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Abstract

Neuronal encoding and collective network activity depend on the precise mechanism for generating action potentials. A
dynamic switch in this mechanism could greatly expand the functional repertoire of neurons and circuits. Here we show that
changes in neuronal biophysics control a complex, yet fundamental, sequence of dynamic transitions in neuronal excitability
in which neurons switch from integrators to resonators near the spike threshold, from simple voltage dynamics to the bistable
co-existence of action potentials and quiescence, and from continuous class-I to discontinuous class-II firing rate encoding.
Using multiple bifurcation theory, we prove that this transition sequence is universal in conductance-based neurons. Using
dynamic-clamp and pharmacology, we show experimentally that an increase in leak conductance or application of the
inhibitory agonist GABA can dynamically induce these transitions in hippocampal and brainstem neurons. Our results
imply that synaptic activity can flexibly control resonance, excitability and bistability of neurons. In simulated neuronal
networks, we show that such synaptically induced transitions provide a mechanism for the dynamic gating of input signals
and the targeted synchronization of sub-networks with a tunable number of neurons.

Significance

Neuronal function depends on the mechanism by which neurons transform synaptic input into action potentials
(APs). It is unclear how neurons might control the AP mechanism to systematically modulate their responses to
input signals or their collective behavior. Here we identify a complex, but model-independent, universal sequence
of transitions in the dynamics of AP generation. Using patch-clamp recordings, we show that synaptic receptor
activation can flexibly change the AP dynamics, confirming our theoretical predictions: non-resonant neurons
develop a sub-threshold resonance, become bistable, and develop an abrupt jump in onset AP frequency. Our results
explain how synapses or neuro-modulators could control neuronal excitability, influence information processing, and
processing during collective network dynamics.

Introduction

Membrane potential dynamics and action potential (AP) generation are fundamental to neuronal coding, governing
signal processing and network behavior throughout the nervous system. Systematic modulation of the dynamics
at the single neuron level has the potential to flexibly control responses to stimuli as well as collective activity
in networks. To what degree the voltage dynamics and AP generation can be actively changed to control these
properties in single cells is an open question, however.

A marker for the type of AP dynamics is the transformation of injected current (I) via an output firing rate (f)
as measured by a neuron’s f -I-curve [1, 2, 3]. Whether this curve rises continuously from zero (class-I neuronal
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excitability) or jumps discontinuously to a non-zero frequency (class-II) strongly influences the neuron’s selectivity
to stimulus features [2, 3, 4], the precision of spike timing [5, 6, 7, 8], information processing and storage [9, 10]
as well as the collective dynamics on the network level [11, 12, 13]. Class-II excitability often, but not exclusively,
arises through the amplification of damped membrane voltage oscillations. In this case, the neuron resonates
to oscillatory input even before reaching the threshold for APs. Such membrane potential resonances facilitate
participation in network oscillations [14, 15, 16, 17] and shape signal transduction [18, 19].

Both neuronal excitability and resonance properties are governed by many factors, including Ih, IM, or adaptation
currents [20, 21, 22], neuromodulators [21, 23], in vivo vs. in vitro conditions [24], or even a neuron’s input
resistance [2, 20, 24]. It is not clear, though, whether there is a one-to-one correspondence between neuronal
excitability and resonance, what higher-order bifurcations are triggering transitions in AP generation, and whether
synaptic neurotransmitter release can actively induce these transitions.

Results

Leak-Induced Transitions in AP Dynamics

To study how AP generation can be modulated, we consider conductance-based neuron models of the form

cm
d

dt
V = Iion + IL + Ie.

Here V is the membrane potential, cm the neuron’s capacitance, Iion represents trans-membrane currents of active
ion channels, Ie is an externally applied current. We first focus on how the leak conductance gL, a property generic
to all neurons, affects neuronal excitability. This conductance gives rise to a leak current

IL = gL (VL − V ) ,

with reversal potential VL.

Increasing the leak conductance switches class-I model neurons to class-II (Fig. 1A), as the initially continuous
f -I-curve becomes step-like. Class-I spiking originates from a saddle fixed-point (SI Appendix, Lemma S5) with
stable and unstable directions of the dynamical flow (Fig. 1A, first sketch). Along the unstable direction, large
voltage excursions emerge that represent APs. As Ie is increased, the saddle merges with the resting state, and
the loop in the dynamics closes in on itself, yielding a stable limit cycle of periodic AP generation (Fig. 1A, second
sketch) – known as a saddle-node on limit cycle (SNLC) bifurcation [2, 12]. Near the saddle, the dynamics slows
down, permitting arbitrarily long inter-spike intervals. In contrast, class-II spiking often reflects the destabilization
of small-amplitude oscillations as Ie increases.

In class-I neurons, the dynamics converge quickly towards the limit cycle. The convergence is measured by a non-
trivial Floquet-multiplier, which is zero when the dynamics converges towards the limit cycle within one period
and unity when there is no attraction. In class-I neurons, this multiplier is close to zero (Fig. 1A, bottom right).

At the saddle-node point the linear membrane-potential response amplitude Z (ν) to sinusoidal current stimuli
with frequency ν becomes proportional to 1/ιν at low frequencies (Fig. 1A, bottom left). In frequency space,
multiplication by 1/ιν is equivalent to integration, which implies that the neuron integrates current inputs until
the AP threshold is reached.

As gL increases, the limit cycle splits off directly from the saddle (Fig. 1B) in a homoclinic bifurcation [3], while the
stable fixed point remains. As a consequence, a region of bistability and hysteresis in the f -I-curve emerges. We
term the mixture between class-I for AP-offset and class-II for AP-onset class-Ib, to discriminate it from class-Ia
that is continuous in both directions.

