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Abstract 

While genome-wide significant associations generally explain only a small 
proportion of the narrow-sense heritability of complex disease (h2), recent work has 
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shown that more heritability is explained by all genotyped SNPs (hg
2). However, much of 

the heritability is still missing (hg
2 < h2). For example, for schizophrenia, h2 is estimated 

at 0.7-0.8 but hg
2 is estimated at ~0.3. Efforts at increasing coverage through accurately 

imputed variants have yielded only small increases in the heritability explained, and 
poorly imputed variants can lead to assay artifacts for case-control traits. We propose to 
estimate the heritability explained by a set of haplotype variants (haploSNPs) constructed 
directly from the study sample (hhap

2). Our method constructs a set of haplotypes from 
phased genotypes by extending shared haplotypes subject to the 4-gamete test.  In a large 
schizophrenia data set (PGC2-SCZ), haploSNPs with MAF > 0.1% explained 
substantially more phenotypic variance (hhap

2 = 0.64 (S.E. 0.084)) than genotyped SNPs 
alone (hg

2 = 0.32 (S.E. 0.029)). These estimates were based on cross-cohort comparisons, 
ensuring that cohort-specific assay artifacts did not contribute to our estimates. In a large 
multiple sclerosis data set (WTCCC2-MS), we observed an even larger difference 
between hhap

2 and hg
2, though data from other cohorts will be required to validate this 

result. Overall, our results suggest that haplotypes of common SNPs can explain a large 
fraction of missing heritability of complex disease, shedding light on genetic architecture 
and informing disease mapping strategies. 
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Introduction 
 
 Genome-wide association studies (GWAS) have been extremely successful in 
identifying robust associations between single nucleotide polymorphisms (SNPs) and 
complex traits, providing important biological insights.  However, despite the large 
number of loci with genome-wide significant associations, these loci explain only a small 
proportion of the heritability of complex traits1. For example, for schizophrenia the 
heritability estimated from related individuals (h2) is 0.7-0.82, and the heritability 
explained by all loci with genome-wide significant associations (hGWAS

2) to schizophrenia 
is only 0.033.  
 The gap between the heritability estimated from related individuals4 (h2), and that 
explained by genome-wide significant associations (hGWAS

2)—termed the “missing 
heritability5,6”—is partially explained by causal variants that have not achieved genome-
wide significance in GWAS of current sample sizes7. Indeed, the heritability of 
schizophrenia explained by all genotyped SNPs (hg

2) has been estimated at ~0.38 (all 
values on liability scale9). While this is substantially larger than hGWAS

2 of 0.03, it leaves 
much of h2 unaccounted for. This pattern of hGWAS

2< hg
2 < h2 is observed across a broad 

set of complex traits1. Thus, despite a clear polygenic signal, a substantial portion of the 
heritability remains missing. One possible explanation for this missing heritability is 
inflation in h2 estimates due to genetic interactions10 or shared environment11,12. A second 
possibility is that currently unobserved rare genetic variants explain a significant portion 
of the variance of studied traits7,13.  
 A logical first step in including untyped genetic variants in analyses would be to 
perform imputation using a higher coverage reference panel14. Increasing coverage 
through imputation is an essential part of association and fine-mapping. While accurately 
imputed SNPs do not typically explain more heritability than genotyped SNPs alone8,15, 
including low-accuracy imputed SNPs can explain substantially more of the heritability 
of quantitative traits (see Discussion). However, it is unclear whether poorly imputed 
SNPs can be included in analyses of case-control traits, due to the severe danger of assay 
artifacts inflating the resulting estimates9. Additionally, imputation will not include the 
contributions of variants that are absent or rare in reference panels. This is particularly 
important for large-effect rare variants that will be at dramatically higher frequency in 
ascertained case-control studies than in the population. 

To better understand the contributions of rare and low frequency variants (MAF < 
0.05), we estimated the heritability of complex traits explained by haplotype variants 
(haploSNPs) constructed from within the sample. This is based on the idea that two 
individuals who are identical by state for a long haplotype of DNA are more likely to also 
share unobserved rare variants linked to the haplotype16. This allows us to tag rare 
variants whose phenotypic effects are poorly captured by genotyped or accurately 
imputed SNPs.  

Using simulations involving real genotypes, we demonstrated that haploSNPs can 
explain substantially more heritability than SNPs alone, primarily due to superior tagging 
of unobserved rare causal variants. We applied our method to >35,000 schizophrenia 
cases and controls from the Psychiatric Genomics Consortium 2 (PGC2-SCZ) and obtain 
an estimate of hhap

2 = 0.64 (S.E. 0.084), representing a substantial increase over hg
2 = 0.32 

(S.E. 0.029). These estimates were based on cross-cohort comparisons, ensuring that 
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cohort-specific assay artifacts did not contribute to our estimates. We separately applied 
our method to >14,000 multiple sclerosis cases and controls from the Wellcome Trust 
Case Control Consortium 2 (WTCCC2-MS). We observed an even larger difference 
between hhap

2 and hg
2, though data from other cohorts will be required to validate this 

result. 
 
Results 
 
Overview of methods 

To assess whether rare variants are contributing to the gap between the heritability 
explained by common SNPs (hg

2) and the total narrow-sense heritability (h2), we 
estimated the heritability explained by haplotype variants (haploSNPs) constructed from 
multiple SNPs (hhap

2). haploSNPs are haplotypes of adjacent SNPs excluding a subset of 
masked sites that arise from skipped mismatches (see below). Individuals are considered 
to carry 0,1, or 2 copies of the haploSNP if none, one or both of their chromosomes 
matches the haplotype at all unmasked sites. 
 Using computationally phased genotypes17, we build haploSNPs from all pairs of 
phased chromosomes in the sample, independently of phenotype.  We start with a SNP at 
which the two chromosomes match, and extend one SNP at a time.  The haploSNP is 
extended until a terminating mismatch—a mismatch that cannot be explained as a 
mutation on a shared background. Terminating mismatches are detected as violations of 
the 4-gamete test between the haploSNP being extended and the mismatch SNP. We also 
limit each haploSNP to a maximum length of 50kb (see Online Methods), which our 
simulations suggest captures much of the rare variant tagging while ensuring a relatively 
small number of haploSNPs (avoiding large S.E. in hhap

2).  We have released open-source 
software implementing the method for building haploSNPs (see Web Resources).  
 Once all pairs of chromosomes are analyzed, the set of haploSNPs is treated as a 
new set of variants that can be analyzed using standard techniques. We analyzed these 
haploSNPs in a linear mixed-model framework7 (see Online Methods). We used PCGC 
regression18 (a generalization of Haseman-Elston regression19) instead of REML to 
estimate the components of heritability explained by this specific set of haplotype 
variants, avoiding the bias of REML methods (e.g. GCTA) under extreme case-control 
ascertainment18,20 (see Online Methods). We stratified by MAF21,22 to avoid bias due to 
MAF-dependent genetic architectures, employing a MAF-stratified PCGC regression 
approach.  We employed an efficient implementation of PCGC regression, which we 
have released as an open-source software package (see Web Resources).  For our 
analyses where multiple cohorts of similar ancestry were available (i.e. our schizophrenia 
analysis), we estimated heritability using comparisons of individuals from different 
cohorts to avoid biases due to cohort-specific assay artifacts.  
 
