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ABSTRACT 
Variation in gene expression contributes to the diversity of phenotype. The 
construction of the pan-transcriptome is especially necessary for species with complex 
genomes, such as maize. However, knowledge of the regulation mechanisms and 
functional consequences of the pan-transcriptome is limited. In this study, we 
identified 13,382 nuclear expression presence and absence variation candidates 
(ePAVs, expressed in 5%~95% lines; based on the reference genome) by re-analyzing 
the RNA sequencing data from the kernels (15 days after pollination) of 368 maize 
diverse inbreds. It was estimated that only ~1% of the ePAVs are explained by DNA 
sequence presence and absence variations (PAV). The ePAV genes tend to be regulated 
by distant eQTLs when compared with non-ePAV genes (called here core expression 
genes, expressed in more than 95% lines). When the expression presence/absence 
status was used as the “genotype” to perform genome-wide association study, 56 
(0.42%) ePAVs were significantly associated with 15 agronomic traits and 1,967 
(14.74%) with 526 metabolic traits, measured from the mature kernels. While the 
above was majorly based on the reference genome, by using a modified 
‘assemble-then-align’ strategy, 2,355 high confidence novel sequences with a total 
length of 1.9Mb were found absent in the current B73 reference genome (v2). Ten 
randomly selected novel sequences were validated with genomic PCR. A simulation 
analysis suggested that the pan-transcriptome of the maize whole kernel is 
approaching a maximum value of 63,000 genes. Two novel validated sequences 
annotated as NBS_LRR like genes were found to associate with flavonoid content and 
their homologs in rice were also found to affect flavonoids and disease-resistance. 
Novel sequences absent in the present reference genome might be functionally 
important and deserve more attentions. This study provides novel perspectives and 
resources to discover maize quantitative trait variations and help us to better 
understand the kernel regulation networks, thus enhancing maize breeding. 
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INTRODUCTION 
Maize shows an amazing degree of phenotypic variation due to the outcrossing 

nature, and to natural and artificial selection during the rapid worldwide population 
expansion (Yan et al. 2011). Phenotypic variation has been explored by QTL mapping 
and genome-wide association studies (GWAS; Huang and Han 2014). As it becomes 
clear that the differences in transcript abundance are a major contributor to phenotypic 
evolution (Cubillos et al. 2012; Albert and Kruglyak 2015; Liu et al. 2015), allelic 
variation effects on the transcriptome, which reflect both genetic and epigenetic 
regulation, should be explored at a genome-wide level (Fu et al. 2013). 

Presence/absence genomic sequence variation (PAV) is important in reshaping 
individual performance (Springer et al. 2009). PAV at the genomic level would be 
reflected in the transcriptome ePAV (expression Presence and Absence Variation). The 
ePAV not only reflect genomic structural variation, but also the variations in genetic 
and epigenetic regulatory elements. Thus it is essential to characterize the ePAV genes 
and their possible functions. 

Most genome-wide genetic studies focus the genetic elements present in the 
reference genome. It is now recognized that a portion of the genomic content is only 
present in a subset of individuals within a species, (termed the dispensable genome; 
Medini et al. 2005) especially in diverse species, such as maize. The genome-wide 
comparison between B73 and Mo17 (Springer et al. 2009) and within an expanded 
panel including teosinte (ancestral maize) lines (Swanson-Wagner et al. 2010) 
demonstrated that a considerable portion of the genome (~50%) was not shared. The 
widespread dispensable genes, i.e those showing present/absent variation, have been 
proposed to be important for phenotypic diversity in inbred collections and for 
heterotic performance in hybrids (Lai et al. 2010; Hansey et al. 2012).  

The rapid development of next generation sequencing technology and the 
decrease in cost provide us an opportunity to sequence many individuals within a 
species to build up the pan genome, or the sequences which, taken as a whole from all 
individuals, define a species. RNA sequencing (RNA-seq) has been successfully used 
to define the transcriptome and to find novel transcripts absent from the reference 
genome (Martin and Wang 2011). Compared to genome sequencing, RNA-seq is more 
economical, especially in the exploration of the complex maize genome containing 
more than 85% repetitive sequences (Schnable et al. 2009). The construction of the 
maize pan-transcriptome is especially useful for the discovery of functional 
dispensable genes. Recently, the maize pan-transcriptome and its diversity have been 
studied in diverse lines (Hansey et al. 2011; Hirsch et al. 2014), however, we still lack 
knowledge about many dispensable gene function at the genome-wide level. 

Here, with the help of deep RNA-seq of kernels at 15 DAP in a diverse panel 
with 368 inbred lines (Fu et al. 2013), we characterized the extreme variation at the 
transcript level (ePAV), relative to the reference genome, and performed association 
studies between ePAVs and more than 600 quantitative traits. By de novo assembly, 
we also constructed the maize pan-transcriptome and explored its contribution to 
phenotypic and transcriptomic diversity.
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RESULTS 
Expression presence/absence is prevalent and trans-regulated  

Gene expression levels of the annotated genes in the B73 reference genome were 
quantified using RNA-seq of maize kernels in 368 inbred lines (Fu et al. 2013). We 
define the expression level differences between subsets of individuals at the given 
tissue or developmental stage as a polymorphism at the transcription level: expression 
present/absent variation (ePAV). By filtering the genes showing expression in less 
than 19 inbred lines or more than 348 inbred lines (MAF≤5%) and applying an 
adapted distribution-based measure with no subjective set cutoff (see Methods), 
13,382 nuclear genes among 38,032 total with ePAVs were obtained (5%≤MAF≤95%) 
(Table S1). Among them, 6,656 (49.9%) were not explored in a previous study (Fu et 
al. 2013) since they were expressed in less than 50% but great than 5% of the inbred 
lines (Fig S1). 

