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Abstract 

Osteosarcoma is the most common primary bone tumor in pediatric and young adult patients. 
Successful treatment of osteosarcomas requires a combination of surgical resection and systemic 
chemotherapy, both neoadjuvant (prior to surgery) and adjuvant (after surgery). The degree of 
necrosis following neoadjuvant chemotherapy correlates with the subsequent probability of 
disease-free survival. Tumors with less than 10% of viable cells after treatment represent 
patients with a more favorable prognosis. However, being able to predict early, such as at the 
time of the pre-treatment tumor biopsy, how the patient will respond to the standard 
chemotherapy would provide an opportunity for more personalized patient care. Patients with 
unfavorable predictions could be studied in a protocol, rather than a standard setting, towards 
improving therapeutic success. The onset of necrotic cells in osteosarcomas treated with 
chemotherapeutic agents is a measure of tumor sensitivity to the drugs. We hypothesize that the 
remaining viable cells, i.e., cells that have not responded to the treatment, are chemoresistant, 
and that the pathological characteristics of these chemoresistant tumor cells within the 
osteosarcoma pre-treatment biopsy can predict tumor response to the standard-of-care 
chemotherapeutic treatment. This hypothesis can be tested by comparing patient histopathology 
samples before, as well as after treatment to identify both morphological and immunochemical 
cellular features that are characteristic of chemoresistant cells, i.e., cells that survived treatment. 
Consequently, using computational simulations of dynamic changes in tumor pathology under 
the simulated standard of care chemotherapeutic treatment, one can couple the pre- and post-
treatment morphological and spatial patterns of chemoresistant cells, and correlate them with 
patient clinical diagnoses. This procedure, that we named ‘Virtual Clinical Trials’, can serve as a 
potential predictive biomarker providing a novel value added decision support tool for 
oncologists.  
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Introduction 
Osteosarcoma (also called osteogenic sarcoma) is an aggressive malignant neoplasm arising from 
osteoblast progenitor. It is the most common primary high grade bone sarcoma. It occurs most often in 
children and young adults in areas where bone is growing quickly, such as long bones. Osteosarcoma is not 
a common cancer, with about 800 new cases diagnosed each year in USA; half are in children and teens (1). 
The diagnosis of this tumor can be usually made on clinical and radiological ground with histological 
confirmation using the biopsy specimen. Osteosarcoma exhibits a malignancy that produces osteoid matrix. 
Among various types of osteosarcoma, conventional osteosarcoma is the most common primary 
osteosarcoma. It is composed of osteoblastic (26-80%), chondroblastic (10-13%) and fibroblastic (10%) 
variants (2). The standard therapy consists of multi-agent neoadjuvant chemotherapy with doxorubicin and 
cisplatin often with high dose of methotrexate, followed by surgery and adjuvant chemotherapy with the 
same agents. With this treatment, the 5-year survival rate for people with localized osteosarcoma is 60-
80%. However, if the osteosarcoma has already metastasized, the 5-year survival rate is about 15-30% 
(1). Immediately after recovery from chemotherapy, patients have their tumors resected and the effect of the 
chemotherapy on the cancer cells is ascertained. A careful histologic analysis by an experienced pathologist 
can identify viable osteosarcoma cells, necrotic cells, and other changes, such as fibrosis and hyalinization. 
According to the Huvos grading system (3), the percentage of necrosis within the tumor tissue determines 
the tumor response grade and predicts the probability of progression-free survival. Tumors with less than 
10% viable cells after chemotherapy (grade III or grade IV response) represent a subset of patients with a 
more favorable prognosis on the order of 80% 5 year event free survival (EFS) whereas those with greater 
than 10% viable tumor cells have a similar EFS of closer to 50% (4,5).  

