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Abstract

When sequencing an ancient DNA sample from a hominin fossil, DNA from
present-day humans involved in excavation and extraction will be sequenced
along with the endogenous material. This type of contamination is prob-
lematic for downstream analyses as it will introduce a bias towards the
population of the contaminating individual(s). Quantifying the extent of
contamination is a crucial step as it allows researchers to account for possi-
ble biases that may arise in downstream genetic analyses. Here, we present
an MCMC algorithm to co-estimate the contamination rate, sequencing er-
ror rate and demographic parameters - including drift times and admixture
rates - for an ancient nuclear genome obtained from human remains, when
the putative contaminating DNA comes from present-day humans. We as-
sume we have a large panel representing the putative contaminant population
(e.g. European, East Asian or African). The method is implemented in a
C-++ program called 'Demographic Inference with Contamination and Er-
ror’ (DICE). We applied it to simulations and genome data from ancient
Neanderthals and modern humans. With reasonable levels of genome se-
quence coverage (> 3X), we find we can recover accurate estimates of all
these parameters, even when the contamination rate is as high as 50%.
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1 1. Author Summary

2 When extracting and sequencing ancient DNA from human remains, a
s recurrent problem is the presence of DNA from the paleontologists, archae-
» ologists or geneticists that may have handled the fossil. If a DNA library is
s highly contaminated, this will introduce biases in downstream analyses, so it
6 1s important to determine the amount of extraneous DNA. Different meth-
7 ods exist for this purpose, but few are applicable to the nuclear genome, and
s none of them can extract reliable genomic information from highly contami-
o mnated samples. Thus, samples with high rates of contamination are usually
10 discarded. Here, we present a method to jointly estimate contamination and
1 error rates, along with demographic parameters, like drift times and admix-
12 ture rates. Our method can serve to uncover important details about the
13 evolutionary history of archaic and early modern humans from ancient DNA
12 samples, even if those samples are highly contaminated.

15 2. Introduction

16 When sequencing a human genome using ancient DNA (aDNA) recovered
17 from fossils, a common practice is to assess the amount of present-day human
18 contamination in a sequencing library [I} 2, B, 4], 5 [6]. Several methods exist
10 to obtain a contamination estimate. First, one can look at ’diagnostic posi-
20 tions’ in the mitochondrial genome at which a particular archaic population
21 may be known to differ from all present-day humans. Then, one counts how
2> many aDNA fragments support the present-day human base at those posi-
23 tions. This is the most popular technique and has been routinely deployed in
2 the sequencing of Neanderthal genomes [7, [I]. However, contamination levels
s of the mitochondrial genome may sometimes differ drastically from those of
26 the nuclear genome [8] 9]

27 A second technique involves assessing whether the sample was male or
s female using the number of fragments that map to the X and the Y chromo-
20 somes. After determining the biological sex, the proportion of reads that are
30 non-concordant with the sex of the archaic individual are used to estimate
;1 contamination from individuals of the opposite sex (e.g. Y-chr reads in an
sz archaic female genome are indicative of male contamination) [8, [ 0] 4].
33 Another method uses a maximum-likelihood approach to estimate contami-
s« nation, but is only applicable to single-copy chromosomes, like the X chro-
55 mosome in individuals known a priori to be male [11], [12]. Finally, one last
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3 technique involves using a maximum-likelihood approach to co-estimate the
37 amount of contamination, sequencing error and heterozygosity in the entire
;s autosomal nuclear genome [Il [3], using an optimization algorithm such as
s L-BFGS-B [13].

40 Afterwards, if the aDNA library shows low levels of present-day human
a1 contamination (< ~2%), demographic analyses are performed on the se-
a2 quences while ignoring the contamination. If the library is highly contam-
a3 inated, it is usually treated as unusable and discarded. Neither of these
s outcomes is optimal: contaminating fragments may affect downstream anal-
a5 yses, while discarding the library as a whole may waste precious genomic
s data that could provide important demographic insights.

a7 One way to address this problem was proposed by Skoglund et al. [14],
s who developed a statistical framework to separate contaminant from endoge-
20 mnous DNA fragments by using the patterns of chemical deamination charac-
so teristic of ancient DNA. The method produces a score which reflects the odds
s1 that a particular fragment is endogenous or not. This approach, however,
52 may not be able to make a clean distinction between the two sources of DNA,
53 especially for young ancient DNA samples, as chemical degradation may not
sa have affected all fragments belonging to the ancient individual.