Almost half (46%, 6,726) of the ePAV genes expressed in more than 50% of the 
inbred lines have been clearly identified as regulated by expression quantitative trait 
loci (eQTLs) in the previous study (Fu et al. 2013). The ePAV genes were more likely 
to be regulated by distant eQTLs when compared with non-ePAV genes (also called 
core expression genes, expressed in more than 95% of the lines; P < 2.2E-6, χ2 test; 
Fig 1A). The effects of local eQTL were found to be greater than distant eQTL both 
for ePAV (P= 7.05E-22) and non-ePAV genes (P= 1.92E-135 Fig 1B). The eQTL 
effects for ePAV genes were greater than those for non-ePAV genes in both local 
(P=1.34E-18) and distant (P=7.18E-56) types. The ePAV genes were enriched in 
regulation-related processes (Fig 1C), while the non-ePAV genes tended to play roles 
as structural genes (Fig 1C). The dominant regulation by distant eQTLs and defined 
as regulators indicate the ePAVs may act as intermediate regulators to downstream 
genes, which mostly consist of non-ePAV (or core) genes. This is supported by the 
observation that most (92%; P<2.2E-16) of the potential regulation targets of ePAV 
genes were non-ePAV genes. Additionally, the non-ePAV genes tend to be regulated 
by distant eQTLs as well, with up to 81.2% of regulated non-ePAV genes located on 
different chromosomes than their ePAV regulators, and for those located on the same 
chromosome, 86% were separated by over 20Mb (Fig1D). All the above suggest that 
the dispensable expression genes are functionally essential, and play key roles in the 
intermediate regulation layer. 
PAV contribute to the causation of ePAV  

Before using ePAV for further analysis, we confirmed that the undetectable gene 
expression in a given tissue was not due to sequencing bias or low sequencing 
coverage. PAV gene expression should always show ePAV patterns that provide 
excellent samples to test the reliability of ePAV detection. A ~2.4Mb fragment on 
chromosome 6 is present in B73 but absent in the Mo17 genome where 62 genes were 
annotated (Springer et al. 2009). This region was also confirmed by PCR in our inbred 
lines, among which 209 lines had the same haplotype of B73 and another 15 lines 
were consistent with Mo17 (Table S2). Among the 62 genes within this region, 61 
were detected by RNA-seq and 52 of them were considered as ePAV genes based on 
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the standard (expressed more than 5% and less than 95% lines). The consistency 
between ePAV status of the 52 ePAV candidates and PCR validation at the genomic 
level was 74%. This suggests that the ePAV label is acceptable in that most (96.4%) of 
the inconsistencies were likely caused by non-expression in kernel tissue with 
presence in DNA sequence, and that the frequency of apparent expression without 
sequence evidence was rare, at 3.6%. 

To determine how many of the ePAVs are caused by genomic PAVs, the 
reference genome B73 and deep sequenced genome Mo17 were compared. Only 54 
(~1%) of the identified 5,838 ePAV genes were supported as sequence PAVs by the 
re-sequencing results of Mo17 (Fig S2; Lai et al. 2010). However, these two inbreds 
represent only a fraction of the total maize sequence diversity. Therefore, we used 
genotyping data generated from Illumina MaizeSNP50 array (50K) for the whole 
panel (Li et al. 2012) and from the Affymetrix® Axiom® Maize Genotyping Array 
(600K; Unterseer et al. 2014) for 38 lines; again, we found ~ 1% (102 and 122, or 
0.76% and 0.91% for 50K and 600K datasets, respectively) of ePAVs were predicted 
as PAVs (see Methods). These results together imply that only a small proportion 
(~1%) of ePAVs were due to PAV in the genomic sequence and therefore, most were 
likely to be the result of suppression at the expression level. 
 We further chose 10 putative PAV genes in ePAVs for experimental validation in a 
subset of 96 inbred lines by genomic PCR. All ten ePAV genes represent genomic 
PAV genes. The consistency of the ePAV and PAV labels detected by PCR in the 96 
lines ranged from 70% to 89% (Fig S3; Table S3), which provided an estimate of the 
reliability of the predicted ePAV correspondence to sequenced PAVs.  
Novel expressed sequence discovery from de novo assembly 

RNA-seq reads from each inbred were de novo assembled to detect the novel 
expressed sequences and construct the maize-transcriptome (Table S4). We applied 
Trinity (Grabherr et al. 2013) to detect novel sequences by comparing the two 
strategies: “align-then-assemble” and “assemble-then-align” (Martin and Wang 2011, 
detail in methods). Based on the ‘align-then-assemble’ strategy, 7,775 contigs with a 
total length of 3.46Mb were obtained, of which N50 size was 445bp, much shorter 
than the average length of reference transcripts (1826bp). Most of these contigs had 
no hits to protein databases, so it seems that they do not correctly represent the 
transcripts. We suspect that there was a large proportion of incomplete fragments due 
to filtering conserved reads and breaking long contigs into short ones. Based on the 
‘assemble-then-align’ strategy, 2,355 novel sequences with a total length of 1.9 Mb 
(N50= 922bp) were obtained (FigS4; Table S5; see methods), resulting in longer and 
more complete contigs compared to the results of ‘align-then-assemble’ (Fig S5). 
Further, comparison of the results of the two strategies indicated that some of the 
sequence reads of conserved functional domains might be filtered out when applying 
‘align-then-assemble’ strategy. For example, Unigene_441 from the 
‘assemble-then-align’ strategy was identical to Unigene_ref71 from the 
‘align-then-assemble’ strategy but longer and containing the unknown protein domain 
of DUF789. The distribution of unique reads and further PCR re-sequencing both 
confirmed that the result from ‘assemble-then-align’ was correct (Fig S6; Table S3; 
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Fig S9). Thus, only the results from ‘assemble-then-align’ strategy were used for 
further analyses. 