Simulations using real genotypes 
 

We first sought to assess the degree to which haploSNPs improved tagging of rare 
causal variants using a large sample of sequenced individuals from the UK10K project 
(see Web Resources). Starting with 3,565 unrelated individuals sequenced at 235k SNPs 
on chromosome 22, we masked all SNPs that were not present on the Illumina 
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Human660-Quad chip, and considered the remaining 6,477 SNPs as “genotyped SNPs” 
in our analysis. We computationally phased these genotyped SNPs, and built a set of 
937k haploSNPs using our approach.  To compare the tagging efficiency of well-imputed 
SNPs and haploSNPs, we used Impute223 to impute 24k SNPs with INFO > 0.9 from a 
1000 Genomes reference panel24 (see Online Methods). For each SNP in the sequence 
data, we compared the best tag from the set of genotyped SNPs, well-imputed SNPs, or 
the set of haploSNPs (see Online Methods). We observed much higher tagging efficiency 
for haploSNPs (average best tag from haploSNPs of r2 = 0.54 ) compared with well-
imputed or genotyped SNPs (average best tags of r2 = 0.34,  0.28 ). This improvement 
was much larger than would be expected by chance given the large number of haploSNPs 
(see Online Methods) and was driven primarily by improved tagging for sequence SNPs 
with MAF < 0.05 (see Figure 1). 

We next sought to ensure that our estimation procedure produced robust estimates 
of the heritability explained by haploSNPs (hhap

2). Using the set of haploSNPs from 
chromosome 22 generated above, we simulated quantitative traits by selecting a subset of 
the haploSNPs as causal variants (see Online Methods). We simulated multiple genetic 
architectures, each with causal variants chosen from a different subset of the haploSNP 
MAF distribution (i.e. MAF 0-0.05)   (total h2 = 0.5 for all simulations). These 
simulations allowed us to verify that heritability estimates from haploSNPs closely 
matched the heritability used to simulate phenotypes (Figure 2; see Online Methods).  

To assess our ability to explain additional heritability using haploSNPs, we 
simulated phenotypes from UK10K sequence SNPs (instead of haploSNPs as above) 
using multiple genetic architectures, each with causal variants chosen from a different 
subset of the MAF distribution (total h2 = 0.5 for all simulations). We compared the 
heritability explained by genotyped SNPs and haploSNPs (see Figure 3). We note that 
well-imputed SNPs did not explain additional heritability and were subject to known LD-
bias15,21 (see Figure S1). Our results show that genotyped SNPs explain the bulk of 
heritability when causal variation is common: for example, if causal SNPs are drawn with 
MAF > 0.01, then hg

2 = 0.36 (S.E. 0.005) and hhap
2 = 0.39 (S.E. 0.015). However, as the 

contribution of rare variants to phenotype increases, haploSNPs can explain substantially 
more heritability than SNPs alone. For example, if causal SNPs are drawn with MAF < 
0.05 then hg

2 = 0.038 (S.E. 0.002) and hhap
2 = 0.24 (S.E. 0.016). We explored the effect of 

altering the maximum length threshold on resulting heritability estimates (see Figure S2); 
based on these results, we chose to use haploSNPs with MAF > 0.1% and length shorter 
than 50kb to maximize tagging while limiting the number of haploSNPs generated (and 
thus the S.E. on hhap

2). Results on explaining additional heritability using haploSNPs 
were similar using GCTA25 (see Figure S3), as expected in the absence of case-control 
ascertainment.  We note that available sample sizes of sequence data did not allow for 
simulation of strong case-control ascertainment (e.g. prevalence < 0.01) with realistic 
haplotype/rare-variant structure.  
 
 
Analysis of schizophrenia 

 
We analyzed the genome-wide heritability explained by genotyped SNPs and 

haploSNPs in PGC2-SCZ data3. (We note that well-imputed SNPs have been shown to 
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not explain substantially more heritability than genotyped SNPs alone in previous 
analyses of PGC-SCZ data8.) We first meta-analyzed estimates for each of ten cohorts of 
European ancestry with >1,000 individuals, for a total of >35,000 individuals (this is 
distinct from the cross-cohort analysis described below). In each cohort, we applied 
stringent quality control to genotyped SNPs, obtaining an average of 461k genotyped 
SNPs in each cohort (see Online Methods and Table 1). We computationally phased these 
genotypes17 and constructed an average of 36.3M haploSNPs in each cohort. We 
stratified haploSNPs according to MAF, and estimated the heritability explained jointly 
with SNPs using MAF-stratified PCGC regression18 with 7 variance components (see 
Online Methods) using a disease prevalence of 1%26. For two studies of treatment 
resistant schizophrenia a disease prevalence of 0.3% was used.  (We note that the choice 
of disease prevalence affects the absolute estimates of hg

2 and hhap
2, but not their relative 

values.) To counter effects of population stratification, we included 140 principal 
components in all analyses—20 from each of 6 haploSNP MAF ranges and 20 from the 
SNPs (see Online Methods). Heritability estimates for these cohorts were meta-analyzed 
using inverse variance weighted averaging producing estimates of hg

2 = 0.29 (S.E. 0.020), 
consistent with previous reports26, and hhap

2 = 0.72 (S.E. 0.071) for haploSNPs with MAF 
> 0.001 (all estimates on the liability scale) (see Table 1). We note that the larger 
standard error for hhap

2 is expected due to the large number of haploSNPs. Estimates of 
hhap

2 from GCTA were slightly lower than those from PCGC regression (see Table S1), 
potentially reflecting the known downward bias of REML estimates due to case-control 
ascertainment18.  