For higher gL, a stable and unstable periodic orbit arise through a double limit cycle (DLC) bifurcation, while the
saddle-node bifurcation continues to mark the destabilization of the resting state (Fig. 1C). Both AP on- and offset
are discontinuous (class-IIa), the frequency response |Z (ν)| shows a resonance, and a non-zero Floquet multiplier
implies a slower decay of the spike amplitude. Increasing gL further, the saddle-node gives way to a sub-critical
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Fig. 1: Leak-induced transitions in neuronal excitability and resonance.
Each panel shows the f -I-curve (top left), the voltage V against the input current Ie (top right) and sketches
of the AP dynamics in a two-dimensional phase-plane of V and an effective activation variable w (middle),
the impedance |Z| at 95% of the current at Ap threshold (bottom left) and the largest non-trivial Floquet
multiplier (FM) λ (bottom right) for different values of the leak conductance gL in the Wang-Buzsáki neuron
model. Black lines ( ) indicate (un)stable fixed points, gray shading ( ) stable periodic spiking, orange
shading ( ) bistability in which a steady state and spiking coexist. Gray lines ( ) denote the maximum
and minimum voltages of the stable AP cycle, dashing ( ) indicates unstable orbits. In the sketches, closed
(open) dots show stable (unstable) fixed points, black lines stable and unstable manifolds, gray lines periodic
orbits. (A) For small gL, a saddle-node on limit cycle bifurcation (SNLC, ) generates a continuous f -I-curve,
the hallmark of class-Ia excitability. |Z| decays steadily, so there is no resonance and small FM reflects fast
attraction towards the limit cycle. (B) For intermediate gL, the neuron shows a mixture of class-I and II
excitability (Ib). A stable limit cycle arises through a homoclinic bifurcation (Hom, ); the resting state is
destabilized for higher Ie in a saddle-node bifurcation (SN, ). The resulting hysteresis in firing rates shows
non-zero spike-frequency onset but a gradual decay to zero at offset. There is no resonance; the FM is zero
at the bifurcation point. (C ) For even larger gL, class-IIa dynamics appear. A double limit cycle bifurcation
(DLC, ) generates AP cycles with finite period, resulting in a discontinuous f -I-curve. The unstable cycle
vanishes in a homoclinic bifurcation ( ), destabilization of the resting state is through a saddle-node, as
before. saddle-node, as before. There is a small resonance close to threshold. At the bifurcation, the FM
is unity, so attraction to the AP limit cycle is slow. (D) For large gL, the fixed point is destabilized via a
Hopf bifurcation (Hopf, ). The resonance near threshold becomes more pronounced.

Hopf bifurcation (Fig. 1D, top) to destabilize the resting state. Damped oscillations become unstable, resulting in
a strong resonance (Fig. 1D, bottom left).

Finally, the DLC and sub-critical Hopf bifurcations coalesce and turn into a super-critical Hopf bifurcation, while
the region of bistability vanishes. The f -I-curve becomes class-II without hysteresis (class-IIb).
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Fig. 2: Fundamental structure of neuronal excitability transitions.
(A) Bifurcation diagram for the neuron model in Fig. 1 in the input current Ie and leak gL parameter plane.
Co-dimension one bifurcations: saddle-node ( ), homoclinic ( ), double limit cycle (DC, ), and Hopf ( )
bifurcations. Gray level ( ) represents the frequency of periodic APs, orange shading ( ) bi-stability between
resting an spiking. Co-dimension two bifurcations: Bogdanov-Takens (BT, ), cusp (CP, ), degenerate Hopf
( ), saddle-node loop (SNL, ) and neutral saddle loop (NSL, ). Top, full diagram. Bottom, fine structure of
the transition with input current Ie is shifted by the onset current for stable spiking I	. Dashed horizontal
lines refer to gL values used in Fig. 1. Class-Ia excitability due to a SNIC ( ), changes via the SNL-point ( )
to class-Ib governed by a homoclinic bifurcation ( ); a NSL-point ( ) marks the transition to class-IIa (DC,
). A degenerate Hopf bifurcation separates class-IIa from class-IIb behavior (visible only in (A)). A region
of bistability ( ) emerges at a SNL ( ) and vanishes at the degenerate Hopf point. At the BT-point ( ),
destabilization of the resting state changes from saddle-node ( ) to Hopf ( ). (B) Leak-induced resonance
near AP-threshold. Colors and panels as in (A), green shading encodes resonance frequencies νR near AP-
threshold. At the black dashed line ( ) the real eigenvalues of the linearized dynamics become imaginary,
indicating onset of oscillatory components in the response. Black solid line ( ) shows the transitions from
zero to non-zero resonance frequency νR. The transitions to resonance ( , ) pass tangentially through the
BT-point ( ). For gL below the BT-point and increasing Ie, the resonance frequency νR first increases,
then dips just before the AP threshold is reached. (C ) Neuronal excitability transitions are organized by a
Bogdanov-Takens-cusp bifurcation (BTC, ) in (Ie,gL,cm)-parameter space. Surfaces are co-dimension one
(colors as lines in (A)) and lines are co-dimension two bifurcations (colors as points in (A)). The surface
at cm = 1 shows the plane of the diagrams in (A). At the BTC-point, the complex bifurcation diagram
collapses into a single point that organizes the transition structure.

Fundamental Structure of Neuronal Excitability

The full structure of the transitions becomes visible in the two-dimensional bifurcation diagram in (Ie,gL)-parameter
space (Fig. 2A): two large regions correspond to the two main excitability classes observed in Fig. 1A,D. Enlarging
the transition region (Fig. 2A) reveals the bifurcations that mark the individual changes (cf. SI Appendix, Fig. S1,
S2 for phase-plane dynamics): a saddle-node-loop (SNL) bifurcation separates class-Ia excitability (SNLC, Fig. 1A)
from the mixture class-Ib that supports dynamical bistability (homoclinic, Fig. 1B). The switch from class-Ib to IIa

(DLC, Fig. 1C,D) occurs at a neutral saddle loop (NSL) point. A degenerate Hopf (DH) point controls the final
change from class-IIa to IIb, during which the bistability disappears. Destabilization of the resting state occurs
first through a saddle-node (Fig. 1A-C) and then through a Hopf bifurcation (Fig. 1D) above the Bogdanov-Takens
(BT) point.