To evaluate the reliability of the assembled novel sequences, we first compared 
2,355 novel sequences to the 4,712 novel genomic contigs obtained in a study of deep 
sequencing six elite maize inbred lines (Lai et al. 2010), showing that 447 (19%) of 
our novel sequences align to those novel contigs (Table S6). Second, the novel 
sequences were compared with 8,681 novel representative transcripts from whole 
seedling RNA-seq on a panel of 503 diverse maize inbred lines (Hirsch et al. 2014). 
Nearly 60% (1,380 among 2,355) of the novel sequences identified in the present 
study had above 85% identity in the alignment with novel transcripts detected from 
seedling tissue (Table S6). In total, about 62% of our novel sequences were found to 
have hits in at least one of the previous studies.  

We validated the present/absent variation of 10 randomly selected novel 
sequences in a set of 96 inbred lines including B73 and Mo17 using genomic PCR 
(Fig S7; Table S3). Two of these novel sequences were present in all 96 inbred lines 
(Unigene_31, Unigene_361), possibly due to the presence in the genome but absence 
at the expression level. The other eight were determined to be PAVs, and the 
consistency of present/absent status between the transcriptome assembly and PAV 
detected by genomic PCR ranged from 31% to 99%, with an average of 72% (Fig S7). 
Most (89.2%) of the inconsistency was also due to the presence at the genomic level 
but with no expression in kernel (Fig S7). We further re-sequenced the amplified 
products from genomic DNA of the 10 randomly selected novel genes in 5 diverse 
genotypes and all were consistent with assembly sequences (Fig S8; Fig S9). 
Cross-comparison with other studies and experimental results not only validates the 
assembled novel sequences, but also indicates that the predicted present/absent 
variants are reliable. 
Annotation and mapping of novel expressed sequences  

To annotate novel sequences identified in this study, we first compared the 
sequences with the non-redundant (nr) protein database (Pruitt et al. 2007) using 
NCBI BLAST, which showed that 1,359 of them had significant matches (E-value < 
1e-6) and most (93.57%) of the best matches were within Poaceae. The majority of 
the significant hits (1,318 of 1,359, 97%) were functionally classified into six types of 
known enzymes (Fig S10) and conserved domains or annotated motifs (Fig S11; Table 
S6). In the GO enrichment analysis, the overrepresented processes included several 
metabolic processes and biotic stimuli (Fig S12; Table S7). In addition, 145 of the 
1,037 unannotated novel sequences were considered to have coding potential, having 
at least 120 amino acid-long predicted open reading frames (ORFs) and a homolog in 
the non-redundant protein database at a lax standard (E-value < 1e-3). Furthermore, 
248 of remaining novel sequences were annotated as smRNA precursors against small 
RNA database (Wang X et al. 2009; E-value < 1e-10), and the remaining 644 were 
predicted to be high confidence novel lncRNAs in maize (Fig S11; Table S6). 

To locate possible physical chromosomal positions of the novel sequences, the 
linkage disequilibrium (LD) mapping strategy was used between novel SNPs within 
new sequences and high density SNPs in the whole inbred line collection (Fig S13). 
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After multiple sequences alignment, 27,466 SNPs from 664 novel sequences were 
provisionally identified (See Methods). Based on the LD between SNPs located in 
novel sequences and high density SNPs with known positions in the whole panel, 625 
novel sequences (94.4%) were mapped onto the reference genome (Fig S14; Table 
S8). The locations of the common expressed genes and the SNPs show the similar 
trends with enrichment at the ends of the chromosomes, while the distribution pattern 
of the novel sequences demonstrates fluctuation, and in some cases concentrates near 
the centromeres on some chromosomes, thus physically complementing the reference 
genome-containing variations (Fig S14). 
Maize pan-transcriptome plays an important role in regulating phenotypic 
variation 

To systematically explore the genetic consequences of the above described 
expression variation, and considering that the metabolic phenotype provides a link 
between gene sequence and visible phenotype, genome wide association study 
(GWAS) was performed to study the potential effects of ePAV genes on 616 
metabolites detected in mature kernels (Wen et al. 2014) and 17 agronomic traits 
(Yang et al. 2014) measured in the same panel. Among the ePAV genes, 56 (0.42%) 
were significantly (P < 7.49E-5, 1/n) associated with 15 agronomic traits and 1,967 
(14.74%) associated with 526 metabolic traits including content of 18 amino acids 
(Table S9, Liu et al. 2015). 

A major secondary metabolite group in plants, the flavonoids, is widely 
distributed and has variety of functions (Koes et al. 2005). The pericarp color1 (p1) 
gene encoding an R2R3 Myb-like transcription factor (Grotewold et al. 1994) 
regulates flavonoid biosynthesis by promoting a suite of structural genes, and 
conditions pigment in several floral organs (Coe Jr et al. 1988) including the seed coat, 
cob glumes, tassel glumes, and silk under both genetic and epigenetic regulation 
mechanisms (Grotewold et al. 1994; Koes et al. 2005; Sekhon et al. 2007; Robbins et 
al. 2013). In this study, the quantification of 39 flavonoid metabolites together with 
cob color were used for GWAS, and results indicated the ePAV pattern of the p1 gene 
was highly associated with cob color (P=1.33E-19), and was correlated with six 
different flavonoid metabolites (P<2.34E-05; Fig 2a). We also identified a structural 
gene (GRMZM2G162755; anthocyanidin 3-O-glucosyltransferase) significantly 
associated with cob color (P=7.05E-20) and the same six flavonoid metabolites 
(P<6.23E-05; Fig 2a). This gene was shown to be regulated by p1 in a previous eQTL 
mapping study (Fu et al. 2013) and ChIP-Seq analysis (Morohashi et al. 2012). 
Another copy of the R2R3 Myb-like transcription factor (p2, GRMZM2G057027) 
could regulate the other two flavonoid metabolites (P<3.41E-06; Fig 2a). Notably, we 
found these three ePAV candidates, as regulators, could also control expression of 
other genes that are related to flavonoids such as c2, chi1, a1, pr1 and whp1 
(Grotewold et al. 1994; Morohashi et al. 2012; Fig 2b; P≤9.65E-10), providing further 
support for the hypothesis that these ePAV genes are involved in the flavonoid 
pathway and functioning through the PAV differences in expression level. 