Given the large increase in heritability explained (i.e. between hg
2 and hhap

2) we 
were concerned that assay artifacts differentially affecting cases and controls within each 
cohort9,27 could be inflating our estimates. To investigate this possibility, we performed a 
cross-cohort heritability analysis8,28 in two subsets of cohorts of homogenous ancestry. 
The first subset was of Swedish ancestry and consisted of five cohorts with a total of 
2,819 schizophrenia cases and 2,911 controls. The second subset was of British ancestry 
and consisted of two cohorts with a total of 5,406 Treatment resistant schizophrenia cases 
and 5,284 controls (see Table S2).  To maximize sample size, the Swedish subset 
included some cohorts with N < 1,000 that were not included in our analysis above. 
Following stringent QC, we analyzed genotypes at 310k and 303k SNPs in each subset, 
respectively (see Online Methods). To enable cross-cohort analyses within each subset, 
haploSNPs were rebuilt; 21.5 and 26.8 million haploSNPs were generated in the Swedish 
and British subset, respectively. Within each subset, we estimated heritability using 
MAF-stratified PCGC regression based only on pairs of individuals from different 
cohorts, instead of all pairs of samples (see Online Methods). Thus, unless assay artifacts 
are shared across multiple cohorts, they would not impact our heritability estimates. 
Meta-analyzed cross-cohort heritability estimates for the Swedish and British subsets 
were hg

2 = 0.32 (S.E. 0.029) and hhap
2 = 0.64 (S.E. 0.084), with the bulk of the increase 

coming from haploSNPs with MAF < 0.05 (see Table 2). These estimates are only 
slightly smaller than our overall estimates reported above, though we cannot rule out a 
small amount of inflation in those estimates due to assay artifact. To be conservative, we 
report the cross-cohort estimates as our final estimates. We note that the inclusion of rare 
haploSNPs does not decrease the contribution of common SNPs to phenotypic variance 
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(see Table S3), suggesting key roles for both common and rare genetic variation in the 
genetic architecture of schizophrenia. 

To assess whether haploSNPs contribute to known genome-wide significant loci, 
we analyzed 99 loci containing genome-wide significant associations3 after merging 
adjacent loci (see Online Methods). The heritability explained by both SNPs and 
haploSNPs in these loci was estimated at hhap

2 = 0.042 (S.E. 0.018), which is not 
significantly larger than the heritability explained by SNPs alone (hg

2 = 0.037; S.E. 
0.007); these estimates were based on a cross-cohort analysis as described above. These 
results are consistent with prior reports15 that the causal allele frequency spectrum at 
GWAS loci is skewed towards common variants. We separately assessed whether 
haploSNPs might serve as better tags for underlying causal variants by evaluating 
whether the best haploSNP ! 2 statistic was significantly larger than the best SNP ! 2

statistic within the published locus. We observed an average increase in ! 2 statistics of 
3.5 and 3.0 in the Swedish and British subsets (mean % increase: 55% and 38%), 
respectively. After correcting for the larger number of haploSNPs tested (see Online 
Methods), we found that this increase was statistically significant (K-S test P=3.9x10-4). 
This suggests that, despite not explaining additional heritability, haploSNPs do more 
effectively tag causal variants at associated loci. This distinction is explained by the fact 
that a linear combination of SNPs in the locus may tag a haploSNP well (so that 
heritability explained by the haploSNP is included in estimates of hg

2) even though 
individual SNPs in the locus may not tag the haploSNP well. 
 
Analysis of multiple sclerosis 
 

We analyzed the genome-wide heritability explained by genotyped SNPs and 
haploSNPs in the WTCCC2-MS data set20,29. We used extremely stringent quality-control 
filters to avoid inflation of genome-wide estimates by large numbers of small artifactual 
effects9,15. Because we could not validate our results across cohorts, the QC thresholds 
used for this data-set were more stringent than those used in our analysis of PGC2-SCZ 
(see Online Methods). Following QC, this data set consisted of 14,526 individuals (9,315 
cases + 5,211 controls) genotyped at 349k SNPs (see Online Methods). We 
computationally phased this set of genotyped SNPs17 and built a set of 36.3 million 
haploSNPs. We note that there is a large ancestry mismatch between WTCCC2 MS cases 
and controls as a consequence of the set of samples that are publicly available20. While 
we also performed ancestry-matched analyses (see below), for our primary analysis we 
analyzed all individuals and included 140 PC covariates—20 from each of 6 haploSNP 
MAF ranges and 20 from the SNPs in our analyses (see Online Methods). We estimated 
hg

2 = 0.20 (S.E. 0.019) and hhap
2 = 0.67 (S.E. 0.063) for haploSNPs with MAF > 0.001 

(all estimates on the liability scale) (see Table 3). These estimates were produced using 
MAF-stratified PCGC regression18 with 7 variance components using a disease 
prevalence of 0.1%. Estimates of the heritability explained by haploSNPs using MAF-
stratified GCTA7,25 were subject to known REML bias and varied widely as a function of 
ascertainment of cases18,20 (see Table S4). As expected, well-imputed SNPs from the 
1000 Genomes Project24 did not explain substantially more heritability than genotyped 
SNPs (non-significant increase of 0.01; see Supplementary Note). While inclusion of 
SNPs with low imputation accuracy can explain more heritability of quantitative traits 
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(see Discussion), it is unclear whether this approach is applicable to case-control traits 
due to the severe danger of inflation due to assay artifact9.   

To assess the possible impact of assay artifacts on our results we tested for the 
presence of spurious heritability (both hg

2 and hhap
2) between the two control cohorts 

(NBS and 58C; 2,635 controls and 2,794 controls, respectively). This estimate was not 
significantly different from zero (see Table 4), suggesting that control-specific assay 
artifacts are unlikely to contribute significantly to our estimates, although this analysis 
cannot rule out assay artifacts specific to disease cases. We sought to further ensure that 
the effects of assay artifacts were minimal by re-estimating hg

2 and hhap
2 from sets of 

genotyped SNPs and haploSNPs obtained after excluding an additional 60k SNPs with 
even more stringent QC9 (see Online Methods). We compared these estimates to 
estimates obtained by dropping 10 random sets of 60k SNPs and observed no significant 
difference (see Table S5). This suggests that assay artifacts may not be contributing 
heavily to the observed increase in heritability explained, though data from other cohorts 
will be required to validate this result. As in our PGC2-SCZ analysis, the inclusion of 
rare haploSNPs did not decrease the contribution of common SNPs (see Table S6), again 
suggesting that heritability at common SNPs is not explained by rare variants 

We also estimated the heritability explained by genotyped SNPs and haploSNPs 
in a subset of ancestry matched cases and controls (see Online Methods). In this set of 
8,149 individuals, we obtained hg

2 estimates of hg
2 = 0.20 (S.E. 0.024) and hhap

2 = 0.65 
(S.E. 0.082) for haploSNPs with MAF > 0.001 (see Table 4), consistent with estimates 
obtained on the full data set.   Thus, it is unlikely that our results are affected by the 
severe population stratification present in the overall set of 14,526 samples. 