55 Instead of (or in addition to) attempting to separate the two type of frag-
s ments before performing a demographic analysis, one could incorporate the
s7 uncertainty stemming from the contaminant fragments into a probabilistic
ss inference framework. Such an approach has already been implemented in the
so analysis of a haploid mtDNA archaic genome [15]. However, mtDNA rep-
e resents a single gene genealogy, and, so far, no equivalent method has been
61 developed for the analysis of the nuclear genome, which contains the richest
62 amount of population genetic information. Here, we present a method to
63 co-estimate the contamination rate, per-base error rate and a simple demog-
e raphy for an autosomal nuclear genome of an ancient hominin. We assume
es we have a large panel representing the putative contaminant population, for
s example, European, Asian or African 1000 Genomes data [16]. The method
ez uses a Bayesian framework to obtain posterior estimates of all parameters
es of interest, including population-size-scaled divergence times and admixture
60 rates.
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70 3. Methods

n  3.1. Basic framework for estimation of error and contamination

72 We will first describe the probabilistic structure of our inference frame-
73 work. We begin by defining the following parameters:

74 e 7. contamination rate in the ancient DNA sample coming from the
75 contaminant population

76 e c: error rate, i.e. probability of observing a derived allele when the true
7 allele is ancestral, or vice versa.

78 e i: number of chromosomes that contain the derived allele at a particular
70 site in the ancient individual (i = 0, 1 or 2)

80 e d;: number of derived fragments observed at site j

81 e d: vector of d; counts for all sites j = {1, ..., N} in a genome

82 e a;: number of ancestral fragments observed at site j

83 e a: vector of a; counts for all sites j = {1, ..., N} in a genome

84 e w;: known frequency of a derived allele in a candidate contaminant
85 panel at site j (0 < w; < 1)

86 e w: vector of w; frequencies for all sites j = {1, ..., N} in a genome

87 e K: number of informative SNPs used as input

88 e O: population-scaled mutation rate. § = 4N, u, where N, is the effective
89 population size and p is the per-generation mutation rate.

% We are interested in computing the probability of the data given the
o1 contamination rate, the error rate, the derived allele frequencies from the
o2 putative contaminant population (w) and a set of demographic parameters
o3 (£2). We will use only sites that are segregating in the contaminant panel
o« and we will assume that we observe only ancestral or derived alleles at every
os site (i.e. we ignore triallelic sites). In some of the analyses below, we will
o6 also assume that we have additional data (O) from present-day populations
oz that may be related to the population to which the sample belongs. The
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os nature of the data in O will be explained below, and will vary in each of the
oo different cases we describe. The parameters contained in 2 may simply be
w0 the population-scaled times separating the contaminant population and the
101 sample from their common ancestral population. However, 2 may include
102 additional parameters, such as the admixture rate - if any - between the
103 contaminant and the sample population. The number of parameters we can
10 include in 2 will depend on the nature of the data in O.

105 For all models we will describe, the probability of the data can be defined
106 aS:

K
P[aa d|TCveawaQaO]:Hp[ajvdj|r07€7wja970] (]‘)
j=1

107 where

2
P[ajadj‘TC7€7wj7Q70] = ZP[CI/]',CZ]' | i7T07€7wj]P[i ’97 O] (2>
=0

ws Here, i is the true (unknown) genotype of the ancient sample, and P[i |2, O]
100 is the probability of genotype ¢ given the demographic parameters and the
110 data.

111 We focus now on computation on the likelihood for one site j in the
112 genome. In the following, we abuse notation and drop the subscript j. Given
us the true genotype of the ancient individual, the number of derived and an-
ua cestral fragments at a particular site follows a binomial distribution that
us  depends on the genotype, the error rate and the rate of contamination [T, 3]:

Pladlireveul = (5 a1 - ap ®)
ue where
0 = o (w(1 =)+ (1~ + (1 re)(1 — o) (@)
B=ro(l— O+ (1-wd +(L-re)(1-2+¢2) ()
o = e (w1l =€) + (1= w)e) + (1 re)e )
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117 In the sections below, we will turn to the more complicated part of the
us model, which is obtaining the probability P[i|Q2, O] for a genotype in the
1o ancient sample, given particular demographic parameters and additional data
120 available. We will do this in different ways, depending on the kind of data
121 we have at hand.