In addition to the transitions in neuronal excitability and towards bistability (Fig. 2A) membrane-potential reso-
nances are observed in a wide swath of (Ie,gL)-parameter space (Fig. 2B). As gL increases, so does the resonance
frequency ν0. Intriguingly, our mathematical results show that resonance does not imply that damped membrane-
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potential oscillations at threshold are amplified to yield APs, as predicted by a Hopf bifurcation. Indeed, neurons
can display both peri-threshold resonance and class-I AP dynamics: Below the BT point in the (Ie,gL)-plane, the
resonance frequency first increases with Ie, but then rapidly decays back to zero before the AP current threshold
inherent in the saddle-node bifurcation of the resting state (Fig. 2B, SI Appendix, Fig. S3). Interestingly, these res-
onances are solely a property of the AP generator and no specialized currents such as Ih, IM, or INap are necessary
to induce them. While AP-independent sub-threshold oscillations are attenuated by leak [14, 29], here increasing
the leak conductance is a prerequisite for resonances to appear.

The bifurcation diagrams in Fig. 2A,B are prevalent in many neuron models (Methods, SI Appendix, Figs. S4-S6,
Table S1). Indeed, there is a generic mechanism underlying the sequence of transitions: Including the membrane
capacitance cm as a third generic parameter in the bifurcation analysis, we obtain a three-dimensional (Ie,gL,cm)-
parameter diagram (Fig. 2C). Remarkably, a combination of parameter values exists for which the transition struc-
ture collapses into a single degenerate point: a Bogdanov-Takens-cusp (BTC) bifurcation [25]. Using a combination
of a center-manifold and normal form reduction [26] we prove that every class-I conductance-based neuron model
has such a BTC point (Methods, Theorem) and give conditions for its particular subtype to be either focus or
elliptic (Methods, Proposition). The proof relies on the fact that the bifurcation parameters ie, gL, and cm, are
general parameters that appear in all conductance-based neuron models, and that in such models the dynamics
of the gating variables are solely coupled to the membrane potential. According to multiple bifurcation theory
[25, 27, 28], a focal or elliptic BTC point unfolds upon changing the parameters (Ie,gL,cm) to yield the bifurcation
structure observed in Fig. 2C. Taking a two-dimensional section of the diagram below the BTC point yields the
leak-induced transition structure in the (Ie,gL)-plane observed in Figs. 2A,B, SI Appendix, Figs. S1, S4-S6. The
BTC point provides the link between the transitions in excitability and bistability (Fig. 2A) and the appearance of
resonances (Fig. 2B). In addition, the normal form for the unfolding of the BTC point (Methods, Eq. (0.3)) provides
as a simple generic neuron model that captures all aspects of the transition sequence.

While we prove that any class-I model has a BTC point, the converse is not necessarily true: for some class-II
neuron models, the transition to class-I behavior would occur at negative leak conductances, which could cause the
dynamics to become unbounded and are bio-physically implausible. (SI Appendix, Section 2).

The BTC transition structure persists in neuron models with firing rate adaptation (SI Appendix, Fig. S6). Adap-
tation decreases the minimal leak conductance required to induce the transitions, the region of bistability becomes
broader, while spike and resonance frequencies are weakly affected.

The leak conductance is not the only parameter that induces a sequence of transitions typical for a BTC unfolding.
Decreasing the maximal conductance of the fast depolarization currents, lowering the midpoint of the delayed
rectifier current’s activation, or increasing the maximal conductance of the delayed rectifier all give rise to transition
structures that are two-dimensional sections of the full three-dimensional BTC diagram (SI Appendix, Figs. S1,
S2, S5). As a consequence, the reduced equations (0.3), generically capture all aspects of neuronal excitability
transitions and may hence serve as a simple model to study effects of those modulations in excitability on collective
network dynamics (also cf. below).

In summary, the BTC point and its unfolded bifurcation diagram are present in all class-I conductance based
neuron models. The unfolding of the BTC point in turn predicts the precise sequence of dynamical transitions in
response to any change that affects AP generation.

Leak-Induced Neuronal Excitability Transitions in Vitro

Three main predictions follow from our theoretical results (Fig. 3): First, a region of bistability should emerge as
the leak conductance is increased, so that noise fluctuations would drive the neuron to alternate between periodic
spiking and sub-threshold oscillations (Fig. 3A,C). Second, the neuron should switch from peri-threshold integration
to resonance (Fig. 3B,E,F). Third, the excitability should change from class-I to II (Fig. 3A). During this process,
the maximal Floquet multiplier, measured at spike threshold, gradually changes from close to zero to close to unity
(Fig. 1). As a consequence, class-I APs should maintain nearly constant amplitudes, whereas, for class-II, the AP
trajectory decays slowly towards the stable limit cycle [3, 30] (Fig. 3C,D).
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Fig. 3: Leak-induced excitability transitions in firing rate encoding, resonance and AP characteristics.
(A) The f -I-curves for increasing leak conductances in the model of Fig. 1 become discontinuous as the AP
frequency jumps from 0 to f0, and regions of bistability ( ) between quiescence and spiking emerge. (B) AP
frequency f0 at threshold, resonance frequency νR (at 95% threshold current) and width ∆Ie of the bistable
region as a function of gL. Scale bars as in (A). Colored dots indicate co-dimension two bifurcations that
organize the individual sub-transitions as in Fig. 2. (C ) Voltage traces (top) and phase portraits (V , ddtV )
plane, bottom) of the AP dynamics in response to step currents (middle) for class-I (red) and II (orange)
neuronal excitability (indicated by crosses in (A)). The amplitude dependence for class-II AP generation
is clearly visible in the phase portrait. Parameters for the traces on the right are from the bistable region
(cf. light orange crosses in (A)) for a deterministic step current (top) and a step current with added noise
(middle, bottom) that induces switching between spiking and oscillatory fluctuations around the stable
fixed point. (D) AP amplitudes for the traces in (C), which decay for class-II (orange), but remain stable
for class-I (red). Floquet multipliers are measured to be 0.68 and 0.32, respectively. (E) Voltage responses
(bottom) to ZAP stimuli (top) for class-I (left) and class-II excitability show a shift of the maximal response
amplitude from 0 Hz (red arrow) to a non-zero frequency (orange arrow). (F ) Impedance |Z| obtained from
the responses in (E) change from input integration (red) to resonance (orange) with non-zero resonance
frequency νR (orange arrow) as in (B).