For further validation, we analyzed 38 loci (excluding chromosome 6, which 
contains the HLA locus) representing genome-wide significant associations from a larger 
sample29, as described above in the PGC2-SCZ analysis. The heritability explained by 
both SNPs and haploSNPs in these loci was estimated at hhap

2 = 0.020 (S.E. 0.007), not 
significantly different than the heritability explained by SNPs alone hg

2 = 0.029 (S.E. 
0.004), again consistent with reports that the causal allele frequency spectrum at GWAS 
loci is skewed towards common variants15.  We also investigated whether haploSNPs 
improved association signals at these loci by tagging unobserved causal variants. We 
compared whether the best haploSNP ! 2 statistic was significantly larger than the best 
SNP ! 2 statistic as described in the PGC2-SCZ analysis. Our results show that the 
improvement in ! 2 statistics (mean improvement 3.6; mean increase of 32%) was 
statistically significantly different than expected due to the larger number of haploSNPs 
alone (K-S test P = 0.009; see Methods). As in the PGC2-SCZ analysis, this suggests that 
haploSNPs may tag causal variants better than SNPs alone. 

Given the improvement in ! 2 statistics at known associated loci, we sought to 
compare the effectiveness of association using haploSNPs vs. genotyped SNPs.  We 
performed association of 375k SNPs and 38.8M haploSNPs (including chromosome 6) 
(see Figure 4). At a genome-wide significance threshold of 5e-8 for SNPs and 1.3e-9 for 
haploSNPs (0.05 / 38.8M) we observed only 4 loci containing genome-wide significant 
haploSNP associations compared with 7 loci containing genome-wide significant SNP 
associations. We note that this reduction in power is primarily due to correction for the 
larger number of hypotheses tested. To further explore the utility of haploSNP 
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association, we relaxed our criteria and examined the set of SNPs and haploSNPs that 
achieved significance at an false discovery rate (FDR) 0.0530. At this FDR, we observed 
82 SNP associations  (see Table S7) and 260 haploSNP associations  (see Table S8). Of 
the 260 haploSNP associations, 45 overlapped with known GWAS loci (see Online 
Methods), significantly more than the 28 SNP associations that did so (Permutation P = 
6.15x10-4; see Online Methods). Additionally, the remaining 215 haploSNP associations 
(that did not overlap with known genome-wide significant loci) tended to overlap with 
larger numbers of genes than would be expected by chance, after accounting for the non-
random distribution of SNPs and haploSNPs across the genome (Permutation P=0.009; 
see Online Methods).  Textual analysis of all 260 loci using GRAIL31 implicated 19 
genes with immune-related roles at 10 previously identified loci and implicated 5 
immune related genes at 5 novel loci (see Table S9).   We caution that an FDR of 0.05 
does not meet traditional standards of genome-wide significance, and that these 
suggestive findings require replication in larger datasets; nonetheless, many of the novel 
loci are likely to be real, and these results suggest that haploSNPs may provide additional 
power to detect genetic associations to complex traits. While our modest sample size and 
the large multiple hypotheses correction penalty reduced our power to detect genome-
wide significant associations, as sample sizes grow larger, the relative power of 
haploSNP association may increase. 
 
Discussion 
 

We have developed a method for estimating the heritability explained by a 
specific set of haplotypes constructed from common SNPs (haploSNPs). Simulations and 
analyses of empirical schizophrenia and multiple sclerosis data sets show that these 
haploSNPs explain substantially more heritability than genotyped SNPs (or well-imputed 
SNPs).  The absolute magnitude of increases in the heritability explained by haploSNPs 
for schizophrenia are similar to those that we observed in simulations with large numbers 
of rare variants; the observed increases in heritability explained for multiple sclerosis are 
even larger. One possible explanation for the large magnitude of these increases is that 
strong case-control ascertainment (especially for multiple sclerosis, whose prevalence is 
0.1%) causes causal rare variants to have substantially higher frequency in the sample 
than in the population. We caution that, despite our efforts, assay artifacts may play a role 
in our multiple sclerosis estimates, and conclusive validation must be obtained via cross-
cohort analyses of additional data sets, as we have provided here for schizophrenia.  

Recent work has explored the alternative approach of including low-accuracy 
imputed SNPs in estimates of heritability explained by SNPs, and has shown that this 
approach can explain substantial additional heritability for quantitative traits32. However, 
it is unclear whether this approach can work for case-control traits due to the severe 
danger of assay artifacts inflating the resulting estimates9. Additionally, imputation will 
not capture the contributions of variants that appear rarely in, or are entirely absent from 
reference panels. This is particularly relevant for large-effect rare variants for diseases of 
low prevalence that will be at dramatically higher frequency in ascertained case-control 
samples than in the entire population. In these instances, haploSNPs may be a more 
effective approach to tagging unobserved causal variants. 
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We note that explaining more heritability using a specific set of haploSNPs (hhap
2) 

is distinct from estimating total narrow-sense heritability (h2), and that estimates of hhap
2 

should not be viewed as unbiased estimates of h2. While haploSNPs may not capture all 
of trait heritability, specific haploSNP associations should explain all of the estimated 
haploSNP heritability in the limit of infinite sample size. Additionally, unbiased 
estimates of h2 are typically based on long haplotypes shared identical-by-descent (IBD) 
between closely related individuals11,33 and may be subject to biases due to shared 
environment11 or genetic interactions that are difficult to tease out10. By contrast, 
approaches based on unrelated individuals, such as ours, are unaffected by these biases. 
We view the use of IBD analyses to produce estimates of h2 in unrelated individuals as an 
exciting avenue for future work. 

Although haploSNPs explain substantially more heritability than genotyped 
SNPs, this approach does have limitations.  First, as with other heritability analyses of 
case-control traits, the approach can potentially be susceptible to assay artifacts, 
motivating cross-cohort analyses such as we have performed here with schizophrenia.  
Second, haploSNPs could in theory be tagging effects due to interaction between co-
located SNPs, though the bulk of these effects may still be likely to be largely additive34.  
Third, efforts to leverage haploSNPs to detect new associations will suffer a substantial 
multiple hypothesis testing burden due to the large number of haploSNPs, potentially 
requiring large sample sizes to overcome; however, the 215 suggestive (FDR<0.05) novel 
loci that we detected in a multiple sclerosis data set of modest sample size suggest that 
overcoming this multiple hypothesis testing burden may be feasible.  Fourth, construction 
of haploSNPs from well-imputed SNPs (as would be necessary for haploSNP association 
meta-analysis of cohorts typed on different genotyping arrays) remains a direction for 
future research; for this reason, in our PGC2-SCZ analysis we meta-analyzed hhap

2 
estimates without attempting a haploSNP association meta-analysis.  Despite these 
limitations, we anticipate that haploSNPs will be a valuable approach for rare variant 
analysis as increasingly large genotyping array data sets (e.g. UK Biobank, 500k 
samples; see Web Resources) are generated as a precursor to large-scale sequencing 
studies. 
 

Online Methods 

Definition of haploSNPs 
 
haploSNPs are haplotypes of adjacent SNPs excluding a subset of masked sites that arise 
from skipped mismatches. Individuals are considered to carry 0,1, or 2 copies of the 
haploSNP if none, one or both of their chromosomes matches the haplotype at all 
unmasked sites. 
 