w2 3.2. Diffusion-based likelihood for neutral drift separating two populations

123 First, we will work with the case in which O =y, where y is a vector of
124 frequencies y; from an “anchor” population that may be closely related to the
125 population of the ancient DNA sample. An example of this scenario would
126 be the sequencing of a Neanderthal sample that is suspected to have contam-
127 ination from present-day humans, from which many genomes are available.
128 For all analyses below, we restrict to sites where 0 < y; < 1. Note
120 that it is entirely possible (but not required) that y = w, meaning that,
130 aside from the ancient DNA sample, the only additional data we have are
131 the frequencies of the derived allele in the putative contaminant population,
132 which we can use as the anchor population too. However, it is also possible to
133 use a contaminant panel that is different from the anchor population (Figure
14 [I]A). We will assume we have sequenced a large number of individuals from
135 a panel of the contaminant population (for example, The 1000 Genomes
s Project panel) and that the panel is large enough such that the sampling
137 variance is approximately 0. In other words, the frequency we observe in the
133 contaminant panel will be assumed to be equal to the population frequency
139 in the entire contaminant population. In this case, Q = {7c,7a}, where 74
10 and 7o are defined as follows:

141 74: drift time (i.e. time in generations scaled by twice the haploid effective
12 population size) separating the population to which the ancient individual
13 belongs from the ancestor of both populations

144 Te: drift time separating the anchor population from the ancestor of both
15 populations

146 We need to calculate the conditional probabilities P[i|Q2, O] = P[ily, 7c, Ta]
w7 for all three possibilities for the genotype in the ancient individual: i =
ug 0, 1 or 2. To obtain these expressions, we rely on Wright-Fisher diffusion
1o theory (reviewed in Ewens [17]), especially focusing on the two-population
10 site-frequency spectrum (SFS) [I8]. The full derivations can be found in
151 Appendix A, and lead to the following formulas:
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1 1
Pli=0]y,7c,7a] = 1—y*e_TC—§*y*e_TA_TC+y (y — 5) e TATITC ()

Pli=1]y,7c,Ta ] =y*xe ™77 +y (1 —2y) e~ TAT3TC (8)

Pli=2|y,to,ta]l=yxe @ — % xyxe A0 4y (y — %) e TATITC (9)
152 We generated 10,000 neutral simulations using msms [19] for different
153 choices of 7o and 74 (with 6 = 20 in each simulation) to verify our analytic
1sa  expressions were correct (Figure . The probability does not depend on 6,
155 50 the choice of this value is arbitrary.
156 The above probabilities allows us to finally obtain PJi | y;, €2, O].

157 3.3, Estimating drift and admizture in a three-population model

158 Although the above method gives accurate results for a simple demo-
150 graphic scenario, it does not incorporate the possibility of admixture from
160 the ancient sample to the contaminant population. This is important, as
161 the signal of contamination may mimic the pattern of recent admixture. We
162 will assume that, in addition to the ancient DNA sample, we also have the
163 following data, which constitute O:

164 1) A large panel from a population suspected to be the contaminant in
165 the ancient DNA sample. The sample frequencies from this panel will be
166 labeled w, as before.

167 2) Two panels of genomes from two “anchor” populations that may be
168 related to the ancient DNA sample. One of these populations - called pop-
10 ulation Y - may (but need not) be the same population as the contaminant
7o and may (but need not) have received admixture from the ancient population
i (Figure .B). The sample frequencies for this population will be labeled as
172 y. The other population - called Z - will have sample frequencies labeled z.
173 We will assume the drift times separating these two populations are known
s (parameters 7y and 77 in Figure .B). This is a reasonable assumption as
s these parameters can be accurately estimated without the need of using an
176 ancient outgroup sample, as long as admixture is not extremely high.

177 We can then estimate the remaining drift parameters, the error and con-
17s tamination rates and the admixture time (5) and rate (a)) between the archaic

7
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170 population and modern population Y. The diffusion solution for this three-
180 population scenario with admixture is very difficult to obtain analytically.
181 Instead, we use a numerical approximation, implemented in the program
182 Jadi [20].

183 3.4. Markov Chain Monte Carlo method for inference

184 We incorporated the likelihood functions defined above into a Markov
1ss Chain Monte Carlo (MCMC) inference method, to obtain posterior proba-
186 bility distributions for the contamination rate, the sequencing error rate, the
17 drift times and the admixture rate. Our program - which we called "DICE’
18 - is coded in C++ and is freely available at: http://grenaud.github.io/
180 dice/. We assumed uniform prior distributions for all parameters, and the
100 boundaries of these distributions can be modified by the user.