The novel expressed sequences play critical roles in regulation of the 
transcriptome and metabolome. For the novel sequences, a re-mapping strategy was 
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applied to correct the PAV distribution for each novel gene, to be used in GWAS (see 
Methods). We found that 26 (1.1%) of the novel genes were associated (P < 4.25E-4) 
with 13 agronomic traits (Table S9). Eleven were associated with flowering time (i.e. 
Days to Tasseling, Days to Pollen Shed and Days to Silking). We also identified a 
novel gene (Unigene_55) that encodes a late embryogenesis abundant (LEA) protein 
that is associated with kernel width (P=2.14E-5). LEA proteins have been described 
as accumulating late in embryogenesis and could protect other proteins from 
aggregation under various environmental stresses (Goyal et al. 2005). Here we 
provided a clue that LEA may also affect kernel size. 

Moreover, 788 novel genes (33.46%) were associated (P < 4.25E-4, 1/n) with 
487 metabolic traits measured in maize kernels (Table S9, Wen et al. 2014), which 
implied that those novel genes could play more complex roles within cellular 
metabolism processes; thus, this study provides fresh resources for the genetic study 
of maize kernel quality and production. Metabolic processes are commonly controlled 
by transcription regulation. Therefore, it is valuable to examine whether the identified 
novel genes were widely involved at multiple regulatory levels. We found the novel 
sequences were significantly responsible for expression levels of annotated genes or 
their expression presence/absence states at a strict cutoff (P≤1E-4), including the 
novels annotated as non-coding RNAs (Table S9). By combing the metabolome and 
transcriptome findings, 23 novel genes were found playing roles in both metabolic 
processes and expression regulation. 

Plant NBS-LRR proteins can directly or indirectly recognize pathogen-deployed 
proteins and triggers plant defense responses (McHale et al. 2006; DeYoung and Innes 
2006), and exhibit high levels of PAV polymorphism in various plants (Shen et al. 
2006; Yang et al. 2008; Tan et al. 2012; González et al. 2013; Wu et al. 2014). Here, 
we identified two novel NBS-LRR genes (Fig 3a,b) that have high homology to rice 
NBS-LRR genes Os11gRGA4 and Os11gRGA5, which were shown to interact 
functionally and physically to mediate resistance to the fungal pathogen Magnaporthe 
oryzae (Okuyama et al. 2011;Césari et al. 2014). Recent studies have verified that 
inducing plant immunity impacts flavonoid biosynthesis (Ali et al. 2011; Serrano et al. 
2012), and that flavonoid compounds significantly contribute to plant resistance 
(Treutter 2005; Treutter 2006).Os11gRGA4 was found to be associated with the 
flavonoid Naringenin O-malonylhexoside (Chen et al. 2014). Interestingly, we found 
that these two novel NBS-LRR like sequences were both associated with Apigenin 
C-pentosyl-O-coumaroylhexoside and C-pentosyl-apigenin O-caffeoylhexoside 
contents, two flavonoid metabolites (Fig 3c). In addition, these two novel sequences 
were also associated with several gene expression presence/absence states (Fig 3d), 
including transcription factors with DNA binding activity (TGA6 or 
GRMZM2G000842; GRMZM2G405170), spliceosomal complex 
(GRMZM2G011034), nucleic acid binding genes (GRMZM2G088348), translation 
release factor (GRMZM5G864412), actin cytoskeleton (GRMZM2G552644) and 
other enzymes functioning in metabolic processes. These observed associated targets 
were consistent with previous observations that alternative splicing is important in the 
regulation of NBS-LRR proteins and plant immunity (Jordan et al. 2002; Zhang et al. 
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2014), and that TGA6 and other bZIP transcription factors are significant in plant 
defense against pathogens (Xiang et al. 1997; Alves et al. 2013). Actin cytoskeleton 
dynamics also play an important role in mediating resistance (Wang et al. 2013), and 
translation release factors are critically involved in the elimination of aberrant mRNA. 
The regulatory targets in pathogen defense response are indeed R-genes, especially 
for the abundant and alternatively spliced NBS-LRR R-genes (Riehs-Kearnan et al. 
2012). 

The two novel sequences were confirmed by PCR sequencing (FigS9; Table S3). 
Moreover, the consistency of presence/absence variation in the association panel used 
in our study between observed and predicted variants was greater than 98% 
(Unigene_678) and 96% (Unigene_705), respectively. The PAV states of these two 
genes on the genome level also showed a significant relationship with the metabolic 
traits mentioned above. These results show that the dispensable novel expressed 
sequences were important both in morphological adaptation processes as previously 
reported (Hirsch et al. 2014), and in cellular metabolome and transcriptome 
regulation. 
Present and absent genes may contribute to trait heterosis 

Complementation of gene content variation is assumed to be important in 
heterosis (Fu and Dooner 2002; Springer et al. 2009; Lai et al. 2010; Schnable 
and Springer 2013). Since our identified expressed novel genes have been shown to 
be functionally important, their combination of inbred-specific sequences in hybrids 
could provide novel trans-interactions potentially resulting in non-additive expression. 
This provides an opportunity to test the link between gene content PAV and heterosis. 
We crossed the association panel with the Mo17 inbred line to develop a suitable 
population to test this. Six yield-related traits were measured for each hybrid in 
different environments over two years (Methods). The degree of heterosis increased 
with more complementary (present in one and absent in the other inbred parent) novel 
genes in the hybrids among five of the six measured traits (Fig 4A). This trend is 
more significant for those traits with relatively stronger heterotic effect, and novel 
sequences identified in this study have a greater effect than ePAVs (Fig 4B). However, 
only a small portion (<10%) of observed heterosis was explained by novel sequences 
and/or ePAVs, which implies that heterosis is complexly affected by many different 
factors (Stupar and Springer 2006; Swanson-Wagner et al. 2006; Lai et al. 2010; 
Hansey et al. 2012; Guo and Rafalski, 2013).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2015. ; https://doi.org/10.1101/022384doi: bioRxiv preprint 

https://doi.org/10.1101/022384
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