Algorithm to generate haploSNPs 
 
The algorithm to generate haploSNPs (see Supplementary Material for pseudocode) 
proceeds from phased genotypes. For our haploSNP analysis, we used the HAPI-UR 
method17 to computationally phase genotypes. Using these phased genotypes we compare 
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every pair of chromosomes searching for shared segments. A shared segment is begun at 
a single SNP at which the two chromosomes match alleles. This segment is extended in 
one direction until a terminating mismatch between the chromosomes is found. A 
terminating mismatch is one that cannot be explained without a recombination between 
the current segment and the mismatch SNP. This is tested using a standard 4-gamete 
test35. That is, for all chromosomes in the sample (not just the pair under consideration) 
we assign a 1 or 0 allele for the segment being extended (current_haplo in pseudocode). 
A 1 allele is assigned to chromosomes that perfectly match the segment at all sites and a 
0 is assigned to all other chromosomes. We compare this set of alleles to those at the 
mismatch SNP.  Given two alleles at the haploSNPs and two at the mismatch SNP, a 
maximum of four possible allelic combinations can be observed. If all four combinations 
are observed, this indicates that a recombination event is required to explain the 
mismatch, and the haploSNP will be terminated. If, however, only three combinations are 
observed, the mismatch may be explained by a mutation on the shared haplotype 
background. These mismatches are ignored and the haploSNP is extended further. We 
note that this approach can produce a very large number of haploSNPs and very long 
haploSNPs that could tag signals of cryptic relatedness. To reduce the number of 
haploSNPs, making analysis tractable, we used a max length of 50kb. We note that 
haploSNPs that are truncations of prior haploSNPs—starting at a later SNP but matching 
the exact same set of individuals over the same subsequent set of SNPs—are excluded 
from output. 
 The output of this algorithm is a list of haploSNPs. These haploSNPs are made up 
of multiple co-located SNPs and a particular allele at each SNP. For each haploSNP, each 
phased chromosome is assigned either a 1, indicating a perfect match at all SNPs that 
make up the haploSNP, or a 0 otherwise. This set of biallelic haploSNPs is then used in 
downstream analysis in addition to biallelic SNPs. We note that all quality control steps 
(see below) are applied to SNPs prior to construction of haploSNPs, no additional QC 
steps are applied to the haploSNPs in our analysis. 

Linear mixed model for estimating components of heritability 

We summarize the model the generative model for quantitative traits that is common to 
PCGC regression18 and REML estimation7,25. Formally, we assume that the phenotype is 
generated from a model y = !iWii! + ewhere !i is the effect size Wi is the standardized 

genotype for SNP i and e is environmental noise. We can then describe the phenotypic 
variance-covariance matrixV (y) = K! g

2 +! e
2 where K represents the exact sample 

covariance over causal variants,! g
2 = r2 (y, "iWii! ) , and the narrow-sense heritability is 

h2 =! g
2 / (! g

2 +! e
2 ) . For case-control traits, we assume a liability threshold model9 where 

the underlying liability is a quantitative trait as described above and cases are defined as 
those individuals whose liability exceeds a pre-defined threshold. Because of bias in 
REML estimation introduced by case-control ascertainment, we used PCGC regression to 
produce estimates18. 

MAF-stratified PCGC regression 
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Separately from the generative model, we can consider the estimation procedure where 
we seek to estimate the heritability explained by a specific set of variants, s . In this case, 
hs
2 =max!

!s
(r2 (
!
!sWs, y)) , which is the maximum phenotypic variance explained by a linear 

combination of variants in s . Invoking this linear model, we write the phenotypic 
variance-covariance as V (y) = Ks! s

2 +! !e
2  whereKs =Ws !Ws /Ms is the genetic kinship 

matrix calculated for this specific set of variants, Ms is the number of variants in the set, 
! !e
2 represents all phenotypic variance not captured by variants in s , and y is normalized 

to have mean 0 and variance 1. We note that ! !e
2  may be environmental noise or genetic 

variance due to causal variants not well captured by linear combinations of variants in s . 
PCGC regression uses this equation for the phenotypic variance-covariance matrix, 
regressing V (y) against Ks . The estimated slope in this regression is an estimate of ! s

2 . 
To partition the genetic variance between categories of variants, we simply extend this to 
perform a multiple regression of yiyj!i ~ Ks1

+Ks2
+...+KsP

 obtaining estimates of the 
variance explained by each partition 1,2,...,P , which are given by the regression 
coefficients. Note that in this regression, only the off-diagonal entries of the phenotypic 
and genetic covariance matrices are used.  

We stratified our haploSNPs by MAF to avoid LD-bias due to MAF-dependent 
genetic architectures21,22. When analyzing PGC2-SCZ and WTCCC2-MS data sets, we 
considered MAF bins of 0.001-0.005, 0.005-0.01, 0.01-0.05, 0.05-0.1, 0.1-0.25, and 0.25-
0.5. When analyzing the UK10K data-set we also included a bin for MAF < 0.001. For 
each MAF bin we computed a separate kinship matrix, (i.e. 
K0.001!0.005 =W0.001!0.005 "W0.001!0.005 /M0.001!0.005 ). And we fit a joint model for all MAF bins, 
estimating using multiple regression (see above). Standard errors for PCGC regression 
were estimated using a jackknife procedure over individuals18. This procedure produces 
estimates of the standard error for each component as well as the sum across all 
components. 

REML estimation uses the same model as described above, but assumes a multivariate 
normal distribution for the phenotype, genotypic effects and environmental effects, 
y ~ N(0,Ks! s

2 +! !e
2 ) . Then the variance component! s

2 can be estimated by maximizing 
the likelihood of the data according to this distribution. While this method can produce 
more precise estimates if the underlying normality assumption holds, this assumption is 
often violated when analyzing ascertained case-control traits18. As we observed 
substantial biases in heritability estimates using REML, we elected to use MAF-stratified 
PCGC regression for analyses described in the main text. However, estimates were also 
computed using MAF-stratified REML and are presented in Tables S1 and S2. 

Assessing tagging in simulations 

We sought to quantify the improvements in tagging of rare variants when using 
haploSNPs as compared with genotyped SNPs alone by analyzing a large sample of 
sequenced individuals from the UK10K project.   
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We began with 235k SNPs on chromosome 22 genotyped in 3047 unrelated individuals. 
We considered three possible sets of tags: 

1. 6477 SNPs that were present on the Illumina Human660-Quad chip  
2. 24k well imputed SNPs.  Imputation was performed using a separate phasing 

with SHAPEIT36 followed by imputation with IMPUTE223. SNPs with INFO < 
0.9 were excluded as were SNPs that had P < 0.01 for deviation from Hardy-
Weinberg equilibrium. No allele frequency threshold was imposed. 