We used dynamic patch-clamp recordings to test these predictions by artificially adding an external leak con-
ductance gL,e to the intrinsic leak gL,0 of the neurons (cf. also SI Appendix, Fig. S7A,B). The firing response to
step-currents of a neuron in a slice from the dorsal nucleus of the lateral lemniscus (DNLL) in a Mongolian gerbil
is shown in Fig. 4A for different externally applied leak conductances. For gL,e = 0 nS the neuron exhibited slow
firing close to AP threshold, indicating class-I behavior, supported by the near constancy of the AP amplitudes
(Fig. 4D,E). An increase in leak conductance to gL,e = 9, 20, and 30 nS induced a growing discontinuity in the
onset frequency (Fig. 4B) and decaying AP amplitudes (Fig. 4D,E), indicating a switch to class-II excitability near
gL,e = 9 nS. At gL,e = 30 nS, a region of bistability emerged (Fig. 4A,C, Methods).

We found similar transitions in all intrinsic class-I neurons (onset frequency < 1 Hz, stable AP amplitudes) measured
in the DNLL (n = 5). Upon adding an artificial leak conductance, all these neurons switched to class-II excitability
(Fig. 4B, S7D) and bistability was induced (Fig. 4C, S7E). The monotonic increase in onset AP frequency f0 and
the width ∆Ie of the bistable region as a function of the measured leak gL parallels those predicted theoretically
(Fig. 3B). The switch in excitability is corroborated by a rapid decay of the latency to spike onset as the leak
conductance is increased (SI Appendix, Fig. S7F,G). Application of very high leak conductances induced silencing
of AP generation via a Hopf bifurcation (SI Appendix, Fig. S7C) in further agreement with a BTC transition
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Fig. 4: Leak-induced excitability and resonance transitions in the AP dynamics of DNLL neurons in vitro.
(A) f -I-curves of a class-I DNLL neuron for different values of an added, artificial leak conductance that
shifted the threshold for APs, switched the neuron from class-I to II and induced bistable dynamics ( ).
See Fig. 3 for model predictions. Crosses indicate the values for the traces shown in (D). Inset are stained
DNLL neurons from recordings. (B) Increase in onset firing frequency f0 with increasing gL,e across different
class-I neurons (n = 5). The data from (A) is highlighted in color. (C) Width ∆Ie of the region of bistability
for the cells in (B) systematically increases with leak. (D) Voltage traces (top) and phase portraits (bottom)
show the dynamics in response to step-currents (middle) for gL,e = 0 (left, red) and 20 nS (middle, orange).
Right traces show two responses (top, middle) at gL,e = 30 nS to two similar step current injections (bottom)
in the region of bistability. Periodic firing (top) or switching dynamics between spiking and peri-threshold
oscillations (middle) are observed. The traces are marked as crosses in (A). (E ) AP voltage amplitudes vs.
AP number nAP within a response to a step-current for gL,e = 0 (red) and 20 nS (orange) at AP threshold.
Estimated Floquet multipliers are 0.37 and 0.69. (F ) Onset firing rate f0 in intrinsically class-II DNLL
neurons (n = 13). Increase of gL,e increased firing frequency as in (B), subtraction of leak switched a
single neuron to class-I (dark red); the dynamics of the remaining neurons became unstable upon large gL,e

subtraction.

scenario.

Most of the measured DNLL neurons showed intrinsic class-II excitability (n = 13/18) with systematically increas-
ing onset frequency f0 as gL increases (Fig. 4E). Subtraction of leak led to smaller onset frequencies, but a switch
to pure class-I behavior was observed in only one neuron; in other neurons such a switch did not occur before
the subtraction of leak caused the recording to become unstable. This finding is consistent with our theory not
guaranteeing the reverse switch from class-II to I excitability.

To test the predicted generality of our results, we performed the same experiments in hippocampal CA3 pyramidal
neurons (Fig. 5). The f -I-curves and the phase-plane dynamics showed a shift in neuronal excitability and a region
of bistability, as predicted by theory (Fig. 5A,D,E). All intrinsically class-I neurons (n = 12) exhibited this behavior
(Fig. 5B). The range of applied currents ∆Ie for which bistable spiking and quiescence were observed was larger
than in the DNLL neurons, also increased with leak (Fig. 5C) while the latency to the first spike rapidly decreased
(Fig. 5F). For intrinsically class-II neurons (n = 6) subtracting leak decreased the AP frequency and the width
of the bistable region (SI Appendix, Fig. S7H), but did not change the dynamics to class-I. Intrinsic leak also
correlated with intrinsic onset frequency in both DNLL (n = 23, r = 0.76) and CA3 neurons (n = 18,r = 0.77, SI
Appendix, Fig. S7J,K).

To detect a resonance frequency close to AP threshold, we measured the neurons’ impedance from their response
to injection of ZAP currents [31], which are oscillations whose frequency increases linearly with time. For an
intrinsically class-I neuron, the voltage responses below threshold decreased as the frequency in the ZAP increased
(Fig. 5G-I). Above threshold, a single AP was generated on the first peak in the stimulus. In both cases, the
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Fig. 5: Leak-induced excitability and resonance transitions in the AP dynamics of CA3 neurons in vitro.
(A) f -I-curves of a class-I CA3 neuron for increasing values of an added, artificial leak conductance show
increase in onset firing frequency f0 and induction of bistable dynamics ( ). (B) Increase in onset firing
frequency with increasing gL,e across different class-I neurons (n = 12). The data from (A) is highlighted
in color. (C) Width ∆Ie of the region of bistability for the cells in (B) systematically increases with leak as
predicted by theory (cf. Fig. 3B). (D) Voltage traces (top) and phase portraits (bottom) show the dynamics
in response to step-currents (middle) for gL,e = 0 (left, red) and 5 nS (middle, orange). Right traces show
two responses (top, middle) at gL,e = 9 nS to two similar step current injections (bottom) in the region of
bistability. The traces are marked as crosses in (A). Periodic firing (top) or switching dynamics between
spiking and peri-threshold oscillations (middle) are observed. (E ) AP voltage amplitudes vs. AP number
nAP within a response to a step-current for gL,e = 0 (red) and 9 nS (orange). (F ) Latency t0 from step
stimulus onset to first AP in the class-I CA3 neurons in (B). Increased leak conductance strongly reduces
the time to the first spike.(G) Voltage responses of a CA3 pyramidal cell to a ZAP current with linearly
increasing frequency from 0 to 25 Hz (top) in 30 s. Responses just below (middle) and above spiking threshold
(bottom) for gL,e = 0 (left, red) and 30 nS (right, orange). (H ) Impedance |Z (ν)| (line) for the traces in
(G) with fit to an LRC circuit (darker line). Arrows indicate resonance frequencies νR obtained from the
fit. (I ) Average νR,0 of sub- and supra threshold resonance frequencies νR as a function of gL,e for all cells
(n = 10), six of which did not intrinsically resonate. Cell in (G,H) highlighted in color. The resonance
increases systematically with increasing leak, as predicted by theory (Fig. 2B, 3B,E,F).

impedance curve decayed monotonically and had no detectable corner frequency, as expected for an integrator
(νR = 0 Hz, Fig. 5G,H).

