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ABSTRACT

Motivation: Protein—RNA interactions (PRIs) are essential for many
biological processes, so understanding aspects of the sequence and
structure in PRIs is important for understanding those processes.
Due to the expensive and time-consuming processes required
for experimental determination of complex protein—-RNA structures,
various computational methods have been developed to predict PRIs.
However, most of these methods focus on predicting only RNA-
binding regions in proteins or only protein-binding motifs in RNA.
Methods for predicting entire residue—base contacts in PRIs have
not yet achieved sufficient accuracy. Furthermore, some of these
methods require 3D structures or homologous sequences, which are
not available for all protein and RNA sequences.

Results: We propose a prediction method for residue—base contacts
between proteins and RNAs using only sequence information and
structural information predicted from only sequences. The method
can be applied to any protein—RNA pair, even when rich information
such as 3D structure is not available. Residue—base contact
prediction is formalized as an integer programming problem. We
predict a residue—base contact map that maximizes a scoring function
based on sequence-based features such as k-mer of sequences and
predicted secondary structure. The scoring function is trained by a
max-margin framework from known PRIs with 3D structures. To verify
our method, we conducted several computational experiments. The
results suggest that our method, which is based on only sequence
information, is comparable with RNA-binding residue prediction
methods based on known binding data.

Availability: The source code of our algorithm is available at https:
//github.com/satoken/practip.

Contact: satoken@bio.keio.ac.jp

1 INTRODUCTION

Recent studies have been unraveling the mechanisms of biological
processes involving functional non-coding RNAs, most of
which play essential roles in interacting with RNA-binding
proteins (RBPs), such as splicing, transport, localization and
translation. These interactions involve sequence- and structure-
specific recognition between proteins and RNAs. Therefore,
understanding aspects of the sequence and structure in protein—
RNA interactions (PRIs) is important for understanding biological

*to whom correspondence should be addressed

processes. To that end, several works have focused on the analysis
and discussion of PRIs (Kondo and Westhof, 2011; Iwakiri et al.,
2012, 2013).

Compared with deciphering genomic sequences by using high-
throughput sequencing technology, experimental determination
of protein—-RNA joint structures is more expensive and time
consuming. Therefore, rapid computational prediction of PRIs
from only sequence information is desirable. Existing methods for
computational prediction of PRIs can be roughly classified into four
groups. The first group predicts whether a given protein—RNA pair
interacts or not (Pancaldi and Bahler, 2011; Muppirala et al., 2011;
Bellucci et al., 2011; Wang et al., 2013). A prediction algorithm
for this approach can be simply designed from interacting protein—
RNA pairs alone, so 3D structures and residue-base contacts are
not necessary for use in model training. However, this approach
cannot predict binding sites of proteins and RNAs that should be
biologically and structurally essential for PRIs. The second group
aims at predicting RNA-binding residues from protein information.
DR_bindl (Chen et al., 2014), KYG (Kim et al., 2006), and
OPRA (Perez-Cano and Fernandez-Recio, 2010) are structure-based
methods that use 3D structures from PDB to extract descriptors
for prediction. BindN+ (Wang et al, 2010) and Pprint (Kumar
et al., 2008) are sequence-based methods that employ evolutionary
information instead of 3D structures. This approach ignores the
binding partners of target proteins although some of RNA-binding
domains in RBPs recognize sequence- and structure-specific motifs
in RNA sequences. The third group computes RNA structural
motifs recognized by RNA-binding domains in certain proteins and
contains MEMERIS (Hiller et al., 2006), RNAcontext (Kazan et al.,
2010), CapR (Fukunaga et al., 2014), and GraphProt (Maticzka
et al., 2014). This approach focuses on a certain RBP, and extracts
RNA motifs as consensus sequences and/or secondary structures
of the RBP-binding RNAs. The final group predicts intermolecular
joint structures between proteins and RNAs such as residue—base
contacts. To the best of our knowledge, (Hayashida er al., 2013)
is the only method of this type. However, it is unfortunately not
sufficiently accurate.

