gives 447 

𝐴 𝑡 ∶= 𝛼(𝑠)𝑑𝑠#
; = 23

234567w 𝑑𝑠
#
; = 𝑡 + =

x
log 5678423

=423
. 448 

Therefore, integrating eq. A5 produces eq. 2 in the main text.  449 

The term 1 − 𝑁 𝐾 - is used to describe the deceleration in the growth of the 450 

population as it approaches the maximum density 𝐾. When 𝜈 = 1, the deceleration is 451 

the same as in the standard logistic model !"
!#
= 𝑟 ⋅ 𝑁 ⋅ 1 − "

,
 and the density at 452 

the time of the maximum growth rate !S"
!#S

𝑡 = 0  is half the maximum density, ,
R
. 453 

When 𝜈 > 1 or 1 > 𝜈, the deceleration is slower or faster, respectively, and the 454 

density at the time of the maximum growth rate is 𝐾 1 + 𝜈 = - (Richards 1959, 455 

substituting W = N, A = K,m = ν + 1, k = r ⋅ ν). 456 

We use six forms of the Baranyi-Roberts model (Figure S2, Table S1). The full 457 

model is described by eq. 2 and has six parameters. A five parameter form of the 458 

model assumes 𝜈 = 1, as in the standard logistic model, but still incorporates the 459 

adjustment function 𝛼 𝑡  and therefore includes a lag phase. Another five parameter 460 
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form has both rate parameters set to the same value (𝑚 = 𝑟), which was suggested to 461 

make the fitting procedure more stable34,35. A four parameter form has both of the 462 

previous constraints, setting 𝑚 = 𝑟 and 𝜈 = 134. Another four parameter form of the 463 

model has no lag phase, with 1 𝑚 = 0 ⇒ 𝛼(𝑡) ≡1, which yields the Richards 464 

model33, also called the 𝜃-logistic model36, or the generalized logistic model. This 465 

form of the model is useful in cases where there is no observed lag phase: either 466 

because the population adjusts very rapidly or because it is already adjusted prior to 467 

the growth experiment, possibly by pre-growing it in fresh media before the beginning 468 

of the experiment. The last form is the standard logistic model, in which 𝜈 = 1 and 469 

1 𝑚 = 0. 470 

Supporting text 2: Mixed culture model 471 

We now consider the case in which two species or strains grow in the same culture, 472 

competing for a single limiting resource, similarly to eq. A1: 473 

 

𝑑𝑅
𝑑𝑡 = −ℎ=𝑅𝑁=

-E − ℎR𝑅𝑁R
-S	

𝑑𝑁=
𝑑𝑡 = 𝜖=ℎ=𝑅𝑁=																	

𝑑𝑁R
𝑑𝑡 = 𝜖RℎR𝑅𝑁R																	

 

[B1a] 

[B1b] 

[B1c] 

We define 𝑌U = 𝑁U
-\, and 𝑀U = 𝜖U𝜈U𝑅 + 𝑌U +

�\-\
��-�

𝑌� (where j is 1 when i is 2 and 474 

vice versa) to find that !s\
!#

≡ 0 and 𝑀U is constant. We then substitute 𝜖U𝜈U𝑅 = 𝑀U −475 

𝑌U −
�\-\
��-�

𝑌� into the differential equations for !p\
!#

. Denoting 𝐾U = 𝑀U

E
A\	 and 𝑟U =

u\
-\
𝐾U
-\, 476 

we get: 477 

 

𝑑𝑁=
𝑑𝑡 = 𝑟=𝑁= 1 −

𝑁=
-E

𝐾=
-E − 𝑎R ⋅

𝑁R
-S

𝐾=
-E

𝑑𝑁R
𝑑𝑡 = 𝑟R𝑁R 1 − 𝑎= ⋅

𝑁=
-E

𝐾R
-S −

𝑁R
-S

𝐾R
-S ,

 
[B2a] 

[B2b] 

where 𝑎� =
�\-\
��-�

.  478 

We get a similar result if each strain is limited by a different resource that both 479 

strains consume: 480 

  481 
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𝑑𝑅=
𝑑𝑡 = −ℎ=𝑅=𝑁=

-E − ℎR𝑅=𝑁R
-S	

𝑑𝑅R
𝑑𝑡 = −ℎ=𝑅R𝑁=

-E − ℎR𝑅R𝑁R
-S	

𝑑𝑁=
𝑑𝑡 = 𝜖=ℎ=𝑅=𝑁=																	

𝑑𝑁R
𝑑𝑡 = 𝜖RℎR𝑅R𝑁R																	

 

[B3a] 

[B3b] 

[B3c] 

[B3d] 

Here, we notice first that !
!#
log 𝑅= = !