An increase to gL,e = 30 nS changed the impedance profile and a resonance developed (Fig. 5G,H) below (νR =

8.6 Hz) and above threshold (νR = 9.1 Hz). In all non-resonant (n = 6) as well as intrinsically resonant neurons
(n = 4), adding leak conductance increased the resonance frequency (Fig. 5I). The strength of the resonance (Q-
factor) ranged between 1.1 and 3.2 (SI Appendix, Fig. S8A). The same behavior was observed in DNLL neurons (SI
Appendix, Fig. S8E). We further observed a non-monotonic dependence of the resonance frequency as a function
of the holding potential before AP threshold was reached (SI Appendix, Fig. S8C,D), as predicted by theory (SI
Appendix, Fig. S3).

Dynamic-clamp recordings of both DNLL and CA3 neurons thus confirmed the theoretical predictions from the
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Fig. 6: GABA-induced transition from integration to resonance in CA3 pyramidal neurons.
(A) f -I-curve and region of bistability of a class-I CA3 neuron without (red) and with application of 500µM
GABA (orange) which switched the excitability from class-I to II. (B) Increase in onset firing frequency f0

due to GABA puff application across different CA3 neurons (n = 7). Data from (A) in color. (C ) Width
∆Ie of the region of bistability for all cells in (B) before and after puffing 500µM GABA onto the neurons.
In n = 5/6 cells, a region of bistability is created, consistent with the general structure of leak-induced
excitability transitions (Figs. 1-3). Data from (A) highlighted. (D) Voltage responses of the CA3 pyramidal
cell in (A) to a ZAP current whose frequency increases linearly from 0 to 25 Hz (top). Responses just below
(middle) and above spiking threshold (bottom) for control conditions (left, red) and after puff application
of 500µM GABA (right, orange). (E ) Impedance curves |Z| (line) for the traces in (D) with fit to an
LRC circuit (darker line). Arrows indicate resonance frequencies νR obtained from the fit. (F ) Resonance
frequencies νR,0 obtained as the average of the resonance frequencies just below and above threshold as a
function of gL for all cells before and after GABA application. νR,0 of all cells (n = 15) increased with
increasing leak. All non-resonant cells (n = 12) became resonant. Data from (D, E) in color.

Bogdanov-Takens-cusp theory: leak induces a transition from class-I to class-II excitability, generates regions of
bistable dynamics, and switches neurons from integration to resonance.

GABA-Induced Excitability Transitions in CA3

We hypothesized that synaptic inhibition can increase the effective leak conductance and so permit synaptic control
of neuronal excitability and resonance. To test this, we puffed 500µM GABA locally onto CA3 cells. This indeed
induced a switch in neuronal excitability (n = 7, Figs. 6A,B) and towards bistability (Fig. 6C). Furthermore,
activation of GABA also induced a switch from peri-threshold integration to resonance (Fig. 6D-F, SI Appendix,
Fig. S9). GABA led to an increase in leak conductance of gL,GABA = 5−10 nS as estimated from the cell’s response
to small negative current steps. The changes in onset AP frequency, resonance frequency and quality factor
(Fig. 6, SI Appendix Fig. 9) matched those found when artificially adding a similar amount of leak via dynamic
clamp (Fig. 5, SI Appendix, S7H and S8B). These results suggest that activation of shunting synapses alone can
dynamically move the neuron between different regimes in the transition diagram and thereby control the neurons’
resonance, bistability and excitability properties.

Control of Stimulus Encoding and Network Dynamics

How do synaptically controlled changes in the AP dynamics affect neuronal function? In Fig. 7A the resonance
properties of a single model neuron is modulated by activation of slower shunting inhibition (as in Fig. 6) which
in turn regulates the neuron’s spiking response to constant and oscillatory stimuli. Controlled induction and
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Fig. 7: Dynamic control of neuronal excitability and resonance enables variable stimulus encoding and dynamic
grouping.
(A) Class-I excitable model neuron (red or orange disk) receiving external input current (arrow) and synaptic
inhibition from inter-neurons (dark or light turquoise disks). For inactive inhibition (middle row) the target
neuron is non-resonant and spikes in response to a constant (middle panel) but not to oscillatory input
(bottom). Activation of inhibitory synapses (right row) at a Poisson rate of 40 Hz induces resonance in
the center neuron (orange disk). Stimulation with an oscillatory stimulus near the resonance frequency
induces spiking. Fluctuations in the response are due to stochastic activation of the inhibitory neurons. (B)
Network (top) of N = 10 excitatory neurons (red) receiving synapses from two groups of inhibitory neurons.
For silent inhibitory neurons (dark turquoise), the excitatory neurons are class-I (red) and desynchronize
(SI Appendix, Fig. S10A). Activating a subset of inhibitory neurons (light turquoise) provides sufficient
shunting to dynamically change a subset of postsynaptic neurons to class-II (orange), giving rise to a hybrid
class-I/II network. Class-II neurons, initially asynchronous, synchronize (orange) while class-I neurons,
initially synchronous, desynchronize (red). s1 (red line) and s2 (orange line) are synchrony measures of the
individual sub-groups. Random initial conditions lead to the same dynamic grouping (bottom, dark red and
orange lines). Switching all neurons to class-II by activation of all inhibitory neurons lead to network wide
synchronization (SI Appendix, Fig. S10B). (C ) Bistability controls the maximal number of synchronized
neurons. Network as in (B) with increased coupling weights and all inhibitory neurons active. After an
initial synchronization phase, the combined synaptic inputs are sufficiently strong to push neurons from
spiking into the basin of attraction of the coexisting fixed point, leaving only a smaller fraction a of active
neurons (orange line bottom).

tuning of resonances thus enables the flexible gating of oscillatory inputs. For CA3 pyramidal neurons the induced
resonances have a frequency range of 2 − 12 Hz (Figs. 5, 6) and thus may regulate the cell’s participation in 5-12
Hz theta-frequency rhythms in awake animals.