Recent efforts in osteosarcoma research have focused on a multinational trial randomizing 
patients to additional therapy based on histologic necrosis (6). Good risk patients, with less than 10% 
viable cells, were randomized to receive maintenance pegylated interferon alpha-2b for 74 weeks 
following completion of standard 6 cycles of doxorubicin, cisplatin, and high dose methotrexate (MAP).  
Poor risk patients were randomized to additional duration of adjuvant therapy, from 18 weeks to 29 
weeks and additional ifosfamide and etoposide in addition to full doses of MAP (7). While not yet 
published, the presentations have not demonstrated that either investigational arm was superior to 
standard MAP ((8) and personal communication). Preclinical testing of agents through murine models 
has identified some agents with promise and has led to the development of one active trial 
(NCT02097238) in relapsed osteosarcoma patients and as background to several trials in development 
(9,10). Banking efforts have led to the establishment of a valuable resource for ongoing basic science 
work (11). Sequencing efforts have illustrated the key role of p53 mutation in this malignancy and 
investigated the structural variations that characterize this disease (12). Metastatic osteosarcoma 
continues to be a significant challenge and the most recent clinical trial demonstrated feasibility of 
adding zoledronic acid to the chemotherapeutic backbone in this setting (13,14). Efforts to better 
incorporate the young adult population into clinical trials and discern outcomes in this group compared 
to the younger patients are underway as well (15-17). 

There are various histological types of osteosarcoma which have variable clinical behavior from 
low grade to high grade. Conventional osteosarcoma is the most common type and considered high 
grade which warrant neoadjuvant chemotherapy. It is known that chondroblastic variant has less therapy 
effect than osteoblastic and fibroblastic variants (18). However, the current histologic system does not 
allow for further predictions of patient response and survival probabilities at the time of diagnosis for 
conventional osteosarcoma in general. Being able to predict early, such as at the time of the tumor pre-
treatment biopsy, how the patient will respond to the standard chemotherapy would provide an opportunity 
for more personalized medical care. For example, this approach would facilitate a trial design with modified 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022467doi: bioRxiv preprint 

https://doi.org/10.1101/022467
http://creativecommons.org/licenses/by-nc/4.0/


	
   3	
  

therapy for patients with unfavorable features, whereas patients with a predicted positive response could 
continue to receive the standard-of-care (SOC) treatment or perhaps even less intense therapies.  

 
Hypothesis 

The percentage of viable and necrotic cells in osteosarcomas treated with chemotherapeutic agents is a 
measure of tumor sensitivity to the drugs. Viable cells that survived the treatment are treatment-resistant 
(subsequently called chemoresistant cells). We hypothesize that virtual assessment of chemoresistance, 
based on a combination of advanced high content image analyses and feature classification methods applied 
to patient histology samples, as well as quantitative computational simulations of dynamic changes in tumor 
pathology during treatment (Virtual Clinical Trials), can predict the responses to the SOC chemotherapeutic 
treatment of osteosarcoma patients.  

 
Evaluation of the hypothesis.  