We propose a prediction method for residue—base contacts
between proteins and RNAs with using only sequence information
and structural information predicted from only sequences. Our
method can be applied to any protein—-RNA pair, even when rich
information such as 3D structure is unavailable. Residue-base
contact prediction is formalized as an integer programming (IP)
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Fig. 1. An illustration of binary-valued variables used in the IP formulation.

problem. We predict a residue-base contact map that maximizes
a scoring function based on sequence features such as k-mer of
sequences and predicted secondary structure. The scoring function
is trained by a max-margin framework from known PRIs with
3D structures. To verify our method, we performed several
computational experiments. The results suggest that our method
based on only sequence information is comparable with RNA-
binding residue prediction methods based on known binding data.

2 METHODS

We present a novel algorithm for predicting PRIs using integer
programming. Our algorithm consists of the following two parts: predicts a
residue-base contact map given a protein and an RNA by solving an integer
programming problem; and learns a scoring function from a given training
dataset by a max-margin framework.

2.1 Preliminaries

Let X be the set of 20 amino acid residues and let £ denote the set of all
finite amino acid sequences consisting of residues in X,. Similarly, let -
be the set of four ribonucleotide bases (A, C, G, and U) and let X} denote
the set of all finite RNA sequences consisting of bases in 2J,-. Given a protein
P = {p1,...,pp|} € X} consisting of | P| residues and an RNA R =
{r1,...,mr|} € X consisting of |R| bases, let CM(P, R) be a space
of all possible residue—base contact maps between P and R. An element
z € CM(P, R) is represented as an | P| X | R| binary-valued matrix, where
zij = 1 indicates that the residue p; interacts with the base r; (Fig. 1). We
define the problem of predicting PRI as follows: given a protein PP and an
RNA R, predict a residue-base contact map z € CM(P, R).

2.2 Scoring model

A scoring model f is a function that assigns real-valued scores to protein—
RNA pairs (P, R) and residue-base contact maps z € CM (P, R). Our
aim is to find a residue—base contact map z € CM (P, R) that maximizes
the scoring function f(P, R, z) for a given protein-RNA pair (P, R). The
scoring function f(P, R,z) is computed on the basis of various local
features of P, R, and z. These features correspond to residue features,
base features, and residue—base contact features that describe local contexts
around residue—base contacts.

Residue features describe the binding preference in the amino acid
sequences by local contexts around residue—base contacts. For this purpose,
we employ the k-mer of the amino acids centered on the interacting ¢th
residue. For each k-mer of the amino acids, prmer € >k we define a
binary-valued local feature of the ith residue as

Ovmer (Pr2,1) = I(kmer(P, 1) = ppmer)I(z; = 1),

where I(condition) is an indicator function that takes a value of 1 or
0 depending on whether the condition is true or false, kmer(P,1) is
the k-mer of the substring of P centered on the ith residue p;, that is,

Table 1. Groups of amino acids (Murphy et al., 2000)

# groups
Yg10 10 LVIM,C, A, G, ST, P, FYW, EDNQ, KR, H
Yga 4 LVIMC, AGSTP, FYW, EDNQKRH

Table 2. A summary of residue features

Type Context len. # of features
Residues 3 20°

5 20°
Simplified alphabets (10 groups) 5 10°

7 107
Simplified alphabets (4 groups) 5 4°

7 47
Secondary structures 3 33

5 3°

kmer(P,i) = pi_(k—1)/2---Pi-- Pity(k—1)/2> and x; is a binary-
valued variable such that x; = 1 if and only if the residue p; is a binding site
(Fig. 1), that is, Zyjl zij > 1. We use k = 3 and 5 for the k-mer features.

To reduce the sparsity of amino acid contexts, we consider the k-mers
of simplified alphabets of amino acids proposed in (Murphy et al., 2000),
which calculated groups of simplified alphabets based on the BLOSUMS50
matrix (Henikoff and Henikoff, 1992). Note that Murphy et al. (2000)
have shown that the simplified alphabets are correlated with physiochemical
properties such as hydrophobic, hydrophilic and polar that may be important
for PRIs. We employ the simplified alphabets of 10 groups, X410, and those
of 4 groups, ¥ 44 (Table 1). For each string sapmer € 2510 (or 2154), we
define a binary-valued local feature of the ith residue as

¢Sakme,,. (P7 Z,i) = I(kmeT(Psa: Z) = Sakmer)l(xi = 1)’

where Psq is the string of simplified alphabets X410 (or ¥44) converted
from P according to Table 1. We use k = 5 and 7 for the k-mers of
simplified alphabets.