101 For the starting chain at step 0, an initial set of parameters X, = {
92 Teog, €0, 0 } is sampled randomly from their prior distributions. At step
103k, a new set of values for step k£ 4 1 is proposed by drawing values for each
104 of the parameters from normal distributions. The mean of each of those
105 distributions is the value for each parameter at state X and the standard
106 deviation is the difference between the upper and lower boundary of the prior,
107 divided by a constant that can be increased or decreased to achieve a desired
s rate of acceptance of new states [21]. By default, this constant is equal to
100 1,000 for all parameters. The new state is accepted with probability:

Pla,d | Xk+1]>
Pla,d | X]

200 where Pla, d | Xj] is the likelihood defined in Equation [1]

201 Unless otherwise stated below, we ran the MCMC chain for 100,000 steps

202 in all analyses, with a burn-in period of 40,000 and sampling every 100 steps.

203 The sampled values were then used to construct posterior distributions for

204 each parameter.

Placcept] = min (1, (10)

205 3.5. Multiple error rates and ancestral state misidentification

206 Fu et al. [5] showed that, when estimating contamination, ancient DNA
207 data can be better fit by a two-error model than a single-error model. In
208 that study, the authors co-estimate the two genome-wide error rates along
200 with the proportion of the data that is affected by each rate. Therefore,
210 we also included this error model as an option that the user can choose to
211 incorporate when running our program.
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212 Furthermore, we developed an alternative error estimation method that
213 allows the user to flag transition polymorphisms, which are more likely to
214 have occurred due to cytosine deamination in ancient DNA. These sites are
215 therefore likely to be subject to different error rates than those common in
216 present-day sequencing data [22], 23]. Our program can then estimate two
217 error rates separately: one for transitions and one for transversions. Finally,
218 we incorporated an option to include an ancestral state misidentification
219 (ASM) parameter, which should serve to correct for mispolarization of alleles
220 [24]

a1 8.6. BAM file functionality

222 The standard input for DICE is a file containing counts of particular
223 ancestral/derived base combinations and SNP frequencies (see README
224 file online). As an additional feature, we also developed a module for the
225 user to directly input a BAM file and a file containing population allele
26 frequencies for the anchor and contaminant panels, rather than the standard
227 input. The user can either choose to convert the BAM file to native DICE
228 format using a program provided with the software package and then run the
220 program, or run it directly on the BAM file. In the latter case, instead of
230 calculating genome-wide error parameters, the program will calculate error
21 parameters specific to each sequenced fragment, based on mapping qualities,
232 base qualities and estimated deamination rates at each site (see Appendix
233 B)

2. 4. Results: two-population method

235 4.1. Simulations

236 We first used DICE to obtain posterior distributions from simulated data,
237 under the two-population inference framework. We simulated two popula-
238 tions (i.e. an archaic and a modern human population) with constant pop-
230 ulation size that split a number of generations ago. For each demographic
220 scenario tested, we generated 20,000 independent replicates (theta=1) in ms
201 [25], making sure each simulation had at least one usable SNP. In general,
202 this yielded ~80,000 usable SNPs in total. We then proceeded to sample
2a3 derived and ancestral allele counts using the same binomial sampling model
224 We use in our inference framework, under different sequencing coverage and
a5 contamination conditions. In all simulations, the contaminant panel was the
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226 same as the anchor population panel. We then applied our method to the
247 combined set of ~80,000 SNPs.

248 Figure |3 and 4] show parameter estimation results from various demo-
20 graphic and contamination scenarios for a low-coverage (3X) and a high-
250 coverage (30X) archaic genome, respectively, with low sequencing error (0.1%),
251 and a contaminant /anchor population panel of 100 haploid genomes. In both
252 cases, the method accurately estimates the error rate, the contamination rate
253 and the drift parameters. All parameters are also accurately estimated for
2« the same scenarios even if the sequencing error rate is high (10%) (Figure
255 .

256 Figures 5] [S2] [S3], [S4] show how well the method does at estimating param-
257 eters over a wide range of contamination and drift scenarios, by displaying
258 the absolute difference between simulated parameters and their correspond-
250 ing posterior modes. So long as coverage is high (for example, 5X or 30X),
260 the contamination and anchor drift parameters are accurately estimated even
261 at 75% contamination. The method performs well even if the drift times on
262 both sides of the tree are as small as ~ 0.001 or as large as ~ 5, but starts
263 becoming inaccurate when contamination is extremely high. In general, the
264 contamination rate and anchor drifts are easier to determine than the drift
265 corresponding to the ancient population.