Digital Pathology Evaluation. Pathomics is a modern concept and practice that uses computer assistance 
to perform analysis of pathology images. While high-resolution scanned digital images of patient histology 
samples are being increasingly used by pathologists in ascertaining tumor grades and assisting in cancer 
diagnoses, prognoses, and therapy choices, the process of evaluating pathology samples is still traditionally 
done manually by pathologists equipped with the microscope. However, the computerized analysis of 
pathology images (pathomics) is slowly but steadily gaining its place in cancer translational research 
providing a powerful tool to explore the complexities of large and heterogeneous collections of the cells 
forming the tumor tissue (19,20). Over the last couple of years, several such quantitative methods have been 
developed for specific clinical applications. For example, a quantitative segmentation scheme EMaGACOR 
(expectation-maximization driven geodesic active contour, (21,22)) has been designed to detect the extent 
of lymphocytic infiltration of the breast tumor tissue (that correlates with HER2-positive breast cancer 
recurrence) from standard H&E staining of histopathology images. These highly effective procedures allow 
for both the quantification of infiltrating lymphocytes and for the exploitation of the differences in 
lymphocyte spatial arrangements. A suite of quantitative algorithms has been developed to detect regions 
containing cancer cells by using the multiresolution digitized images of prostate biopsies or prostatectomies 
(23-25). In this approach, several images of the same tissue but of different resolutions are used (similarly 
to the manual approach employed by pathologists), and the most salient features at each resolution are 
followed and quantitatively classified using appropriate biostatistics methods (boosted Bayesian 
multiresolution classifier [BBMC] (23), spatially-invariant vector quantization [SIVQ] (24), or probabilistic 
pairwise Markov models (25)). The machine learning methods have been applied in the Computational 
Pathologist system (C-Path, (26)) to automatically extract the quantitative morphologic features of both 
tumor cells and the surrounding stroma from the H&E-stained breast cancer tissue microarrays. As a result, 
C-Path has identified that features of the stromal tissue adjacent to the cancer were better predictors of 
patient survival than the features of tumor cells alone. Similar quantitative algorithms have been developed 
for the automated quantification of IHC-determined protein expressions in melanocytes (27), for the 
automated assessment of the extent of malignant nuclei in colon cancer histology images (28), and for 
quantifying the architectural complexity in breast and prostate cancer specimens (29,30). Our group also 
used quantitative segmentation algorithms to automatically determine scores for HER2-positive, ER-
positive, and PR-positive cells within digitized histology images of breast cancer tissues (31), to correlate 
patient ER statuses with spatial distributions of ER-positive and ER-negative cells, as well as tumor 
vascular density and vascular area (32), and to determine the extent of the drug-mediated cytotoxic and 
apoptotic effects in osteosarcoma xenotransplants (33).  
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There are obvious advantages of having an automated system for digital pathology quantification. 
Such systems allow for the analysis of a vast amount of data collected from each histology sample. They 
enable the extraction of accurate, reproducible, quantifiable features of both tumor cells and the stroma. 
They facilitate computer-aided diagnoses and sharing with multiple people at different locations for remote 
consultations, tumor boards, or education. There are, however, two drawbacks in current use of digital 
pathology in clinical practice; one is of a technical nature, the other arises from the data availability. For 
technical reasons, scanning of histology slides adds an additional time delay in the tissue preparation 
process. The procedures for image acquisition lack the standardization necessary for automatic 
quantification. A special IT infrastructure is required to enable the timely accessibility of digital pathology 
images and their storage. Moreover, the sizes of digitized histology images present a formidable challenge 
for computer image analyses, both in the number of pixels to analyze (hundreds of millions) and in the time 
necessary for completing the analysis. All such technical limitations are being addressed by the scanner 
manufacturers, by the computer system designers, and by bioinformaticians, and it is only a matter of time 
until faster scanning and analysis systems are available on the market. On the other hand, however, each 
histological sample, whether assessed and scored manually by a pathologist or automatically by a 
computerized system, represents data characteristic only for a particular point in the tumor progression (a 
time of biopsy or tumor recession). These so-called static data provide information neither about how this 
particular tumor reached the observed state, nor about how this tumor would progress in response to the 
administered treatment. Obviously, such information could help in determining patient prognosis and in 
choosing appropriate treatment options. We propose to address this limitation by employing computational 
simulations (Virtual Pathology) of how a given tumor can respond to a given treatment.  
 