DISCUSSION 
The importance of ePAV 

Expression PAV is a kind of variation at transcript level, mostly due to genetic or 
epigenetic regulation. With the conservative distribution-based approach (see 
Methods), we identified more than 13,000 genes as ePAVs, about one third of the 
maize annotated genes. These are genes that are only expressed in a subset of the 
association panel. This finding was based on one tissue (kernel of 15DAP) and limited 
inbred lines (n=368), therefore, more ePAVs will be identified when more tissues and 
materials are studied. The number of ePAV should vary under different sequencing 
coverage and even different cutoffs; however, this study demonstrates that ePAV is a 
common phenomenon and that the underlying mechanisms and ramifications need to 
be explored. Among our findings, the ePAV genes were enriched in regulation-related 
processes and were usually regulated by distant eQTLs while core expression genes 
were commonly regulated by local eQTLs (Fig1 a). The different regulatory patterns 
imply that the two kinds of genes may affect phenotypic variation by different 
mechanisms. 

Transcript variation as an independent variable can be regarded as a molecular 
marker to perform GWAS (i.e. ePAV-GWAS), corrected for population structure and 
relatedness, and this should provide additional insights into the architecture and 
regulation of quantitative traits and help understand certain important biological 
questions such as adaptation (Hirsch et al. 2014; Harper et al. 2012). Interestingly, 
about 15% of the identified ePAVs were found to associate with agronomic and 
metabolic traits, which confirms the expectation that gene expression presence and 
absence can affect the phenotypic variation directly. Combining the ePAV-GWAS 
results with SNP-GWAS and eQTL mapping information aid not only in the 
identification of gene candidates, but also to better understand molecular mechanisms. 
Here, we use cob color and several related flavonoid metabolites as an example for 
further exploration. After strict filtering of our genotypic data, there were no SNPs left 
within the p1 locus (Fig S15b), known to control cob color, but an associated region 
was found upstream of the the p1 locus (~200K, Fig S15a,b). This makes it difficult to 
unambiguously identify a single causal gene for cob color. Using ePAVs as markers 
(ePAV-GWAS), the p1 locus was exactly identified and the p2 was promoted as 
another candidate (Fig2a, Fig S15b, panel4). Another significant locus 
(GRMZM2G162775, a3g) on chromosome 6 was detected by ePAV-GWAS (Fig S15a, 
panel4), and may have been detected as regulated by p1 by the previous eQTL 
mapping (Fig S15a, panel c; Fu et al. 2013) and ChIP-Seq studies (Morohashi et al. 
2012). This trans-regulation pattern could not be discovered by applying SNP-GWAS, 
even when the SNP density was doubled to 1.25 million (data not shown). Thus, the 
ePAV will provide a unique complementarity to SNP marker for the genetic 
exploitation. 
The "dispensable" genes are important functionally 

Although more than 13,000 ePAVs were identified, only small proportion (~1%) 
included genomic PAVs which are sometimes called dispensable genes. Previous 
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studies revealed that the B73 reference genome included only 70% of the total 
low-copy sequences available in the maize species (Gore et al. 2009), which implied 
that many dispensable genes are present beyond the reference genome. It is necessary 
to explore these novel genes that may be phenotypically important in certain 
genotypes. We applied de novo assembly to detect such novel sequences. Of the two 
combined strategies were available ‘assemble-then-align’ resulted in longer and more 
complete contigs. Although in theory, ‘align-then-assemble’ should be more sensitive 
and de novo assembly was likely to work only for the most abundant transcripts (Haas 
and Zody 2010), in practice, the align-first strategy probably enrich some low 
abundance (and possibly extraneous) reads and assemble them into contigs. Only a 
small portion (4%, identity≥85%, coverage≥85%) of the contigs from the align-first 
strategy could identify high confidence matches in assemble-first contigs. After 
stringent filtering, 2,355 high confidence novel sequences with a total length of 
1.9Mb were obtained. 

The enrichment analysis of these novel sequences suggested their roles in 
metabolic processes responsive to stimuli. Almost 34% of them were found to be 
associated with metabolic traits. The differences in metabolism - related genes may be 
associated with differential environmental effects (Liu et al. 2015). The novel 
sequences involved in development, such as beta-tubulin, also likely contribute to 
adaptation. In hybrids, the number of novel genes in heterozygous (present in one 
parent, absent in the other) state was correlated with heterosis of yield-related traits, 
which supports the complementation hypothesis of this phenomenon. We showed that 
the "dispensable" genes, whether they were present on reference genome or not, 
indeed play an indispensable roles at the population level. 
The size of maize pan-transcriptome 

The construction of the maize pan-transcriptome is more effective than a maize 
pan-genome because the high proportion of repetitive sequences present in the 
genome complicates assembly. However, limitations in tissue and availability of 
diverse genotypes could result in underestimating the size of maize pan-transcriptome 
(Fig S16a). We compared tissue-specific and genotype-specific efficiency in 
discovering novel transcripts. We selected five diverse tissues (16DAP Whole Seed, 
V3_Stem and SAM, V9_Immature Leaves, R2_Thirteenth Leaf, 6DAS_GH_Primary 
Root) from a previous study (Sekhon et al. 2013) and repeated the de novo assembly 
process as described. We found more novel transcripts when adding new tissues than 
by adding new individuals (Fig S16b). This indicated that the expression divergence is 
significantly larger between tissues than individuals (P=1.07E-58). 