3. 937k haploSNPs that were built from the SNPs in (1). Specifically, these 
“genotyped SNPs” were computationally phased17 and then used to construct 
haploSNPs with length < 50kb according the algorithm given above. 

For each of the 235k SNPs in the sequence data, we assessed the best tag in 1Mb window 
surrounding the SNP using each set of tags. When using haploSNPs we observed a highly 
statistically significant increase in the quality of the best tag (see Figure 1). This was 
particularly pronounced for rare and low-frequency variants. 
 To ensure that observed improvements in tagging of rare variants were not due to 
chance, we ran permutation experiments with the haploSNPs. Specifically, we permuted 
haploSNPs but left SNPs intact and re-assessed the average best-tag for each of the 235k 
sequence SNPs. This produced a set of random haploSNPs of the same size and with the 
same allele frequency spectrum of the original haploSNPs. Over 5 permutations, we 
observed an average best tag of r2=0.37 (s.d. = 0.0002), suggesting that the observed 
improvement (r2=0.54) is not driven primarily by improved tagging by chance. 

Robustness simulations 

We sought to ensure that PCGC regression produced robust estimates of the heritability 
explained by haploSNP under a variety of different genetic architectures. We used the 
same 937k haploSNPs generated above. These haploSNPs were then treated as though 
they were, in fact, genotyped SNPs and phenotypes were simulated using these 
haploSNPs as causal variants. Thus, the proportion of phenotypic variance explained by 
haploSNPs was known exactly and could be compared to the estimated hhap

2. For each set 
of 100 simulated phenotypes, we chose a range of the frequency spectrum to draw causal 
haploSNPs from. Frequency ranges were MAF > 0.001, 0.01 and MAF < 0.05, 0.1, and 
0.5. Once causal variants were selected, effect sizes were assigned using a normal 
distribution: 
 
 
 
where h2 is the heritability of the simulated phenotype, M is the number of causal 
haploSNPs used, and!i is the effect size for genotypes after standardization to mean 0 
and unit variance. This ensures that causal SNPs explain equal variance, on average, 
regardless of MAF. For these simulations we used values of h2 = 0.5 and M =1000 . For 
each simulated phenotypes, we fit a model with six MAF stratified variance components 
as described above. The resulting heritability estimates were summed across all 
components.  

Assessing increases in explained heritability in simulation 

!i ~ N(0,
h2

M
)
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To assess our ability to explain additional heritability using haploSNPs, we simulated 
phenotypes from UK10K sequence SNPs (instead of haploSNPs as above).  We 
simulated phenotypes using a variety of genetic architectures with different levels of rare 
variant involvement. For each set of 100 simulated phenotypes, we chose a range of the 
frequency spectrum to draw causal SNPs from. Frequency ranges were MAF > 0.001, 
0.01, 0.05 and MAF < 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, as above. Within these ranges, 
variants were selected at random from the underlying SNPs in sequence. Once causal 
variants were selected, effect sizes were assigned as described above. For these 
simulations we used values of h2 = 0.5 and 1000 causal variants. 
 
Once phenotypes were generated, we examined a set of 6477 genotyped SNPs and a set 
of 932k haploSNPs (see above). We estimated the heritability explained by SNPs alone, 
or haploSNPs + SNPs using MAF-stratified PCGC regression18.  
 
We also explored the effects of varying the length threshold on the performance of 
haploSNPs in tagging additional heritability. Our results show that while longer 
haploSNPs can tag more heritability, they do so at the cost of a substantial increase in 
standard error (see Figure S2). Based on this, all of our primary analyses (simulations + 
real data) restricted to haploSNPs of length < 50kb.  We note that this choice was a 
function of sample size, and future studies at larger sample sizes would be able to include 
longer haploSNPs while keeping standard errors manageable.  
 
Finally, we note simulation of ascertained case-control traits is challenging. To perform 
such a simulation with severe case-ascertainment using real genotypes we would need a 
data-set with large numbers of individuals with observed rare variants. Such a data-sets 
are not currently available. 

Data sets 

For simulations we analyzed data from the UK10K project. For real data analyses, we 
examined data from the Psychiatric Genomics Consortium 2 (PGC2) and the Wellcome 
Trust Case Control Consortium 2 (WTCCC2). These data have been previously described 
in 3 and 29. Because heritability analyses can be particularly susceptible to artifacts, we 
applied additional quality control (see below) to each data set. 

PGC2 Large Cohort Meta-analysis Data 

The cohorts comprising the PGC2 have diverse European ancestry and were genotyped 
on a variety of different platforms. To avoid issues related to cross-population heritability 
estimation, we focused on meta-analysis of estimates within cohorts. Our estimates were 
produced from each of 10 cohorts with >1,000 individuals.  

Within each cohort we applied stringent QC to SNPs, removing any SNPs that were 
below 0.01 minor allele frequency, above 0.002 missingness, had deviation from Hardy-
Weinberg equilibrium at a p-value below 0.01, or had differential missingness between 
cases and controls with a p-value below 0.05. We also removed one individual in any pair 
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of individuals with relatedness greater than 0.025 by SNP covariance.  Following all QC 
steps, we analyzed 35,238 individuals. The average number of SNPs genotyped in each 
cohort was 461k.  We did not use imputed SNPs to build haploSNPs, as we were 
concerned that it would be circular to use genotypes inferred from haplotype structure as 
a basis to infer haplotype structure. 

PGC2 Cross-cohort Analysis Data 

Our cross-cohort analysis was designed to merge PGC2 cohorts of homogenous ancestry 
that had significant overlap in their sets of genotyped SNPs. We chose 2 subsets of the 
PGC2 data. The first subset was made up of five cohorts of Swedish ancestry and 
consisted of five cohorts with a total of 2819 schizophrenia cases and 2911 controls. The 
second subset was of British ancestry and consisted of two cohorts with a total of 5406 
treatment resistant schizophrenia cases and 5284 controls. 

Within each subset we applied stringent QC to SNPs as described above: removing any 
SNPs that were below 0.01 minor allele frequency, above 0.002 missingness, had 
deviation from Hardy-Weinberg equilibrium at a p-value below 0.01, or had differential 
missingness between cases and controls with a p-value below 0.05. We also removed any 
pair of individuals with relatedness greater than 0.025 by SNP covariance. Following QC, 
we analyzed genotypes at 310k and 303k SNPs in each subset, respectively. 