Computational Simulation Evaluation. Tumor dynamic responses to anti-cancer treatments, both in terms 
of changes in tumor structure over time and its spatial evolution, can be simulated using quantitative 
mathematical modeling. When appropriately calibrated, the in-silico models provide a tool to test various 
scenarios of tumor progression, leading to experimentally testable hypotheses. Some examples of predictive 
mathematical models include the following. Haeno et al. (34) proposed a mathematical model of metastasis 
formation calibrated to data from a large series of patients with pancreatic cancers, and predicted both the 
timing and type of clinical interventions that can most effectively impact patient survival. In particular, the 
model showed that earlier-applied neoadjuvant chemotherapy provides a significant survival benefit, and 
neoadjuvant radiation therapy prevents further metastases. Powathil et al. (35) developed a model of cell-
cycle phase-specific radiosensitivity that took into account heterogeneity in tumor oxygenation and 
provided a ranking of different therapeutic regimens in terms of overall treatment efficacy for a given 
patient. Macklin et al. (36) used patient histopathology data to calibrate a mathematical model of a ductal 
carcinoma in situ and provided patient-specific quantitative mapping between the calcification geometry 
observed in mammograms and the actual tumor shape and size offering a tool to more precisely plan for 
surgical margins. Our group also used mathematical modeling to investigate how the tumor tissue 
architecture and the extent of extracellular space between the tumor cells influence the transport and 
distribution of drugs or diagnostic imaging agent molecules inside the tumor (37). This study indicated that 
for moderately diffusive therapeutic agents, interstitial transport is highly influenced by tumor cell size and 
packing density, and thus, the morphological features of a given tumor should be considered in determining 
the therapeutic treatment. In another computational/experimental study we investigated the effects of 
exogenous pyruvate on transient changes in tumor oxygenation and enhanced effectiveness of hypoxia-
activated pro-drugs (HAPs) in hypoxic regions of pancreatic tumors (38). These results suggested that acute 
increase in tumor hypoxia can improve clinical efficacy of HAPs in pancreatic adenocarcinomas and other 
tumors. Moreover, we developed a mathematical model incorporating G1/S and G2/M cell-cycle 
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checkpoints (39) to test the effectiveness of cyclin-dependent kinase (CDK) inhibitors on tumor growth-
arrest. This in-silico study suggested that when tight tumor cell clusters are exposed to the CDK inhibitors, 
their growth suppression could be an effect of contact inhibition rather than of the drug mechanism, which 
may be important in designing the administration schedules and order of inhibitors acting at the G1/S and 
G2/M cell-cycle checkpoints.  

It is evident from the growing literature on mathematical oncology and systems oncology (40-51) 
that in-silico models are becoming the quantitative tools of choice for understanding the nonlinear 
interactions between multiple components of complex systems, such as cancer. In particular, these models 
can address both intracellular and extracellular heterogeneities, as well as dynamic changes in the tissue 
microenvironment and in tumor responses to therapies. The computational models are capable of 
quantitatively integrating data from various levels of organization (for example, signaling pathways, cell 
metabolism, individual or collective cell behavior, tumor microenvironment composition, etc.) into a 
comprehensive system that can be used to test various therapeutic treatments in a systematic way, as well as 
to formulate testable treatment hypotheses. Computational models are also flexible and can be refined when 
additional clinical information becomes available. These tools can easily be used to examine individualized 
therapies, as, by their nature, the computational models are designed to employ different parameter values 
and different initial conditions in each execution of the model. The parameters can be derived from patient 
data, such as biopsies, SOC medical imaging, gene expressions, or proteomics, and are thus patient-specific. 
However, the main concern that needs to be addressed before such models can be used in clinic is their 
predictability. This is usually achieved via an iterative cyclic process in which the model is built and 
validated against the clinical data for which the patients’ outcome is known, and it is refined and 
crossvalidated again and again until the satisfactory level of accuracy is achieved (this is called ‘a learning 
phase’). After that the model can be used to make predictions (‘a translational phase’) based on new clinical 
data and algorithms developed and validated in the learning phase. The important aspect of a clinically 
relevant computational model is the use of the SOC data that is widely accepted and routinely collected in 
all clinics. For this reason, we propose to utilize patient biopsy samples, even if they account only for a 
small subset of a large tumor and may not accurately or consistently represent the tumor as a whole. 
However, in current clinical practice both tumor diagnosis and therapy choice are based on such a patient’s 
biopsy sample. Since both a biopsy sample before treatment and a tumor resected after the treatment 
represents only single time points in tumor development, we use computer simulations to provide a 
dynamics link between these two static points. By using computer simulations multiple times, we can 
determine the most possible paths in tumor progression and calculate the likelihood of osteosarcoma 
chemoresistance. Such computer simulations of temporal and spatial changes in tumor composition after 
exposure to various therapeutic options can provide a clinician with a decision support tool, the Virtual 
Clinical Trials.  