266 We find that for samples of very low coverage (0.5X, 1X, 1.5X) we re-
267 quire a larger number of sites to obtain accurate estimates (Figures , ,
268 . For example, for a sample of 0.5X coverage, we tried different numbers
260 Of independent replicate simulations and found that at 800,000 replicates,
270 'we obtained approximately 1.6 million valid SNPs for inference, which was
on - enough to reach reasonable levels of accuracy (Figure[S14). We note that this
o2 number of SNPs is approximately the same as what is available, for example,
273 in the low-coverage (0.5X) Mezmaiskaya Neanderthal genome [4], which con-
274 tains about 1.55 million valid sites with coverage > 1, and which we analyze
275 below. We also observed that the MCMC chain in some of these simula-
276 tions needed a longer time to converge than when testing samples of higher
a7 coverage, especially when contamination is very high, and so in this set of
278 simulations, we ran it for 1 million steps instead of 100,000, with a burn-in of
a9 940,000 steps and sampling every 100 steps. Finally, we note that our failure
230 to recover the true parameters under low coverage in a single MCMC run is
231 partly due to the chain failing to converge. Indeed, when we run the MCMC
232 10 times and recover the estimates from the chain with the highest posterior
233 probability, we are able to obtain increased accuracy relative to the single

10
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234 run, especially when the drift parameters are extremely low and when the
265 contamination rate is extremely high (Figures [S8]| [S9] [S10).

286 Finally, we tested the method on simulations in a more realistic scenario,
g7 in which we generated ancient and contaminant fragments based on empir-
g ical fragment sizes and then mapped them to a simulated reference genome
280 using BWA [26] with default parameters. We produced DNA sequences from
200 the output of msms [19] via seq-gen v.1.3.3 [27] with the HKY substitution
200 model [28]. This allows for multiple substitutions to occur at the same site
202 since the split from chimpanzee (which could cause ASM). We then simu-
203 lated ancient DNA fragments that had a fragment size distribution emulating
204 empirical distributions. Contaminant fragments were also sampled from the
205 contaminant population. We used the deamination rates from the single-
206 stranded library from the Loschbour ancient individual [29] (~ 8% at the 5’
207 end and ~ 34% at the 3’ end with a residual deamination rate of ~ 1% along
208 the whole fragment) to artificially deaminate the ancient fragments. We
200 simulated sequencing errors on both the ancient and contaminant fragments
30 using empirical sequencing error rates from a PhiX library (Illumina Corp.)
s sequenced at the Max Planck Institute for Evolutionary Anthropology on
302 an [llumina HiSeq, basecalled using freelbis[30]. With the same empirical
;03 PhiX dataset distribution, we generated quality scores for each nucleotide.
304 Fragments were mapped back to a random individual from the contaminant
s panel. Figure [0 shows DICE’s performance on this scenario with different
306 error models. In all cases, we find that the parameters are estimated with
so7  high accuracy. As expected, the ts/tv model infers a higher error rate at
s08 transitions, due to the additional errors introduced by deamination on the
300 ends of the ancient fragments.

si0 4.2. Performance under violations of model assumptions

311 We evaluated the consequences of different violations of model assump-
a2 tions. We started by observing the effects of using a small modern human
a1z panel. Figure shows results for cases in which the contaminant/anchor
sie - panel is made up of only 20 haploid genomes. In this case, all parameters
a5 are estimated accurately, with only a slight bias towards overestimating the
s16  drift parameters, presumably because the low sampling of individuals acts
a1z as a population bottleneck, artificially increasing the drift time parameters
sis estimated.

310 Additionally, we simulated a scenario in which only a single human con-
30 taminated the sample. That is, rather than drawing contaminant fragments

11
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s from a panel of individuals, we randomly picked a set of two chromosomes
322 at each unlinked site and only drew contaminant fragments from those two
323 chromosomes. Figure shows that inference is robust to this scenario,
224 unless the contamination rate is very high (25%). In that case, the drift
325 of the archaic genome is substantially under-estimated, but the error, con-
16 tamination and anchor drift parameters only show slight inaccuracies in the
327 estimate.

328 We then investigated the effect of admixture in the anchor/contaminant
30 population from the archaic population, occurring after their divergence,
330 which we did not account for in the simple, two-population model (Figure
ssn |S11). In this case, the error and the contamination rates are accurately
332 estimated, but both drift times are underestimated. This is to be expected,
;33 as admixture will tend to homogenize allele frequencies and thereby reduce
;3 the apparent drift separating the two populations.