Also the collective dynamics of neuronal networks depends on the characteristics of AP generation. For instance,
the excitability class of neurons is known to affect their synchronization properties: while class-I neurons tend to
desynchronize, class-II neurons synchronize [12]. To see how the different regimes in the BTC structure could be
employed to control collective dynamics, we simulated networks of excitatory class-I neurons that were the targets
of inter-neurons with slow shunting synapses. For silent inter-neurons, the excitatory neurons are class-I and
desynchronize (SI Appendix, Fig. S10A,C). Inhibition effectively increases the leak conductance of the excitatory
neurons and switches them to class-II causing them to synchronize (SI Appendix, Fig. S10B,C). Interestingly, if
only a subgroup of the excitatory neurons switched to class-II through inhibition, we observe that only the neurons
in this sub-ensemble synchronize their spikes. The others become asynchronous (Fig. 7B) despite the stronger
synchronous input to all neurons.
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More interestingly, positioning neurons into the bistable class-II regime induces synchronization but also limits the
total number of active neurons (Fig. 7C): once the synchronized synaptic input pulses become strong enough they
push spiking neurons into the basin of attraction of the co-existing resting state (SI Appendix, Fig. S10D). This
process continues until the combined pulse strength of the active neurons becomes too weak to silence even more.
Together, synchronization and bistability effectively limit the total number of simultaneously active neurons.

Changing the AP dynamics of neurons with shunting inhibition and thereby flexibly shifting their dynamics in the
BTC bifurcation structure thus provides a basic biophysical mechanism to control signal processing and collective
network dynamics. In particular, this dynamic neuronal excitability can selectively gate oscillatory inputs and bind
a self-limited number of neurons by synchrony [32, 33], which has potential roles in flexible neuronal coding and
information transmission [34].

Discussion

Here we systematically investigated the precise structure of transitions in the mechanism of AP generation. We
showed that changing both the active, spike generating conductances, as well as the passive leak conductance induces
a complex, yet generic, sequence of transitions in regularly firing neurons, from integration to resonance, from
uniform dynamics to bi-stable behavior, and from class-I to class-II neuronal excitability (Figs. 1-3, SI Appendix,
Fig. S1-S6, Table S1). By tuning the neuron’s capacitance cm, the leak conductance gL, and the input current Ie any
class-I neuron can be tuned to a Bogdonav-Takens-Cusp (BTC) bifurcation, for which all sub-transitions collapse
into a single point in parameter space. Moving away from this point yields the observed sequence of dynamical
transitions. The BTC point underlies and organizes the changes in AP generation and explains the prevalence and
complex structure of the transition sequence. We experimentally confirmed the predictions of the BTC-transition
structure using dynamic patch-clamp recordings of hippocampal and brain stem neurons. Moreover, activation
of GABAergic inhibition moved class-I neurons into different dynamical regimes, making them resonant, bistable,
and class-II. Presynaptic activity, therefore, permits dynamical control of single-neuron properties. We linked
the regimes in the BTC-transition diagram to different neuronal encoding and filtering properties and collective
behaviors in recurrent networks, which shows that not only neuronal dynamics, but also information processing
can be flexibly controlled.

The unfolding of the BTC point in the framework of multiple bifurcation theory provides a unified explanation for
a number of transition phenomena in AP generation and resonance: applying shunting increases the non-zero onset
AP frequency of fast spiking inter-neurons in rat somatosensory cortex neurons [35], and while pyramidal neurons
are class-I in vitro, they are class-II in vivo [20, 36]. Reexamining recordings of neurons in rat somatosensory
cortex [35], of pyramidal- and inter-neurons in prefrontal cortex [37] as well as stellate cells of the medial entorhinal
cortex [18] reveals signatures of leak-induced bistability. During neuronal development leak changes where shown
to adjust AP latency and precision [38].

Resonances and oscillations caused by currents that activate in the sub-threshold regime, such as persistent sodium
or hyperpolarization-activated currents, are attenuated in strength and frequency by leak [14, 29, 31]. In contrast,
the BTC-structure reveals that leak has the opposite effect on the resonances linked to AP-generation: adding a
faster outward current effectively shortens the time scale of rectification until it becomes comparable to the time
scale for activating the inward currents and damped oscillations result; the greater the outward conductance, the
higher the resonance frequency. Interestingly, the resonances can occur over a wide range of membrane-potentials
and can even remain purely sub-threshold, ceasing as the AP threshold is approached. Experimentally, resonances
near threshold caused by AP generating currents have been observed [18, 39, 40, 41, 42, 43] as well as increased
resonance frequencies due to an increase in outward potassium conductance in phasic vestibular neurons [44].

Dendrites, by effectively imposing an electrical load onto the soma [45], can also affect the excitability class
and resonance properties of neurons. Tellingly, for stellate cells in the medial entorhinal cortex, the number of
primary dendrites correlates with the resonance frequency [46], and in Purkinje cells switches from class-II to class-I
excitability can be observed when pinching the dendritic tree [45].

In contrast to our approach using multiple bifurcation theory, the difference between the two neuronal excitability
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classes can be explained qualitatively, using the steady-state I-V -curve [2, 24]:

I∞ (V ) = Ie + IL (V ) + Iion,∞ (V ) .