We estimated the size of maize pan-transcriptome based on our RNA-seq data 
from one tissue but multiple genotypes (Fig S16c, see Methods). As expected, when 
adding more genotypes to the analysis the number of additional novel sequences 
detected eventually leveled off and the total is expected to reach an asymptotic 
maximum of ca. 28,000. Using the reference genome and a similar procedure, we 
found that number of core expression genes decreased and became nearly invariable 
when more than 200 lines were included. The minimum number of core expressed 
genes and maximum for dispensable ones were 22,043 and 13,382, respectively (Fig 
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S16d). Combining the reference based genes and newly identified genes from the 
current study, we estimated the size of the pan-transcriptome of the maize whole 
kernel is about 63,000. Under the simple assumption that maize kernels only express 
70% ~ 80% of the total genes (Fu et al. 2013), the whole pan-genome of maize is 
close to 78,000 ~ 84,000. Thus, the present reference genome may only capture half 
of the predicated maize pan-gene, which is similar to previous prediction (Hirsch et al. 
2014). To identify the pan-gene and study the functions will help to understand the 
genome better thus enhancing crop improvement. 
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METHODS 
Detection of ePAV 

To quantify the expression of 38,032 reference genes, read counts for each 
expressed gene and individual transcripts of that gene were calculated and scaled 
according to the definition of RPKM (reads per kilobase of exon model per million 
mapped reads). The genes showing expression (RPKM=0) in less than 19 (5%) inbred 
lines were excluded in the following analysis. In addition, we filtered the genes which 
expressed (RPKM>0) in more than 348 (95%) inbred lines. The remaining genes were 
considered to have presence/absence variation in expression, and several further 
distribution-based steps were used to acquire an ePAV pattern: (1) extract non-zero 
expression data of a ePAV gene in 368 inbred lines; (2) sort it from smallest to largest 
and make the frequency distribution (10 groups); (3) turn the abnormal low (data in 
1st group) and high (data in groups that frequency<3) expression values according to 
the frequency distribution as “NA” (4) convert the rest of no-zero expression data to 
‘1’ and no expression data to ‘0’ to get the ePAV pattern of each gene. 
Prediction of PAV through genotyping from 50K and 600K SNP arrays 

The ePAV genes (including 1Kb upstream and downstream regions) containing at 
least two SNPs in the array genotyping dataset were used to analyze their PAVs. A 
gene was regarded as potential PAV if all its SNPs were genotyped as missing in a 
particular line. Further, for each ePAV, if the potential PAV occurred at more than a 
certain ratio (5%, or 19 for 50K and 2 for 600K datasets, respectively), it was 
considered as non-random, thus to be candidate PAV.  
De novo Transcript Assembly 

The poly(A)+  transcriptomes of immature kernels (15 DAP) were sequenced 
using 90-bp paired-end Illumina sequencing with libraries of 200-bp insert sizes. The 
sequencing data for this project can be downloaded in the NCBI Sequence Read 
Archive under accession code SRP026161. Average 73.9 million reads were obtained 
in each sample and 367 inbred lines were used in assembly process (Table S4; Li et al. 
2012; Fu et al. 2013). The adaptors and low quality reads were filtered using 
Trimmomatic software (Bolger et al. 2014), resulting in a total 24.7 billion 
high-quality reads, used for the assembly (Table S4; Fig S17). 

While applying the “align-then-assemble” strategy, the mapping process was first 
performed by Bowtie2 version 2.0.2 (Langmead et al. 2012) and TopHat2 version 
2.0.6(Kim et al. 2013) with the parameters -i 5, -I 60000, -r 20, --mate-std-dev 75 and 
gene annotation was provided. The unmapped reads from each individual were 
assembled by Trinity (Grabherr et al. 2011), which is based on the de Bruijn graphs 
algorithm. Min count for K-mers to be assembled by Inchworm most influenced the 
result. We found that there was a large increase in the numbers of transcripts that align 
to the B73 reference transcripts when applying min K-mers between 2 and 3 and we 
chose the parameters: -seqType fq,-min_kmer_cov 2, -min_contig_length 200. In the 
“assemble-then-align” strategy, the whole cleaned RNA-seq reads from 367 inbred 
lines were de novo assembled with the same parameters. 
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Identification of Novel Sequences 
To detect truly novel sequences and remove the ones that were alleles or 

paralogs of sequences present in the B73 reference genome, the assembled transcripts 
from each line were aligned to B73 5b pseudomolecules using GMAP (Wu and 
Watanabe 2005), a genome alignment program for mRNA sequences. We randomly 
chose 200 assembled transcripts from each inbred line to determine GMAP 
parameters and the identity cutoffs were then set to 0.85. The representative 
transcripts that did not align to the reference sequence were clustered by the TGI 
Clustering tool (TGICL; Pertea et al. 2003). Transcripts present in at least 19 inbred 
lines (5% of 367) with non-homology (identity < 95%; coverage < 90%) to B73 
cDNA 5b pseudomolecules (FGS) were retained as candidate novel sequences. 
DeconSeq (Schmieder and Edwards 2011) was further used to remove sequence 
contamination to improve the reliability of novel sequence identification. Reference 
genomes of human, human microbiome, and virus were used as the 
"contamination-datasets", and plant datasets including Zea mays, Oryza sativa, 
Sorghum bicolor, Setaria italica, and Brachypodium distachyon were used as 
“retain-datasets” under the parameters of identity≥98% and coverage≥90%. Finally, 
RNA-seq reads were aligned back to novel sequences for quality assessment by 
running alignReads.pl in Trinity software (Grabherr et al. 2011) with the --bowtie and 
--phred64-quals options. The 12 sequences which had breakpoints in distribution of 
reads were excluded. This indicates there may be minor errors in the transcripts 
assembly process. All the procedures and related results were shown in Fig S17. On 

average, 57,628 assembled transcripts with N50 size 1,078 bp were obtained for each 
inbred line (Table S4). After excluding the transcripts present in the B73 reference 
and other contaminations, an average of 1,388 unmapped transcripts were retained in 
each inbred line. We clustered these remaining transcripts from all inbred lines, and 
the longest one was selected as a representative sequence in each unigene cluster. 
Each unigene cluster would then be retained if it was present in at least 19 inbred lines 
(5% of the panel). Finally, 2,355 novel representative sequences with a total length of 
1.9 Mb and N50 size 922bp were obtained (Fig S4; Table S4). 
An improved re-mapping strategy to correct the distribution of novel sequences 