35 4.3, Identifying the contaminant population

336 We sought to see whether we would use our method to identify the con-
;37 taminant population, from among a set of candidate contaminants (for ex-
1s ample, different present-day human panels). Because our MCMC samples
;30 are samples from the posterior distribution of the parameters and not the
a0 marginal likelihood of the data over the entire parameter space, we cannot
s perform proper Bayesian model selection. Instead, we used the posterior
322 mode as a heuristic statistic that may suggest which panel is most likely to
;a3 have contaminated the sample. We validated this choice of statistic using
s simulations under a variety of demographic scenarios (Figure . We sim-
ss  ulated 5-population trees of varying drift times. The outgroup was chosen
a6 to be the ancient population and the rest were chosen to be the present-day
sz human populations (A, B, C and D). One of the populations (A) was the
sg true contaminant. To add another layer of complexity, we also allowed for
a9 admixture (at 0%, 5% and 50% rate) from the ancient population to the an-
10 cestral population of A and B. We then ran our MCMC method four times
351 on each of these demographic scenarios, using D as the anchor and different
352 panels as the putative contaminant in each run.

353 Figure shows that the lowest posterior mode always corresponds to
35« the run that uses the true contaminant (A), and that the mode decreases
355 the farther the tested contaminant is from the true contaminant in the tree.
36 Additionally, Figures [S17], [S1§] show the effect of misspecifying the con-
357 taminant panel for different admixture scenarios. The error rate and the an-
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358 chor drift time are correctly estimated, even when the candidate contaminant
ss0 18 highly diverged from the true contaminant, while the other two parame-
360 ters are more sensitive to misspecification. In general, the correct candidate
se1  contaminant produces the highest posterior probability and yields the best
32 parameter estimates.

63 4.4. Empirical data

364 We first applied our method to published ancient DNA data from a high-
365 coverage genome (52X) from Denisova cave in Siberia (the Altai Neanderthal)
36 |4], and visually ensured that the chain had converged. The demographic,
67 error and contamination estimates are shown in Table[Il We used the African
s (AFR) 1000 Genomes Phase 3 panel [16] as the anchor population. The drift
360 times estimated for both samples are consistent with the known demographic
a0 history of Neanderthals and modern humans, and the contamination rates
s largely agree with previous estimates (see Discussion below).

372 We ran our method with different putative contaminant panels: Africans
sz (AFR), East Asians (EAS), Native Americans (AMR), Europeans (EUR),
sra South Asians (SAS). For the Altai sample, we observe a contamination rate
a5 of ~ 1% and an error rate of ~ 0.1%, regardless of which panel we use.
sze  Furthermore, the drift on the Neanderthal side of the tree seems to be 6
a7 times as large as the drift on the modern human side of the tree, reflecting
srs the smaller effective population size of Neanderthals after their divergence.
srs The EUR panel is the one with the highest posterior mode (Table .

380 We then tested a variety of ancient DNA nuclear genome sequences at
1 different levels of coverage, obtained via different methods (shotgun sequenc-
sz ing and SNP capture) and from different hominin groups (modern humans
se3 and Neanderthals). We used AFR as the anchor panel and either AFR (Ta-
384 Dle or EUR (Table as the contaminant panel. For samples of high
;s and medium average coverage, the MCMC converges to reasonable values
sse for all parameters. For example, we estimate the ancient population drift
ss7  parameter (74) to be larger in Neanderthals than in various modern humans
;s sampled across Eurasia, as the effective population size of the former was
;30 smaller and their split time to Africans was larger.

300 However, for samples of very low coverage, we observe a failure of some
;01 of the parameters to properly converge, as the MCMC seems to get stuck
302 in the boundaries of parameter space. We tested different boundaries and
303 the problem remains. This appears to be less of a problem when using AFR
304 as the putative contaminant panel than when using EUR as the putative
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305 contaminant panel, presumably because of the larger amount of SNPs that
36 may be informative for inference. In the former case, we only observe this
37 problem when samples are at lower than ~ 0.5X coverage. In the latter case,
a8 we observe the problem for samples at lower than ~ 3X coverage.