Here Iion,∞ (V ) are the active ion currents at steady state. Class-I neurons usually have a kink in the steady-state I-
V -curve. The lack of a kink in class-II neurons implies that positive feedback must race against negative feedback to
produce an AP; as a consequence, the AP frequency must be nonzero. An increase in the leak conductance flattens
out the kink in the steady-state I-V -curve, and switches the excitability from class-I to II. Thus, heuristically, the
critical leak conductance gL,0 for which the kink disappears is

gL,0 = max
V

d

dV
Iion,∞(V ). (0.1)

This condition, while sufficient for class-II excitability, is not necessary, however. The positive feedback from a
minor inflection in the I∞ (V ) curve may be too weak to generate slow AP frequencies. Nonetheless, Eq. (0.1) is
one of our conditions for the system to be at the BTC point (SI Appendix, Section 2), at which all transitions
are localized to a single point in parameter space. Away from the BTC bifurcation, the dynamical transitions
occur sequentially at three separate points in the (Ie,gL)-plane. Neuronal resonance, the switch in excitability, and
bistability all appear before an increase in gL starts to destabilize damped oscillations at the BT point.

We showed experimentally that activating GABA receptors is sufficient to control excitability and resonance (Fig. 6).
Intriguingly, GABA receptors are often preferentially located near the soma [47], which may make them highly
effective in dynamically modulating excitability. On longer time scales regulation of potassium leak channels [48]
could move neurons into different dynamical regimes of the BTC-structure. In hippocampal pyramidal cells, we
found GABA-induced transitions to resonance in the theta band (2−12 Hz), which could flexibly couple these cells
to the oscillations prevalent in this brain area [49]. Up-regulated leak conductances in epileptic brain tissue [50]
have the potential to induce a switch from class-I to class-II excitability and thus could further support pathological
oscillations and synchronization.

Presynaptic control of postsynaptic neuronal excitability provides a flexible mechanism to regulate responses to
oscillatory stimuli and to dynamically group sub-ensembles of neurons and their maximal participation rate in
synchronous activity (Fig. 7). Dynamic grouping in turn has potential roles for neuronal coding and information
transmission, such as binding by synchrony [33, 51] or communication through coherence [34] and can facilitate
top-down processing across network layers [10, 52], underscoring the importance of conductance and excitability
for computation in the brain.

Materials and Methods

Slice preparation

Brain slices were prepared from Mongolian gerbils (Meriones uniguiculatus) of postnatal day (P) 10 to 18, as de-
scribed in [53]. In brief, animals were anesthetized, sacrificed, and then brains were removed in cold dissection solu-
tion containing (in mM) 50 sucrose, 25NaCl, 25NaHCO3, 2.5KCl, 1.25NaH2PO4, 3MgCl2, 0.1CaCl2, 25 glucose,
0.4 ascorbic acid, 3myo-inositol and 2Na-pyruvate (pH 7.4 when bubbled with 95% O2 and 5% CO2). Subse-
quently, 200µm thick transverse slices containing the DNLL (P10-11) or 300µm thick horizontal slices containing
the hippocampus (P16-18) were taken with a VT1200S vibratome (Leica). Slices were incubated in extracellular
recording solution (same as dissection solution but with 125 mM NaCl, no sucrose, 2 mM CaCl2 and 1 mM MgCl2)
at 36◦C for 45 minutes, bubbled with 5% CO2 and 95% O2.

Electrophysiology

In the recording chamber, slices were visualized and imaged with a TILL Photonics system attached to a BX50WI
(Olympus) microscope equipped with gradient contrast illumination (Luigs and Neumann). All recordings were
carried out at near physiological temperature (34 − 36◦C) in current-clamp mode using an EPC10/2 amplifier
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(HEKA Elektronik). Data were acquired at 50kHz and filtered at 3kHz. The bridge balance was set to 100%
after estimation of the access resistance and was monitored repeatedly during recordings. The internal recording
solution consisted of (in mM): 145K-gluconate, 5KCl, 15HEPES, 2Mg-ATP, 2K-ATP, 0.3Na2-GTP, 7.5Na2-
Phospocreatine, 5K-EGTA (pH 7.2). 100µM Alexa 488 or 568 were added to the internal solution to control for
cell type and location. To apply an artificial extrinsic leak conductance during recordings, an analogue conductance
amplifier (SM-1, Cambridge Conductance) applied a constant conductance with a reversal potential equal to the
neuron’s resting potential. GABA was puffed at an initial concentration of 500µM with continuous low pressure
controlled by a picospritzer (Picospritzer III, Science Products). Glycinergic and glutamatergic synaptic inputs
were blocked with 0.5µM Strychnine, 20µM DNQX, 10µM R-CPP, and GABAergic inputs were blocked with
10µM SR95531 in all experiments except when GABA was used as an agonist.

Data Analysis

The leak was estimated from small negative step currents of amplitude δIe and 0.5 s duration introduced into
the neuron. The average of 50 such traces was fitted by V = Vmin + V0 exp (−t/τL). The leak was estimated as
gL = δIe/ (Vmin − V0), and the capacitance as cm = τLgL. To validate the dynamic-clamp method, we determined
the relationship between the imposed leak gL,e and the measured leak gL. This relationship was linear with a
slope close to 1. The capacitance remained constant for different externally applied leak conductances. One-second
long depolarizing step currents were used to determine the f-I-curve and the area of bistability. The AP current
threshold was estimated by a semi-automated search using 0.5 s long step currents. Voltage deflections crossing
−20 mV were classified as APs [54]. For the firing to be classified as periodic, APs had to occur throughout the 1s
long stimulation at intervals with a coefficient of variation (CV) less than 50%. Spike frequency f was determined
by the average of the inverse inter-spike intervals. If there were fewer than four APs, the inverse latency to the
first AP was included in the average. A transition between bistable and periodic APs was deemed to occur when
the CV of the inter-spike intervals changed by more than a factor of 1.5 between successive step currents. Clear
alternations between periodic and non-periodic APs were seen in the voltage traces in the regimes of bistability. The
spike onset frequency f0 was determined by fitting the f − I-curve to f (Ie) = Θ (Ie − I0)

[
α (Ie − I0)

β
+ f0

]
with

fit parameters f0 ≥ 0, I0, α ≥ 0, β and Θ a step-like threshold. Standard errors for the parameter estimates were
used. Floquet multiplier λ were estimated by fitting an exponential decay towards the steady state AP amplitude.
Resonance frequencies were estimated by inducing a ZAP stimulus IZAP of the form