To consider structural preference of RNA-binding residues, we employ
secondary structures predicted by PSIPRED (Jones, 1999). We predict one
structural element (« helix, 3 sheet, or coil) for each residue. For each string
SPkmer Of structural elements of length k, we define a binary-valued local
feature of the ith residue as

d)Spkmcr (P) Z, l) = I(kmer(PSIHi) = spkme’l‘)l(xi = 1)7

where Psy, is the string of structural elements predicted from P. We use
structural contexts with lengths £ = 3 and 5.
Table 2 shows a summary of the residue features. The collection of
occurrences of the residue features are calculated as
| P

QP(P7 Z) = Z¢P(P7zzi)7 (l)
i=1

where ¢, (P, z, 1) is a vector whose elements are the residue features of the
ith residue mentioned above.

Base features describe the binding preference in the ribonucleotide
sequences by local contexts around residue-base contacts. In addition to
the residue features, we employ the k-mer contexts of the ribonucleotides
centered on the interacting jth base. For each k-mer of the ribonucleotides
Thmer € E’ﬁ, we define a binary-valued local feature of the jth base as

Drimer (R, 2,7) = I(kmer(R,j) = Tkmer) I (y; = 1),
where y; is a binary-valued variable such that y; = 1 if and only if the

residue r; is a binding site (Fig. 1), that is, Ziill zi; > 1. Weuse k = 3
and 5 for the k-mer features.



https://doi.org/10.1101/022459

bioRxiv preprint doi: https://doi.org/10.1101/022459; this version posted July 13, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Prediction of residue—base contacts

internal loop

Uhairpin

Fig. 2. Structural elements in RNA secondary structures.

Table 3. A summary of base features

Type Context len. # of features
Bases 3 43

5 4°
Secondary structures 3 6>

5 6°

To consider structural preference of binding sites, we employ secondary
structures predicted by CENTROIDFOLD (Hamada et al., 2009). We assign
a structural element (one of external loop, hairpin loop, internal loop,
bulge, multibranch loop, or stack, as shown in Fig. 2) for each base.
Note that to encode secondary structures as a sequence, this encoding of
structural profiles loses part of structural information, e.g. base-pairing
partners for stacking bases. However, it is still efficient for describing
structural information (Hiller et al., 2006; Kazan et al., 2010; Fukunaga
et al., 2014). For each k-length string s7rg,,e. Of structural elements, we
define a binary-valued local feature of the jth base as

¢57”kmer (R7 Z,j) = I(kmer(RS'r:j) = srkme'r")l(yj = 1)’

where R, is the string of structural elements predicted from R. We use
structural contexts with lengths £ = 3 and 5.
Table 3 shows a summary of the base features. The collection of
occurrences of the base features are calculated as
|R|

2) =Y ¢ (R, 27), ©)
j=1

where ¢ (R, z,7) is a vector whose elements are the base features of the
jth base mentioned above.

Residue—base contact features describe the binding affinity between the
local contexts of amino acids and ribonucleotides. For this purpose, we
employ combinations of the residue features and the base features mentioned
above. For example, for each pair of k-mer of amino acids pgm,e- and
ribonucleotides 7. e-, We define a binary-valued local feature of the ith
residue and the jth base:

Cbpkmer"’“kmer (P7 R, 2,1, .7) =
I(kmer(P,i) = prmer)I (kmer(R, j) = Tkme?")l(zij =1).

Table 4 shows a summary of the residue—base contact features. The
collection of occurrences of the residue—base contact features are calculated

as
|P| |R|

33" ¢e(P R, 2,4, 5), 3)

i1=1j5=1

(P, R,z) =

where ¢c(P, R, z,1,7) is a vector whose elements are the residue-base
contact features of the ith residue and the jth base mentioned above.