WTCCC2 Quality Control 

Because data from additional cohorts was not available for validation of 
heritability estimates, we used a higher level of stringency than described above. 
Specifically, we removed any SNPs that had minor allele frequency below 0.02, had 
missingness greater than than 0.002, had deviation from Hardy-Weinberg equilibrium at 
a p-value below 0.05, or had differential missingness between cases and controls with a 
p-value below 0.05. These thresholds for SNP QC were decided upon after analyzing 3 
levels of increasingly stringent QC. We chose this level of QC because removing SNPs in 
further rounds of increasingly stringent QC did not alter results compared with removing 
random SNPs (see Table S4). To deal with subtle relatedness, we removed one individual 
of any pair that showed relatedness > 0.05 as estimated by SNP covariance. This was 
different than above We subsequently performed five rounds of outlier removal whereby 
all individuals more than 6 standard deviations away from the mean along any of the top 
20 eigenvectors were removed and all eigenvectors recomputed. Following all QC steps, 
we analyzed 14,526 individuals genotyped at 375k SNPs. These individuals consisted of 
9315 Cases, 2635 controls from the NBS cohort and 2794 controls from the 58C cohort. 
To avoid the effects of the well-known HLA locus, we excluded chromosome 6 from all 
heritability analyses, leaving a total of 349k SNPs. While the effect of the HLA locus is 
the largest in the genome, it has been estimated to explain only about 3% of the 
phenotypic variance of MS on the liability scale37, and thus should not affect our results 
substantially.  

Accounting for population stratification in real data 
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To prevent population stratification from influencing our estimates of heritability for 
PGC2-SCZ and WTCCC2-MS we computed the top 20 principal components (PCs) for 
the kinship matrix computed from each of the MAF bins of haploSNPs described above 
and the top 20 PCs for a kinship matrix computed from genotyped SNPs. This total of 
140 PCs was used to adjust the PCGC regression using a logistic model of fixed effects in 
an ascertained study as described in Golan et al. 2014 PNAS18. In addition, as 
recommended by these authors, we subtracted these top 20 PCs from each kinship matrix 
weighted by eigenvalue. That is, we replaced a kinship matrix for a set of variants s  with 

Ks
* = Ks ! !ivi "vi

i=1

20

# . We note that this is akin to fitting each SNP as a linear combination 

of the top 20 PCs and including the residuals to compute the kinship.  

Assessing cross cohort heritability 

To ensure that observed increases in heritability explained in schizophrenia were due to 
tagging of causal variation and not cohort-specific assay artifacts, we estimated 
heritability across cohorts within homogenous ancestry subsets. Specifically, we used a 
modified version of the standard MAF-stratified PCGC regression technique to perform 
regression. In the standard regression,  

yiyj!i ~ Ks1
+Ks2

+...+KsP  

off-diagonal entries of the phenotypic covariance matrix are regressed against off-
diagonal entries of the genetic covariance matrix. To assess cross-cohort heritability, we 
performed the identical regression, simply using all pairs of individuals drawn from a 
different original cohort. 

yiyj,c(i)!c( j ) ~ Ks1
+Ks2

+...+KsP  

where c(i), c(j) are the cohorts to which individuals i,j belong. 

Analysis of GWAS Loci 

We sought to assess whether haploSNPs at known associated loci explained significantly 
more heritability than SNPs alone. Given genome-wide significant loci extracted from 
recent analyses3,29, we used regions of ±500kb from the GWAS SNP. Overlapping 
regions were merged. These SNPs were then used to construct haploSNPs. These 
haploSNPs were stratified into MAF bins (see above) and heritability was estimated 
using PCGC regression. Two models were tested: (1) a 7 variance component model with 
6 MAF stratified haploSNP components and 1 SNP component and (2) a 1 variance 
component model with 1 SNP component. Principal components analysis was performed 
on these GRMs and the top 20 PCs were subtracted from the genetic relationship 
matrices, after weighting by eigenvalue (see above). For schizophrenia, heritability was 
estimated across cohorts (see above). 
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To assess whether haploSNPs better tagged causal variants at GWAS loci, we 
performed association using logistic regression after correcting for principal components 
and compared the best haploSNP ! 2 statistic to the best SNP ! 2 .  To assess the 
significance of the observed improvement, we simulated phenotypes using the SNP with 
the highest SNP ! 2

 as the only causal variant. The effect size of the SNP was chosen to 
match the observed effect size. For each simulated phenotype, we performed association 
and assessed the best haploSNP ! 2 and the best SNP ! 2 . We performed simulations 
until at least 100 simulations showed larger improvements than observed in real data, or 
until 10,000 simulations were performed. The significance was then assessed as: 

 
#  of simulations showing larger improvements than real data

total #  of simulations
 

These p-values were meta-analyzed across cohorts and loci and compared with the 
uniform distribution using the Kolmogorov-Smirnov test (alternative “greater” for the 
CDF to test whether P-values are systematically smaller than expected). 
 

haploSNPs Association Analyses 

haploSNP and SNP associations were performed using logistic regression implemented in 
the PLINK2 software package (see Web Resources). 20 Principal Components inferred 
from SNPs were used to correct for population stratification. To control the false 
discovery rate, we used the Benajamini-Hochberg correction procedure30. 
 
To assess the degree to which FDR controlled haploSNP associations increased the 
overlap with previously published loci, we permuted the location of haploSNP 
associations. Specifically, the 199 haploSNP associations that did not overlap with SNP 
associations were replaced with 199 random haploSNPs. No pair of random haploSNPs 
was chosen to be closer than 500kb. For each random assignment, the overlap with 
known loci was assessed. An association was considered overlapping if the middle of the 
haploSNP was within 500kb of the association. The associations were the combined set 
of loci published in Sawcer et al. 2011 Nature29 and the MS loci analyzed in Gusev et al. 
2013 PLoS Genet15. The p-value was estimated as the proportion of random assignments 
showing a larger increase than observed in real data. 
 
We also sought to assess the degree to which FDR controlled haploSNP associations 
showed genic enrichment. For each of the 215 haploSNP associations that did not overlap 
with known loci, we assessed the number of genes within a 1MB window (500kb on 
either side). We compared this to the number of genes within a 1MB window of 215 
randomly selected haploSNPs.  

Web Resources 

HaploSNP Software: http://www.hsph.harvard.edu/faculty/alkes- price/software/ 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2015. ; https://doi.org/10.1101/022418doi: bioRxiv preprint 

https://doi.org/10.1101/022418


Efficient PCGC Regression Software: http://www.hsph.harvard.edu/faculty/alkes- 
price/software/ 
UK10K data set: http://www.uk10k.org 
UK Biobank: http://www.ukbiobank.ac.uk 
PLINK2: https://www.cog-genomics.org/plink2 
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Tables 
Table 1. Summary of cohort-specific results in Schizophrenia 