399 For example, the low-coverage Neanderthal genome (0.5X) from Mez-
w0 maiskaya Cave in Western Russia [4] seems to converge to parameters within
a1 the prior boundaries when using AFR as the contaminant panel but the an-
a2 cient population drift gets stuck in the upper limit of parameter space when
03 any of the other panels are used as contaminants (Table . Regardless of
a0 which contaminant panel is used, there is good agreement with the modern
a5 human drift parameter obtained when using the Altai Neanderthal genome.
a6 However, we note that when using non-African populations as the contam-
07 inants, we obtain a higher (~ 5%) contamination rate in the Mezmaiskaya
a8 Neanderthal than in the Altai Neanderthal. It is currently unclear to us
a0 whether this is due to the MCMC failing to properly converge or to a real
a0 feature of the data.

Table 1. Posterior modes of parameter estimates under the two-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. Africans were the anchor population in all cases,
so the modern human drift is with respect to Africans. Values in parentheses are 95%
posterior quantiles.

S}?:l];i_t ?hrgr Error Contamination i/‘[;;::;n Neanderthal Log-posterior
rate rate e drift mode

panel panel drift
0.12% 0.952% 0.414 2.497

BUR  AFR (0.119% — 0.12%)  (0.949% —0.956%)  (0.411 —0.414)  (2.49 — 2.504) 0476175868
0.118% 0.964% 0.414 2.499

AMR AFR (0.118% — 0.118%)  (0.963% — 0.967%)  (0.411 — 0.414)  (2.494 — 2.506)  ~0484270.973
0.12% 0.95% 0.411 2.496

SAS AFR (0.12% — 0.121%)  (0.946% — 0.951%)  (0.411 — 0.414)  (2.493 — 2.5) -6489357.978
0.13% 0.888% 0.414 2.493

EAS AFR (0.129% — 0.13%)  (0.888% —0.891%)  (0.412 — 0.414)  (2.488 — 2.493)  ~0021082.384
0.112% 0.969% 0.412 2.495

AFR AFR (0.111% —0.112%)  (0.966% — 0.973%)  (0.41 — 0.413)  (2.495 — 2.504)  0074080.092

a1 We sought to determine the robustness of our results to different levels of

a2 GC content. We did this because we initially hypothesized that endogenous
a3 DNA might be preserved at lower rates when GC content is low, leading to the
a1 presence of proportionally more contaminant DNA. We partitioned the Altai
a5 Neanderthal genome into three different regions of low (0% — 30%), medium
as (31% — 69%) and high (70% — 100%) GC content, using the 'GC content’
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a7 track downloaded from the UCSC genome browser [31]. We then used the
as  two-population method to infer contamination, error and drift parameters,
a0 using Africans as the anchor population and Europeans as the contaminant
20 population (Figure[S20). We observe that contamination rates are higher in
a1 low-GC regions than in medium-GC regions (Welch one-sided t-test on the
a2 posterior samples; P < 2.2e-16), which in turn have higher contamination
w23 rates than high-GC regions (P < 2.2e-16). The opposite trend occurs in the
w24 error estimates, while the drift parameters are largely unaffected. However,
a5 we find that the differences we observe across GC levels are almost entirely
a2 eliminated by removing CpG sites from the input dataset (Figure [S20]), as
a2z CpG sites are known to have higher mutation rates than the rest of the
a2s  genome. For this reason, we recommend filtering them out when testing for
420 contamination on ancient DNA datasets, which is what was done in Tables
a0 1 and 2.

431 Finally, we tested a present-day Yoruba genome (HGDP00936) sequenced
s3> to high coverage [4], which should not contain any contamination. Indeed,
a3 when applying our method, we find this to be the case (Figure [S21)). We
a3 infer 0% contamination, regardless of whether we use EUR or AFR as the
a3 candidate contaminant. Furthermore, the anchor drift time is very close to
a3 0 when using AFR as the anchor population (as the sample belongs to that
37 same population), while it is non-zero (= 0.22) when using EUR, which is
a3 consistent with the drift time separating Europeans from the ancestor of
a0 BEuropeans and their closest African sister populations [32].

a0 5. Results: three-population method

a1 5.1. Simulations

a2 We applied our three-population method to estimate both drift times
a3 and admixture rates. We simulated a high-coverage (30X) archaic human
aas genome under various demographic and contamination scenarios. Each of the
a5 two anchor population panels contained 20 haploid genomes. The admixture
a6 time was 0.08 drift units ago, which under a constant population size of
sz 2N=20,000 would be equivalent to 1,600 generations ago. When running our
ws inference program, we set the admixture time prior boundaries to be between
a9 0.06 and 0.1 drift units ago.