The notation ®(P, R, z) denotes the feature representation of protein—
RNA pair (P, R) and its residue-base contact map z € CM(P, R), that
is, the collection of occurrences of local features in P, R, and z defined as
follows:

P, (P, z)
@, (R, 2) . @
®.(P,R,z)

Each feature in @ is associated with a corresponding parameter, and the
score for the feature is defined as the value of the occurrence multiplied by
the corresponding parameter. We define the scoring model f(P, R, z) as a
linear function

IA(P R, Z) = <>‘7<I>(P7 R, Z)> )
= <>‘P7 q>P(P7 Z)> + <}‘7‘7 q:'T(Rv z)) <)‘Cv (I:'C(P R, Z)>7

where (-,-) is the inner product, and A = ()\T AT AT s the
corresponding parameter vector trained from training data as described in
Sec. 2.4.

2.3 IP formulation

To formulate the problem as an integer programming (IP) problem, we
rewrite the scoring function (5) as

®(P,R,z) =

|P| |R| |P| |R|

Zulxl +ZUJZ]] +ZZWUZ1]7 (6)

i=1j5=1

(P, R, z)

where u;, v;, and w;; mean bmdlng preferences for x;, y;, and z;j,
calculated as

= <AP7(I>P(P7'217;))
v; = <>\T7(I>T(szvj)>
w’LJ = <AC’@C(P» R: Z7i7j)>'

We finda z € CM (P, R) that maximizes the objective function (6) under
the following constraints to satisfy the consistency in all the variables x;, y;,
and z;;:

x; +yj > 2245 (1<Vi<|P,1<Vj<I|R)) (D

|R|

r; < E Zij
i=1

|P|

yj < Z Zij
i=1

Yi—1+ (1 —y;) +yjr1>1

|R|

D>z <X
j=1

| P

Dz <Y
i=1

The constraints (7)—(9) describe the relation between contacts z;; and
binding sites x;, ;. The constraint (10) disallows any isolated interacting
bases, which are rare in PRIs. The constraints (11) and (12) define the upper
bound on the number of contacts X; and Y} for each residue and base,
respectively. As shown in Table 5, X; and Y for each residue and base
depend on its structural element, which were determined from the dataset
described in Sec. 3.2 (see Supplementary Material for details).

(rsvig|pP) ®

(I<Vi<IR) O
(1 <Vji<|R|) (10)

1<ve<|P)) (1D

(1<Vji<|R) (12)

2.4 Learning algorithm

To optimize the feature parameter A, we employ a max-margin framework
called structured support vector machines (Tsochantaridis et al., 2005).
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Table 4. A summary of residue—base contact features

Type
Residue Base Context len.  # of features
Residues Bases 3 20° x 4°
5 20° x 4°
Secondary structures Secondary structures 3 3% x 6°
5 3° x 6°
Simplified alphabets (10 groups) Bases 3 10% x 43
5 10° x 4°
Simplified alphabets (10 groups) Secondary structures 3 10% x 63
5 10° x 6°
Simplified alphabets (4 groups)  Bases 3 43 x 43
5 4° x 4°
Simplified alphabets (4 groups)  Secondary structures 3 4% x 63
5 45 x 6°

Table 5. The maximum number of contacts for each residue and base.

Residue | a helix 3 sheet Coil
X; 3 3 3

Base External Hairpin Internal Bulge Multibranch Stack
Y; 7 5 4 4 4 4

Given a training dataset D = {(P(k),R(k),z(k))}szl, where P(¥)
and R(%) are respectively the protein and RNA sequences and z(%) &
CM(PU“) s R(k>) is their corresponding contact map for the kth data, we
aim to find A that minimizes the objective function

L) =
(P,R,z)€ED

(Locmas, o AP R.2) + A, 2)]

~ APR)+CIAIL), (3)

where ||.||1 is the £1 norm and C is a weight for the ¢ regularization term
to avoid overfitting to training data. Here, A(z, 2) is a loss function of 2 for
z defined as

A(z, 2) =8N Tesidwe (4 of false negative residues) (14)

4 §FP residue (# of false positive residues)

+ 8FNDIe (3 of false negative bases)

+ TP b (3 of false positive bases)

+ g contact ( of false negative contacts)

+ PP contact (3 of false positive contacts),

where 6FN residue, 6FP residue7 5FN hase7 6FP base7 6FN comacl’ and 5FP contact gre

hyperparameters to control the trade-off between sensitivity and specificity
for learning the parameters. In this case, we can calculate the first term of
Eq. (13) by replacing scores u;, v, and w;; in Eq. (6) as

o w; — 5FN residue (if azl:l)

Ui = u; + SFP residue (if 171:0)

o g — gTNPase (if gyy=1)

Vi = v + SFP base (if yjzo)
P wij — 6FN contact (if wij=1)

LV wij + §FP contact (if ’LUijZO)

See Sec. S1 in Supplementary Material for the derivation.