Cohort	
  ID	
   hhap2	
   S.E.	
   hg2	
   S.E.	
   N	
   SNPs	
   HaploSNPs	
  
ajsz	
   0.36	
   0.32	
   0.26	
   0.10	
   2,229	
   600k	
   21.8M	
  
boco	
   1.46	
   0.28	
   0.30	
   0.07	
   3,847	
   387k	
   26.2M	
  
clm2	
   0.80	
   0.11	
   0.32	
   0.03	
   7,649	
   346k	
   29.1M	
  
clo3	
   1.16	
   0.32	
   0.37	
   0.07	
   3,950	
   487k	
   39.5M	
  
gras	
   1.75	
   0.54	
   0.28	
   0.11	
   1,740	
   321k	
   17.1M	
  
irwt	
   1.91	
   0.40	
   0.34	
   0.08	
   2,200	
   589k	
   26M	
  
mgs2	
   0.59	
   0.18	
   0.26	
   0.05	
   4,605	
   478k	
   28.9M	
  
s234	
   -­‐0.47	
   0.31	
   0.04	
   0.08	
   3,314	
   441k	
   16.4M	
  
swe5	
   0.54	
   0.21	
   0.33	
   0.06	
   3,866	
   477k	
   33.3M	
  
swe6	
   -­‐0.14	
   0.33	
   0.16	
   0.11	
   1,838	
   483k	
   24.5M	
  
Meta-­‐analysis	
   0.72	
   0.07	
   0.29	
   0.02	
   	
  35,238*	
   	
  461k**	
   36.3M**	
  

*The number of individuals is summed across cohorts. 
**The number of SNPs and haploSNPs are averaged across cohorts.  
We list data for each cohort that is included in our meta-analysis. We used 10 cohorts 
with N > 1,000. The meta-analyzed estimate of hhap

2 is significantly larger than the 
estimate of hg

2, though assay artifacts that differentiate cases and controls are a concern 
with these estimates. We note that negative estimates are expected due to statistical noise 
and that constraining estimates to the plausible 0-1 range would introduce bias in the 
meta-analysis; however, no estimates were statistically significantly less than 0. 
 
Table 2. Summary of cross-cohort results in Schizophrenia 

	
  	
   Meta-­‐Analyzed	
   Swedish	
   British	
  
Model	
  Components	
   hhap2	
   S.E.	
   hhap2	
   S.E.	
   hhap2	
   S.E.	
  

haplo	
  >	
  0.001	
  +	
  SNPs	
   0.64	
   0.084	
   0.36	
   0.146	
   0.77	
   0.103	
  
haplo	
  >	
  0.005	
  +	
  SNPs	
   0.48	
   0.063	
   0.35	
   0.102	
   0.57	
   0.080	
  
haplo	
  >	
  0.01	
  +	
  SNPs	
   0.42	
   0.044	
   0.29	
   0.077	
   0.49	
   0.054	
  
haplo	
  >	
  0.05	
  +	
  SNPs	
   0.32	
   0.029	
   0.28	
   0.044	
   0.35	
   0.038	
  
SNPs	
  Only*	
   0.32	
   0.029	
   0.27	
   0.041	
   0.35	
   0.037	
  

*This is an estimate of hg
2 

To address the possibility that assay artifacts are impacting our estimates of hhap
2 we 

estimated the heritability explained by haplotypes across cohorts with the same ancestry. 
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We considered one Swedish subset, and one British subset and meta-analyzed estimates 
across these cohorts. 
 
Table 3. Summary of results in Multiple Sclerosis 

Multiple	
  Sclerosis	
  

	
  	
   All	
  (N=14,526)	
   Ancestry	
  Matched	
  
(N=8,039)	
  

Model	
  Components	
   hhap2	
   S.E.	
   hhap2	
   S.E.	
  
haplo	
  >	
  0.001	
  +	
  SNPs	
   0.67	
   0.063	
   0.65	
   0.082	
  
haplo	
  >	
  0.005	
  +	
  SNPs	
   0.37	
   0.041	
   0.38	
   0.052	
  
haplo	
  >	
  0.01	
  +	
  SNPs	
   0.30	
   0.029	
   0.31	
   0.037	
  
haplo	
  >	
  0.05	
  +	
  SNPs	
   0.20	
   0.017	
   0.21	
   0.027	
  
SNPs	
  Only	
   0.20	
   0.019	
   0.20	
   0.024	
  

 
Heritability estimates for a variety of models including subsets of the haploSNPs. This 
shows that the bulk of gains in haplo-heritability are coming from haploSNPs with MAF 
< 0.05. All heritability estimates are on the liability scale. Comparison with an ancestry-
matched analysis suggests that inflation due to population stratification is unlikely to 
affect our estimates substantially. 
 
 
Table 4. Control-Control Heritability Estimates in WTCCC2 Controls  

Multiple	
  Sclerosis	
  
Model	
  Components	
   hhap2	
  	
   S.E.	
  

haplo	
  >	
  0.001	
  +	
  SNPs	
   -­‐0.027	
   0.077	
  
haplo	
  >	
  0.005	
  +	
  SNPs	
   0.019	
   0.051	
  
haplo	
  >	
  0.01	
  +	
  SNPs	
   -­‐0.003	
   0.036	
  
haplo	
  >	
  0.05	
  +	
  SNPs	
   0.004	
   0.028	
  

To ensure that assay artifacts would not drive inflation in heritability estimates, we 
estimated the heritability between the two control-cohorts included in the WTCCC2 data-
set. We tried this for a variety of subsets of haploSNP MAF bins. No estimate was 
significantly different than zero. 
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Figures 

 
Figure 1. Assessing the degree of improved tagging of underlying sequence variants 
when using haploSNPs as compared with genotyped SNPs alone. The largest magnitude 
of increase is for SNPs with MAF < 0.05, consistent with our observations of increased 
heritability. 
 

 
Figure 2. Estimating the heritability explained by haploSNPs for phenotypes simulated 
from causal haploSNPs. The true heritability in all simulations is 0.5. Because we knew 
the true heritability, we could evaluate whether the resulting estimates reproduce the 
expected value. Each of the estimates is averaged over 100 simulated phenotypes. The 
error bars indicate the 95% confidence interval surrounding this mean value (computed as 
twice the standard error of the mean). 
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Figure 3. We compared the performance of haploSNPs of less than 50kb (at a variety of 
MAF thresholds) to that of SNPs alone. For each causal MAF range, 100 phenotypes 
were simulated. Ranges were (in order from left) MAF < 0.05, 0.1, and 0.5 and MAF > 
0.001 and 0.01. All phenotypes have a total heritability of 0.5. Averages across 
simulations are reported in the figure.  We note that these ranges are overlapping so that a 
causal variant with MAF < 0.05, may also be causal in the simulation with MAF < 0.01. 
It is clear that SNPs will tag the bulk of the heritability in common variant dominated 
genetic architectures. However, for rare variant dominated architectures, haploSNPs can 
provide a substantial increase in the heritability explained. 
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Figure 4. We compared the utility of haploSNPs association to that of SNPs alone in 
mapping loci for Multiple Sclerosis. At an FDR < 0.05, we observe 260 FDR controlled 
haploSNP associations, compared with 82 FDR controlled SNP associations suggesting 
that haploSNP association may provide additional power to discover genetic associations 
with complex traits. 
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