!#
log 𝑅R  and therefore 𝜌 = nE

nS
 is a 482 

constant. We then substitute 𝑅= = 𝑅, 𝑅R = 𝜌𝑅 in eqs. B3a-d and continue as above. 483 

This only changes the definition of 𝑎� =
�\-\
��-�

𝜌. 484 

If the intake rates depend only on the resource: 485 

 

𝑑𝑅=
𝑑𝑡 = −ℎ=𝑅=𝑁=

-E − ℎ=𝑅=𝑁R
-S	

𝑑𝑅R
𝑑𝑡 = −ℎR𝑅R𝑁=

-E − ℎR𝑅R𝑁R
-S	

 
[B4a] 

[B4b] 

Then we define 𝐻 = ℎ=/ℎR and 𝜌 = nE
nS�

 and again continue as above.  486 
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Supporting figures 487 

 488 
Figure S1. Fluorescence microscopy of E. coli strains carrying GFP or RFP. Image of a mixture of DH5α-489 

GFP and TG1-RFP cells taken using a Nikon Eclipe Ti microscope. 490 

 491 

 492 
Figure S2. Growth models hierarchy. The Baranyi-Roberts model and five nested models defined by fixing 493 

one or two parameters. See Supporting text 1 and Table S1 for more details. 494 

495 
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 496 
Figure S3. Mixed culture growth predictions with confidence intervals. The green and red lines correspond 497 

to the dashed green and red lines in Figure 3D-F, respectively. The gray area shows the 95% confidence interval, 498 
calculated using bootstrap (1000 samples). 499 

 500 

Supporting tables 501 

 502 

Model name # Parameters Free Parameters Fixed Parameters References 

Baranyi Roberts 

1994 
6 N;, K, r, ν, q;,m 

- 

 
11 

Baranyi 1997 5 N;, K, r, ν, q; m = r - 

Baranyi Roberts 

1994 
5 N;, K, r, q;,m ν = 1 - 

Richards 1959 4 N;, K, r, ν 
1
q;

=
1
m
= 0 33 

Baranyi 1997 4 N;, K, r, q; 
ν = 1 

m = r 
34 

Logistic 3 N;, K, r 
ν = 1 

1
q;

=
1
m
= 0 

37 

Table S1. Growth models. The table lists the growth models used for fitting growth curve data. All models 503 
are defined by eqs. 1 and 2, by fixing specific parameters. 𝑵𝟎 is the initial population density; 𝑲 is the maximum 504 

population density; 𝒓 is the specific growth rate in low density; 𝝂 is the surface to mass ratio; 𝒒𝟎 is the initial 505 
physiological state; 𝒎 is the physiological adjustment rate. Note that when 𝟏 𝒎 = 𝟎, the value of 𝒒𝟎 is irrelevant. 506 

See also the hierarchy diagram in Figure S2 and a detailed discussion in Supporting text 1. 507 

 508 

 509 
 Experiment A Experiment B Experiment C 

Strain 

Parameter 

GFP RFP GFP RFP GFP RFP 

𝑵𝟎 0.125 0.124 0.286 0.23 0.188 0.204 

𝑲 0.528 0.65 0.619 0.627 0.633 0.74 

𝒓 0.376 0.587 0.304 0.484 8 8 

𝝂 2.636 1* 2.484 1.491 1* 0.164 

𝒒𝟎 0.032 0.008 -* -* 0.039 0.393 

𝒗 0.937 3.735 -* -* 0.188 0.104 

Table S2. Estimated parameters from growth model fitting. * denotes fixed parameters; - denotes invalid 510 
parameter values. 511 
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