I: A\ <= O0forVA € A

2: repeat

3: for all (P, R, z) € D do

4: 2 + argmax; [fa(P, R, 2) + A(z, 2)]

5 for all \;, € A do

6: Ak — Ae—1n(px(P, R, 2)—¢r(P, R, z)+CsgnAg)
7: end for

8: end for

9:

until all the parameters converge

Fig. 3. The stochastic subgradient descent algorithm for structured SVMs.
sgn is the sign function. 7 > 0 is the predefined learning rate.

To minimize the objective function (13), we can apply stochastic
subgradient descent (Fig. 3) or forward-backward splitting (Duchi and
Singer, 2009).

3 RESULTS
3.1 Implementation

Our method was implemented using the IBM CPLEX optimizer'
for solving integer programming problems (6)—(10). To extract the
structural feature elements described in Sec. 2.2, we employed
PSIPRED (Jones, 1999) and CENTROIDFOLD (Hamada et al.,
2009) to predict secondary structures of protein and RNA
sequences, respectively. We empirically chose the hyperparameters:
the penalty for positives 6"~ ° = 4.0, the penalty for negatives
orF” 1.0, and the weight for ¢; regularization term C =
0.125 (see Supplementary Material for details).We implemented
AdaGrad (Duchi er al., 2011) to control the learning rate 7 in
Fig. 3. The source code of our algorithm is available at https:
//github.com/satoken/practip.

3.2 Dataset

We prepared our dataset in accordance with (Chen et al., 2014) and
extracted RNA-bound proteins with X-ray resolution of < 3.0A
from the Protein Data Bank (PDB) (Rose et al., 2011). To reduce

! http://www.ibm.com/software/integration/
optimization/cplex—-optimizer/
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dataset redundancy, we discarded some extracted data such that the
dataset contains no protein pairs whose sequence identity is > 30%.
As aresult, we collected 101 protein—RNA interacting pairs from 81
protein—RNA complexes from the PDB. We considered a residue to
bind RNA if at least 1 non-hydrogen atom is contained within the
van der Waals contact (4.0A) or hydrogen-bonding distance (3.54)
to the non-hydrogen atom of its binding partner. We employed
HBPLUS (McDonald and Thornton, 1994) to detect the hydrogen
bonds and van der Waals contacts. Among the 101 protein—-RNA
pairs in our dataset, we found 5,794 residue—base contacts from
3,055 residues and 2,207 bases. See Sec. S4 in Supplementary
Material for the list of PDB structures we used.

3.3 Prediction of residue-base contacts

To verify our method, we conducted computational experiments on
our dataset, comparing the accuracy under several conditions related
to the maximum number of contacts for each residue and base,
which restrict at most 1, 2, or 3 contacts, namely, X; = Y; = 1,2,
or 3 in Egs. (11) and (12), or depend on structural profiles (SP) on
each residue and base as described in Sec. 2.3.

We evaluated the accuracy of predicting residue—base contacts
between proteins and RNAs through three measures: predicted
residue-base contacts, binding residues in proteins, and binding
bases in RNA sequences. The accuracy of residue—base contacts is
assessed by the positive predictive value (PPV) and the sensitivity
(SEN), defined as

TP TP

PPV =gpimp BN =T N

where TP is the number of correctly predicted contacts (true
positives), F'P is the number of incorrectly predicted contacts (false
positives), and F'N is the number of contacts in the true contact map
that were not predicted (false negatives). We also used the F-value
as the balanced measure between PPV and SEN, which is defined as
their harmonic mean:

F_2><PPV><SEN
- PPV 4+ SEN

The accuracy of binding residues and binding bases is defined in the
same way.

We performed 10-fold cross validation. We first divided the
dataset into ten subsets, then evaluated the accuracy for each
subset following parameter tuning using the other nine subsets. We
averaged the accuracy over ten subsets.