 
Plan for hypothesis validation 

We propose here the Virtual Clinical Trials procedure for determining the chemoresistance of a given 
osteosarcoma based on the data extracted from a patient’s biopsy. The learning phase of our predictor 
algorithm (Fig. 1 A-F) will use retrospective data from patients of a known progression-free survival status. 
Patient histopathology samples before and after treatment will be compared using advanced image analyses 
(pathomics), feature classification methods (biostatistics and morphometry), and computational simulations 
of tumor progressions (virtual pathology). This will lead to the identification of patterns of cellular features 
that are characteristic of chemoresistant osteosarcoma cells (the cells that survived the therapy). Once 
validated, this predictor will be used for prospective studies (the translational phase of the predictor, Fig. 1 
I-IV). In this case, the pre-treatment biopsy samples will be analyzed and compared with previously 
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identified features of chemoresistant cells, as well as with the previously created library of the simulated 
results that determine tumor response to treatment. This will allow to calculate the likelihood of the given 
tumor being chemoresistant. The details of the construction of our predictor (both phases) are given below.  
  
Learning phase Fig. 1A, Pre- and post-treatment tissues. Pre-treatment biopsy samples and post-treatment 
tissue resection samples from patients that responded well to SOC chemotherapy (<10% of cells are 
viable), and from poorly responding patients (>10% of cells are viable) will be selected. All tissue slices 
will be stained with H&E, as well as with IHC markers for proliferation (Ki67), hypoxia-inducible factor 
(HIF-1), glucose transporter (GLUT-1), tumor protein p53, and endothelial cells (CD34). The 40x 
magnification with 0.25µm/pixel resolution slide scans will be taken for advanced image analysis.  
 
Learning phase Fig. 1B, Analysis of digital images of tumor tissue. High-resolution digitized images of 
tumor histology will be analyzed using advanced image analysis techniques (Pathomics) to identify and 
quantify morphological and immunochemical features of individual tumor cells. First, the regions of 
interest from the whole tumor tissue image will be determined, and the spatial zones of a low-to-high 
intensity of staining are selected; then, the segmentation of individual cell nuclei and cell cytoplasms will 
be performed, and both the physical and molecular features in each individual cell will be extracted. The 
physical features of each cell will include morphological or textural parameters, such as and nuclei size, 
shape, compactness, density, and the cytoplasm to nucleus ratio. The molecular futures evaluated from the 
IHC-stained slices will include cell and cytoplasm staining intensity for each individual cell, as well as the 
localization of tumor tissue vasculature. These will be used in the quantitative classification. 
 
Learning phase Fig. 1C, Quantitative analysis of cellular features. Quantitative multi-parametric feature 
sets extracted from individual tumor cells will be collected and used to detect and characterize cells that 
cluster around particular phenotypes (chemoresistant or chemosensitive). Of particular interest is whether 
cells will be uniformly distributed in the multi-dimensional morphospace, or whether they will form 
discrete and detectable sub-populations that cluster around particular morphological archetypes 
(morphotypes). This analysis will allow for the consideration of multiple features of millions of individual 
cells that otherwise are difficult to assess visually.  

 
Learning phase Fig. 1D, Identification of features of chemoresistant cells. Comparison of the quantitative 
features of individual osteosarcoma cells before and after the treatment will lead to the identification of 
features that are characteristic of the cells that remained viable after chemotherapy, which are considered 
chemoresistant. Similarly, a set of cellular features that are present in tumors prior to treatment but not after 
treatment will be considered typical of chemosensitive cells.  