After the clustering step, we obtained the PAV patterns for each novel gene 
among all genotypes. When considering those present in genomic sequence but 
non-expressed as “inconsistent”, the consistent ratio reached to average 67%, using a 
simple clustering step. However, we found that some novel genes appear to be also 
expressed in predicted “Absence” lines 

This may be caused by incorrect assignment to the genomic location of short or 
well-conserved expressed sequences. In these cases we applied a second re-mapping 
step to recover correct genomic matches, by using BLASTx with “identity≥0.96, 
query-coverage≥0.5, subject-coverage≥0.96”, which improved the consistency ratio to 
an average of 72%.  
Annotation of Novel Sequences 

Blast2go (Conesa and Götz 2008) is an all in one tool for functional annotation 
of novel sequences and the analysis of annotation data. For BLASTx to nr database 
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(Pruitt et al. 2012), a minimum E-value of 1e-6 was used and only best hits were 
considered. BLAST XML result file was imported in Blast2go. GO mapping and 
InterProScan (McDowall and Hunter 2011) were also performed to complete the 
annotation. A total of 1,359 novel sequences had matches in the nr protein database 
using BLASTx (E-value ≤1e-6). Nearly all of them (1,318 of 1,359, 97%) can be 
functionally classified into families and contained conserved domains and functional 
sites (Table S6). The remaining 1,037 unannotated sequences were left. Among 
annotated ones, 166 could encode enzymes (Fig S10; Table S6). 640 can be grouped 
into at least one GO term (Table S6) and used in the next GO enrichment analysis.  
The remaining unannotated novel sequences were used to predict the protein coding 
potential. Three important criteria were used: transcript length, open reading frame 
(ORF) size, and presence of homology with known proteins. Transcript length was set 
to 200bp. Only three ORFs longer than 120 amino acid were identified in 14 known 
long non-coding RNAs (lncRNAs; Boerner and McGinnis 2012), ORFs longer than 
120 amino acid considered potential coding candidates. Coding regions and the 
corresponding amino acid sequences were extracted from novel sequences using 
TransDecoder in the Trinity software (Grabherr et al. 2011). In addition, transcripts 
were aligned to UniProtKB/Swiss-Prot database (Jungo et al. 2012) identify 
transcripts with potential protein-coding ability (E-value≤1e-3). The unaligned 
transcripts were considered non-coding RNAs (ncRNAs). Using BLASTN 
(E-value≤1e-10) and Infernal software ("INFERence of RNA ALignment"; Nawrocki 
and Eddy, 2013; score≥40), 248 sequences were matched to NONCODE database (Bu 
et al. 2012), smRNA transcriptome databases including predicted microRNAs 
(miRNAs), other predicted short hairpin forming RNAs (shRNAs) and predicted 
small interfering RNAs (siRNAs) or Rfam database (Wang X et al. 2009; Burge et al. 
2013). These sequences were all considered the precursors of small RNAs. The 
remained 644 novel sequences were predicted to be high confidence maize lncRNAs 
(Fig S11; Table S6).  
SNP Analysis and LD Mapping of Novel sequences 

MAFFT (Katoh et al. 2009) was used to align novel sequences from all inbreds 
to their corresponding representative ones (the longest one in each unigene cluster; 
see above). SNP_SITES software (https://github.com/sanger-pathogens/snp_sites) 
was used to identify SNPs in the multiple alignment. Biallelic SNPs with minor allele 
frequencies (MAFs) larger than 0.05 were retained for analysis. A total of 27,466 
SNPs were identified in 664 novel sequences. Pairwise LD between SNPs within 
novel sequences and between SNPs in B73 reference genome was computed by a 
script on the assumption of equal probability for either phase relationship of the 
alleles. B73 reference gene with the highest LD (and at least r2>0.1) to SNPs within 
the novel gene was considered the likely location of the novel gene. Using this 
approach, of the 664 novel sequences with SNPs, 627 were mapped to the B73 
reference. 
Validation of PAVs within ePAV and novel ones 

Genomic PAV for 10 ePAV genes, and the 10 novel expressed genes across a set 
of 96 diverse inbred lines were evaluated using touchdown PCR. Inbred lines 
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information, primer sequences and experiment results are available in Fig S3,Fig S7, 

Table S3. The thermo cycler program for touchdown PCR were included: 1=94℃ 

5min; 2=94℃ 30s; 3=64℃ 30s -0.5℃/cycle; 4=72℃ 50s; 5=GOTO 2 12repeats; 

6=94℃  30s;7=58℃  30s; 8=72℃  50s; 9=GOTO 6 23repeats; 10=72℃ 5min; 

11=25℃ 2min; 12=END. The PCR products of 10 novel genes in 5 lines were then 

re-sequenced and subjected to multiple alignment to evaluate the correctness of de 
novo assembly. 
Novel sequences and ePAVs both contributed to heterosis.  
To test whether the PAV pattern of the novel genes contributes maize heterosis, all 
population inbred lines were planted with randomized complete experimental design 
by single replication in 2011 (Chongqing city; Hebi city, Henan province; Honghe 
autonomous prefecture, Yunnan province and Sanya city, Hainan province) and 2012 
(Chongqing city; Hebi city, Henan province; Honghe autonomous prefecture, Yunnan 
province and Wuhan city, Hubei province) and 6 yield-related traits including Kernel 
Width (KWd), Kernel Thickness (KT), Rows Per Ear (RPE), Ear Length (EL), Cob 
Weight (CW), Kernels Per Ear (KPE) were measured. Generally, the average values 
from five individuals were calculated to represent each line in each experiment and 
the BLUP values from different environments and years were used for next analysis. 
The number of PAVs in heterozygous state (present in one parent, absent in the other) 
were then used to evaluate their correlation (R-square was measured; Fig 5) with 
observed mid-parent heterosis for each trait.  
The estimation of the maize pan-transcriptome size 

Five diverse tissues (16DAP Whole Seed, V3_Stem and SAM, V9_Immature 
Leaves, R2_Thirteenth Leaf, 6DAS_GH_Primary Root) from a previous study 
(Sekhon et al. 2013) were chosen to repeat de novo assembly process. We then 
compared each pair of tissues and individuals, by measuring the ratio of shared genes 
to total genes. To eliminate the effect of biased sample size (5 tissues vs 367 
individuals), we randomly selected five pairwise comparisons and repeated this 
process 1000 times, then compared resulting distribution.  