Table 6 shows the accuracy of predicting residue—base contacts
in PRIs, binding residues in proteins, and binding bases in RNA
sequences. As can be seen, more accurate predictions were achieved
with larger upper bounds on the number of contacts for each residue
and base. Furthermore, when we adapted the upper bound on the
number of contacts for each residue and base depending on its
structural profile, more accurate predictions were achieved than in
the case of a constant upper bound.

It should be noted that in this experiment we could not compare
our method with (Hayashida et al., 2013), which is the only method
for predicting reside—base contacts in PRIs. This is because we
could not conduct an experiment for the Hayashida’s method on the
same dataset since the software is not available yet, and it requires
homologous sequences with accurate alignments for calculating

evolutionary information. In addition, Hayashida er al. (2013) have
reported that it is unfortunately not sufficiently accurate.

3.4 Prediction of binding residues compared with
existing methods

We compared our method with existing methods for predicting
RNA-binding residues in proteins. DR_bind1 (Chen et al., 2014),
KYG (Kim et al., 2006), and OPRA (Perez-Cano and Fernandez-
Recio, 2010) are structure-based methods that use 3D structures
from the PDB to extract descriptors for prediction. BindN+ (Wang
et al., 2010) and Pprint (Kumar er al., 2008) are sequence-
based methods that employ evolutionary information instead of
3D structures. Table 7 indicates that our method is comparable
with equal or slightly less accuracy than the other methods. Recall
that our method employs only sequence information and structural
information predicted from only sequences as well as the partner
RNAs bound to RNA-binding proteins, instead of 3D structures and
evolutionary information.

4 DISCUSSION

We employ ¢; regularization for the weight of features. It is known
that ¢; regularization not only avoids overfitting to training data,
but also leads to a compact model, that is, fewer features have non-
zero weights. Thus, after training the model only 10,594 features
have non-zero weights (> 0: 2,870 and < 0: 7,724), as shown
in Tables S3-S5 in the Supplementary Material, while the number
of potential features is more than 4 billion. This serves as the
feature selection, which chooses the features that contribute to the
scoring function. As described in Sec. 2.2, our scoring model is a
linear combination of feature weights appearing in a given protein—
RNA pair. Therefore, we suggest that the larger the weight of
a feature after training the model, the more preferable it is for
residue—base contacts. This analysis indicated that the weight for
long continuous coil regions in protein sequences have large positive
values (Table S6 in the Supplementary Material). In other words,
such regions preferably interact with RNAs, supporting the result in
(Zhang et al., 2010).

Several existing methods for predicting PRIs utilized evolutionary
information from homologous sequences, (Wang et al, 2010;
Kumar et al., 2008) for protein sequences and (Hayashida et al.,
2013) for both protein and RNA sequences. To obtain homologous
sequences of target sequences, homologous sequences are typically
searched for in large databases using a highly sensitive homology
search engine such as PSI-BLAST (Altschul et al, 1997).
Furthermore, to extract evolutionary information, homologous
sequences must be aligned before predicting PRIs. Homology
searches are employed in a wide range of analyses, such as
functional analysis of proteins, because if homologous proteins can
be found in curated databases we can easily infer the function of the
target protein. However, as described above and in (Zhang er al.,
2010), the secondary structures of proteins play an essential role
in residue—base contacts. Similarly, structural elements of RNA
secondary structures also work as key descriptors for residue—base
contact prediction (Hiller ez al., 2006; Kazan et al., 2010; Fukunaga
et al., 2014; Maticzka et al., 2014). This means that structure-
based homology searches are needed for PRI prediction based on
evolutionary information. Although efficient structural alignment
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Table 6. Accuracy under varying conditions on the maximum number of contacts for each residue and base.

Contacts Binding residues Binding bases
# of contacts PPV SEN PPV SEN F PPV SEN F
Atmost I contact (X; =Y; =1) | 0.2281 0.2917 0.2210 | 0.6241 0.4104 0.4355 | 0.8140 0.3898 0.4854
At most 2 contacts (X; = Y; =2) | 0.3633 0.4082 0.3617 | 0.5199 0.5045 0.4808 | 0.6864 0.4700 0.5322
At most 3 contacts (X; = Y; = 3) | 04379 0.4590 0.4323 | 0.5941 0.5463 0.5405 | 0.6251 0.5327 0.5498
Depending on each SP (Table 5) 0.4797 0.5759 0.5051 | 0.5766 0.6555 0.5861 | 0.5653 0.6192 0.5585

Table 7. Comparison with other existing methods on our dataset.