 
Learning phase Fig. 1E, Computer simulations. To determine the likelihood of osteosarcoma tumors 
being chemoresistant based solely on their pre-treatment histology, multiple computer simulations will be 
run using patient’s histology data (Virtual Pathology) to provide dynamic response of this specific 
osteosarcoma tumor to SOC chemotherapeutic treatment. The model will be calibrated to reflect patient-
specific features of chemosensitive and chemoresistant cells, as described above. The vasculature identified 
by CD34 will act as a source of chemotherapeutic agents, oxygenation and nutrients; Ki67 staining 
determines the tumor proliferative index and defines the initial population of proliferating cells; HIF1a and 
GLUT1 will definite the cellular metabolic state. Different runs of the model will account for heterogeneous 
cell-cell and cell-microenvironment interactions, and the percentage of viable cells after each simulation 
will be counted and reported together with tumor morphology (chemo-charts).  
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Learning phase Fig. 1F, Predictions. An analysis of simulation outcomes, such as the extent of tumor 
necrosis in terms of the necrotic ratio relative to the tumor area, the quantitative area of detectable necrosis 
and a spatial necrosis map, and the spatial localization of remaining viable (chemoresistant) cells, will 
determine the likelihood of a patient tumor being chemoresistant (calculated as a percentage of computer 
simulations classified as chemoresistant). For the learning stage, model feasibility will be tested by 
comparing model simulations with patient post-treatment histologies, and by comparing with its clinical 
classifications into chemoresistant or chemosensitive (learning phase, Fig. 1 A–F).  
 
Translational phase Fig. 1 I–IV. In the translational phase, pre-treatment data (Fig. 1-I) will be used to 
perform a pathomics analysis (Fig. 1-II), as well as to compare to the features of chemoresistant cells 
already identified during the learning stage (Fig. 1-III). Then, information on the tumor tissue 
morphological structure and information on the identified set of cellular features will be used to map 
these parameters on the chemo-charts created during the learning stage. This will allow for the 
determination of the likelihood of tumor tissue chemoresistance (Fig. 1-IV). The simulated results can 
support both sarcoma pathologists and sarcoma clinicians in grading osteosarcomas, making therapeutic 
decisions and in clinical trial design.  
 
 

Consequences of the hypothesis and discussion 
We propose here that the Virtual Clinical Trials, a combination of a quantitative analysis of patient 
histology samples and a predictive modeling of tumor tissue response to treatments, can be used to predict 
whether a given patient’s tumor will be sensitive to the SOC chemotherapeutic treatment. Having such a 
high content analysis system that can be assessed at diagnosis will aid in a better prognostic ability. For 
example, patients with unfavorable predictions from the Virtual Clinical Trials system could be randomized 
to receive a modified therapy critical for therapeutic success. We are aware that tumor heterogeneity exists 
in osteosarcoma. While, in our practice, the pre-treatment biopsy specimens from osteoblastic and 
fibroblastic variants of osteosarcoma were representative of the post-treatment resection specimens, further 
studies are needed to examine this heterogeneity in more detail. We based our Virtual Clinical Trial concept 
on the SOC clinical data and clinical practice where therapeutic decisions are based upon examining 
patients’ biopsy data. It is worth noticing, that recently patients were randomized based on the onset of 
necrosis (the current best predictive biomarker) for a clinical trial conducted through a multinational 
collaboration from 2003-2011. Unfortunately the experimental arms of this study have been presented in a 
preliminary form without demonstrating an improvement over doxorubicin, cisplatin, and high dose 
methotrexate.  However, a computer-assisted analysis of tumor cellular features, such as the one described 
in this paper, has the potential to be translated to the clinic to aid in the prediction of osteosarcoma response 
to SOC treatment. This system will improve osteosarcoma trial development, and it can be used to provide 
an accurate objective means for assessing the morphological characteristics of osteosarcomas, leading to the 
objective stratification of patients. Ultimately, the Virtual Clinical Trials system can have a translational 
potential for improving patient care and may be incorporated into the pathologist and clinician’s decision-
supporting toolboxes. 
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Figure caption 
 
Fig. 1 Schematic of a Virtual Clinical Trial Predictor of Tissue Chemoresistance.  
Learning phase: A Pre- and post-treatment data; B Pathomics: feature selection and analysis; C 
Biostatistics and morphometry analysis; D Identification of features of chemoresistant cells; E Virtual 
Pathology: simulations and predictive reports; F Likelihood of tumor tissue chemoresistance; 
Translational phase: (I) Collection of pre-treatment data; (II) Pathomics analysis; (III) Comparison 
with previously identified features of chemoresistant cells; (IV) Comparison with virtual pathology 
reports for predicting the likelihood of a tumor tissue being chemoresistant. 
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