To determine whether the maize pan-transcriptome is open (the size of pan 
genome grows continuously with the number of sequenced individuals increases) or 
closed (the size of pan genome reached a constant value with the number of 
sequenced individuals increases) and to estimate the size of it, a simulation process on 
real data was used. There were three parts to form the maize pan-transcriptome: 
reference based core genes, reference based dispensable genes (ePAV) and novel 
sequences. We randomly chose 20 samples in 367 maize inbred lines in a clustering 
run to estimate the number of novel sequences among them and then add another 20 
lines to do the same cluster recursively until a total of 360 inbred lines were in the set. 
Ten independent simulations were run and the mean of each run from n = 20 to 360 
inbred lines was used to estimate the maximum number of novel sequences. The same 
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simulation process was also performed to estimate the maximum value of core genes 
and dispensable genes on references genome.
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DATA ACCESS 
The raw RNA sequencing data have been deposited in NCBI Sequence Read Archive 
(SRA) under accession SRP026161. The raw sequences (with fasta format) and 
annotation information of novel assembled ones could be available at 
www.maizego.org/Resources. 
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Figure Legend: 

 Fig 1. ePAV candidates played key roles in distant-regulation. 
(a) The ratio of local- (green) and distant- (orange) eQTLs among ePAV, non-ePAV 
and ePAV+non-ePAV together, expressed as percentages. (b) The effects of local 
eQTL were larger than those of distant eQTL both for ePAV (P= 7.05E-22; student 
test) and non-ePAV genes (P= 1.92E-135). The eQTL effects for ePAV genes were 
greater than those for non-ePAV genes in both local (P=1.34E-18) and distant 
(P=7.18E-56) types. (c) Top 10 GO enrichment terms in biological processes of ePAV 
(red) and non-ePAV (blue) are displayed. The left y-axis represents the percentage of 
genes belonging to each GO term. The colored circles and right y-axis represent the 
significance level (FDR). Red, blue and black colors means ePAV, non-ePAV and 
reference levels, respectively. The corresponding GO term description for each GO 
number: 0010556: regulation of macromolecule biosynthetic process; 0009889: 
regulation of biosynthetic process; 0031326: regulation of cellular biosynthetic 
process; 0031323: regulation of cellular metabolic process; 0010468: regulation of 
gene expression; 0045449: regulation of transcription; 0019219: regulation of 
nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process; 0051171: 
regulation of nitrogen compound metabolic process; 0080090: regulation of primary 
metabolic process; 0019222: regulation of metabolic process; 0009987: cellular 
process; 0044237: cellular metabolic process; 0044238: primary metabolic process; 
0051179: localization; 0044260: cellular macromolecule metabolic process; 0051234: 
establishment of localization; 0006810: transport; 0044267: cellular protein metabolic 
process; 0042592: homeostatic process; 0065008: regulation of biological quality. (d) 
ePAV candidates as distant-eQTL affecting expression of Non-ePAV genes. “Diff” 
means the eQTL is located on a different chromosome from the gene it regulates and 
“Same” both are located on the same chromosome (expressed as %).
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Fig 2.ePAV candidates contributed to both maize cob color and various kinds of 
flavonoids. 
(a) Manhattan plot of the association of three ePAV candidates, maize cob color and 
several flavonoids. Different shapes represent different traits, and points with different 
color represent different kinds of ePAV candidates: Blue: pericarp color1 (p1, 
GRMZM2G084799); Red: p2, another copy of R2R3 Myb-like transcription factor 
(GRMZM2G057027); Green: anthocyanidin 3-O-glucosyltransferase 
(GRMZM2G162755); Grey: other ePAVs. Black dashed horizontal line was the 
cut-off (P=7.47E-5) of significant level. (b) The three ePAV candidates were also 
significantly associated with expression of related genes within maize flavonoid 
pathway. Nodes in red are the three ePAV candidates above, green nodes represent 
several identified genes located in the maize flavonoid pathway, purple nodes are 
other genes encode enzymes, light blue were other genes encoding non-enzyme 
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proteins (such as transporters), and grey nodes had no annotation. The blue arrow 
edges link the ePAV candidates and its associated targets and the a3g links to itself 
meaning self-regulation in expression level, while thicker lines represented more 
significant associations. 
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Fig 3. Two novel NBS-LRR genes showed significant association with flavonoid 
metabolites and with expressed genes involved in flavonoid pathway.  
Read distribution and predicted conserved domains of novel reference gene 
Unigene_678 (a) and Unigene_705 (b) and sequence alignments for all presence 
genotypes. (c) Q-Q plot of association mapping for different flavonoids. (d) The two 
novel NBS-LRR genes were also significantly associated with other genes with 
expression presence-absence variation. (e) Validation of the PAV of the two novel 
genes. Green represents consistency between experiment and prediction. Yellow 
means the gene was absent in our prediction but exists in the genome.
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Fig 4. PAV status of novel genes and ePAV both correlated with heterosis of most 
yield-related traits. 
(a) Correlation between mid-parent heterosis and the number of complementary novel 
genes exhibiting PAV between the parents of the F1 population. Six panels represent 
different yield-related traits. KWd: Kernel Width; KT: Kernel Thick; RPE: Rows Per 
Ear; EL: Ear length; CW: Cob Weight; KPE Kernels Per each row of Ear. (b) Boxplot 
in different colors represents different traits ordered by mid-parent heterosis (the left y 
axis). The points in red and black represent Pearson’s r2 of correlation between 
mid-parent heterosis and the number of complementary novel genes and ePAVs 
showing presence-absence variation between parents of the F1 population. 
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