Our method DR_bindl

SEN 0.66 0.05
PPV 0.58 0.69
F 0.59 0.09

KYG OPRA BindN+ Pprint
0.60 0.33 0.73  0.82
0.38 0.50 0.54 042
0.47 0.40 0.62  0.56

algorithms for proteins (e.g., Deng and Cheng (2011)) and RNAs
(e.g., Sato et al. (2012)) have recently been developed, they have
not yet been successfully applied to large-scale homology searches.

To the best of our knowledge, (Hayashida er al, 2013)
is the only existing method that predicts intermolecular joint
structures between proteins and RNAs such as residue-base
contacts. However, it is unfortunately not sufficiently accurate. The
Hayashida’s method is similar to our method in the approach that is
based on the machine learning technique with the ¢; regularization.
The main difference between our method and the Hayashida’s
method is that our method employs the large number of features
including the structural information of proteins and RNAs, which
has been shown to work as key descriptors in PRIs as mentioned
above.

We calculated RNA structural profiles from RNA secondary
structures predicted by CENTROIDFOLD (Hamada et al., 2009),
which is one of the most accurate tools for RNA secondary structure
prediction. However, it is suspicious that use of RNA secondary
structure prediction tools for single RNA molecules is applicable for
this purpose, because they do not consider conformational changes
induced by interacting with proteins, which may frequently occur in
environments in vivo. To tackle this problem, we plan to develop an
algorithm for simultaneously predicting residue—base contact maps
and secondary structures of proteins and RNAs, which may employ
a similar approach to RactIP (Kato er al., 2010) for RNA-RNA
interaction prediction.

We utilized the structural profiles of predicted RNA secondary
structures, which lose important part of structural information, such
as base-pairing partners for stacking bases. Most of the existing
RBP-binding RNA motif finding methods (Hiller er al., 2006;
Kazan er al., 2010; Fukunaga et al., 2014) have also utilized
similar encoding, which may not be suitable for dealing with
the recognition sites of double-stranded RNA-binding proteins.
GraphProt (Maticzka et al., 2014) is an exceptional algorithm that
utilized graph-based encoding of RNA secondary structures. Our
method should be extended by utilizing another structural profile
with no loss of base pairing information like the graph-based
encoding of GraphProt.

As shown in Sec. 2.3, we formulated the residue—base contact
prediction as an IP problem, which enables us to build a flexible
model, such as the constraints on the upper bound on the number

of contacts for each residue and base. In contrast to the RNA-RNA
interaction model in which each base interacts with at most one base
by hydrogen bonds such as Watson—Crick and wobble base-pairs,
PRIs contain diverse patterns of residue—base contacts. For example,
Kondo and Westhof (2011) have classified the residue—base contacts
with respect to three interaction edges on nucleotides (Watson—
Crick, Hoogsteen and Sugar) with side-chains and backbones of
their partner residues, and have analyzed their propensity. Thus,
there is room for further improvement on our model, which can be
extended using other constraints for each contact between a residue
and a base to consider such observations.

RNA-related high-throughput sequencing technologies have been
actively developed, such as Structure-seq (Ding et al., 2014) and
hiCLIP (Sugimoto et al., 2015). The large-scale sequencing data
produced by these techniques will help us improve our algorithm,
especially for training the model. Here we employed complete
joint 3D structures of proteins and RNAs as the training dataset,
which is not sufficiently large. We cannot build from large-scale
sequencing data a complete dataset with residue—base contact maps,
but can partially calculate structural profiles and binding bases from
in vivo chemical probing such as Structure-seq. This information
will significantly help us improve our model.

5 CONCLUSION

We developed a max-margin framework for predicting residue—base
contacts between proteins and RNAs based on integer programming.
To verify our method, we performed several computational
experiments. The results suggest that our method based on only
sequence information and structural information predicted from
only sequences is comparable with RNA-binding residue prediction
methods based on known binding data. Further improvements
are needed, such as adding informative features, developing a
joint prediction model that simultaneously predicts RNA secondary
structures and protein contact maps, and using high-throughput
sequencing data that can deal with PRI with no residue—base contact
information as training data.
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