IZAP (t) = Ia sin

(
2π

� t

0

νZAP (t′) dt′
)

+ Ioffset

where the time dependent instantaneous frequency νZAP (t) was ramped linearly from 0 to 25 Hz in 30 s and, for
controls, from 25 Hz down to 0 Hz in 30 s. The ZAP current amplitude Ia was calibrated before each sweep to
yield a voltage deflection of ±5 mV in the low frequency limit. The constant offset current Ioffset was adjusted to
make the cell be either just below or above spike threshold. The frequency-resolved impedance Z (ν) was estimated
from the discrete Fourier transforms of δI (t) and δV (t), with ˜δV (ν) = Z (ν) δ̃I (ν). To estimate the resonance
frequency, we fitted |Z (ν)|2 to the impedance of an RCL circuit |ZRCL (ν)|2=

(
a+ bν2

)
/
(
ν4 + cν2 + d

)
, with fit

parameters (a,b,c, d). Frequency components of 0.5 Hz and less were dropped to exclude effects of slow drifts [42].
The resonance frequency νR was then determined by arg maxZRCL (ν) .

Bifurcation Analysis

Bifurcation diagrams and Floquet multipliers [55] were numerically computed using the continuation software
AUTO [56]. To simulate model dynamics, we wrote a dynamical systems package for Wolfram’s Mathematica 9
with an interface to AUTO. For the bifurcation diagrams in the main text we used the Wang-Buzsaki neuron model
[57]. The same results are obtained for many neuron models including the those by Rinzel [30], Morris-Lecar [58],
Erisir et al. [59], Rose-Hindmarsh [60], Connor-Stevens [61], Golomb [62] and reduced pyramidal neuron models
[36, 63, 64] (see SI Appendix, Figs. S3-S6).
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Organization of Neuronal Excitability and Resonance Transitions

The impact of leak currents on neuronal excitability was studied using conductance based neuron models of the
form

cm
d

dt
V = Ie + gL (VL − V ) + Iion (V, a) (0.2)

d

dt
aj =

1

τj (vV )
(a∞,j (V )− aj) .

The active ion currents are given by

Iion (V, a) =
∑
k

gka
lk,1

ik,1
. . . a

lk,pk
ik,pk

a
mk,1

∞,jk,1
. . . a

mk,qk
∞,jk,qk

(Vk − V )

which depend on the maximal conductances gk, reversal potentials Vk, and activation variables a = (a1, a2, . . . , aN ),
steady state activations a∞,j and time constants τj . Equation (0.2) covers a large number of neuron models,
including those in which some activation variables have been replaced by their steady state value a∞,j (V ). By
using a combination of a center-manifold and normal form reduction (62) together with multiple bifurcation theory
we prove the following results (see SI Appendix, Section 4 for full proofs):

Theorem. Every class-I neuron of the form (0.2) has a Bogdanov-Takens-Cusp point in the parameter space of
input, leak conductance, and capacitance.

The proof makes use of two observations: first, the bifurcation parameters Ie, gL, and cm are general parameters
occurring in all conductance-based neuron models and only appear as coefficients of terms constant or linear in V .
Second, the dynamics of the gating variables are coupled solely through the membrane potential V .

Proposition. If ∑
j

∂ajIionτ
3
j ∂V aj,∞|BTC < 0 ,

the BTC point is of focus or elliptic type (cf. Figs. 1,2,S1,S2).

In appropriate coordinates u1,u2 the unfolding of the BTC point takes the form

d

dt
u0 = u1 ,

d

dt
u1 = αu3

0 + βu0u1 + γu2
0u1 (0.3)

that represents the simplest neuron model that in dependence of parameter α,β and γ captures all the dynamical
regimes observed in neuronal excitability transitions. For a neuron model satisfying the conditions of the above
theorem a parameter dependent coordinate transformation exists [25] that up to higher order terms transforms it
into the equations (0.3) (cf. SI Appendix, Section 4 and Eq. (S.20),(S.26)).

Linear Response for Conductance-based Models

Neuronal resonance frequencies were determined from the linear response to sinusoidal input stimuli around a
steady state x0 = (V0, a2,0, . . . , aN,0)

T using Eq. (0.2). The impedance is

Z (ν) =

∏N
j=2

(
−ιω − 1

τj,0

)
∏N
i=1 (−ιω + λi)

where ι =
√
−1 and λi are the eigenvalues of the Jacobian Df (x0) (see SI Appendix for details). The tran-

sition to resonance was detected by numerical continuation of the condition d
dν2 |Z|2

∣∣∣
ν2=0

= 0 . Saddle-point
to focus transitions were detected by continuation of zeros of the discriminant for the characteristic polynomial
det (Df (x0)− λ).
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Network and Resonance Simulations

Networks of N Wang-Buzsáki class-I model neurons [57] with Ie = 4.6µA/cm2, gL = 0.5 mS/cm2 and VL = −60 mV

were coupled all-to-all via excitatory synapses. A synapse from pre-synaptic neuron j added a current

Ij,syn (t) = gsyns (t) (Vsyn − Vi (t))

to post-synaptic neuron i with membrane potential Vi. For weak (strong) excitatory synapses we used gL =

0.0025 mS/cm2 (0.005 mS/cm2), Vsyn = 0 mV. The activation s (t) evolved as

d

dt
s (t) =

1

τr
(1− s (t))

(
1 + exp

(
−Vj (t)− Vt

Vs

))−1

− 1

τd
s (t) ,

with τr = 0 ms, τd = 1.5 ms, Vt = −20 mV, Vs = 1 mV. Activation of inhibitory neurons was simulated by
Poisson spike trains activating shunting synapses with τd = 5 ms and Vsyn = −51.4 mV, resulting in a weakly
fluctuating shunting conductance around 〈gsyn〉 = 0.7 mS/cm2, sufficient to shift neurons to class-II excitability
(cf. Figs. 1,2). Synchrony was measured by the vector strength s =

∣∣∣∑j e
ιφi

∣∣∣ with φi the instantaneous phase of
neuron i estimated by linear interpolation from 0 to 2π between spikes. Spikes were determined by positive voltage
crossings at Vt = −20 mV.
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