450 We find that the admixture time is inaccurately estimated under this
a1 implementation - likely due to lack of information in the site-frequency spec-
a2 trum - so we do not show estimates for that parameter below. For admixture
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a3 rates of 0%, 5% or 20%, the error and contamination parameters are esti-
sss mated accurately in all cases (Figures [S22] [S23] and [S24] respectively). The
ass method is less accurate when estimating the demographic parameters, espe-
as6  cially the admixture rate which is sometimes under-estimated. Importantly
a7 though, the accuracy of the contamination rate estimates are not affected by
s incorrect estimation of the demographic parameters.

459 We also tested what would happen if the admixture time was simulated
a0 to be recent: 0.005 drift units ago, or 100 generations ago under a constant
w61 population size of 2N=20,000. When estimating parameters, we set the prior
a2 for the admixture time to be between 0 and 0.01 drift units ago. In this last
a3 case, we observe that the drift times and the admixture rate (20%) are more
ws accurately estimated than when the admixture event is ancient (Figure [7).
465 As before, we also verified that the posterior mode was a good proxy to
ass identify the true contaminant (A), when running the MCMC using different
a7 contaminant panels (A, B, C and D). In all cases, we used D as the unadmixed
sss anchor panel and B as the admixed anchor panel. Results are shown in Figure
469 for all the demographic scenarios from Figure Again, we observe
a0 that the true contaminant (A) is always the one that corresponds to the
an1 lowest posterior probability, though we again caution that because we do not
a2 have the marginal probabilities, we cannot formally perform model selection
a3 to favor a particular panel. Furthermore,the admixture rate from the ancient
a7+ population into the ancestors of A and B is robustly estimated unless the true
a5 contaminant (A) is highly diverged from the candidate contaminant (Figures

ws [S26] [S27] for admixture rates of 0%, 5% and 50%, respectively).

arr 5.2. Empirical data

a7s We also applied the three-population inference framework to the high-
aro  coverage Altai Neanderthal genome. We first estimated the two drift times
a0 specific to Europeans and Africans after the split from each other (7y and
w1 Ty, respectively), using dadi and the L-BFGS-B likelihood optimization al-
sz gorithm [I3], but without using the archaic genome (745 = 0.009, Tg,, =
i3 0.255). Then, we used our MCMC method to estimate the rest of the drift
asa  times, the archaic admixture rate and the contamination and error parame-
ass  ters in the Neanderthal genome. We set the admixture time prior boundaries
a6 to be between 0.06 and 0.1 drift units ago, which is a realistic time frame
ag7  given knowledge about modern human - Neanderthal cohabitation in Eurasia
sz [33]. The error rate and contamination rates we obtain are similar to those
aso  obtained under the two-population method, and we estimate an admixture
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rate from Neanderthals into modern humans of 1.72% for the choice of con-
s01  taminant panel with the highest posterior mode - which is again EUR (Table

492 ' .

Table 2. Posterior modes of parameter estimates under the three-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G

populations as candidate contaminants. In all cases, Africans were the unadmixed

anchor population and Europeans were the admixed anchor population. The ancestral
human drift refers to the drift in the modern human branch before the split of

Europeans and Africans. The post-split European-specific and African-specific drifts
were estimated separately without the archaic genome (745, = 0.009, Tgy, = 0.255).

Unad-

Ad-

Cc‘)nta— mixed mixed Error Contamination Ancestral Neanderthal Admixture Log-posterior
minant human .
anchor anchor  rate rate . drift rate mode
panel drift
panel panel
0.119% 0.967% 0.411 2.669 1.72%
EUR — AFR - BUR  (5119% — 0.12%)  (0.954% — 0.967%)  (0.405 — 0.414)  (2.656 — 2.689)  (1.682% — 1.805%) 102958125
0.119% 0.967% 0.407 2.677 1.661%
AMR  AFR EUR  (0.118% — 0.12%)  (0.962% — 0.974%)  (0.402 — 0.412)  (2.651 — 2.708)  (1.618% — 1.696%) 101041325
0.122% 0.95% 0.399 2.682 1.469%
SAS AFR - BUR (01229 —0.123%)  (0.944% — 0.955%)  (0.398 — 0.406)  (2.677 — 2.695)  (1.422% — 1.48%)  ~ 105214.726
0.13% 0.896% 0.421 2.702 2.388%
EAS AFR EUR  (0.129% —0.132%)  (0.884% — 0.903%)  (0.413 — 0.428)  (2.658 — 2.706)  (2.009% — 2.4d7%) 009504053
AFR AFR EUR 0.117% 0.957% 0.409 2.681 1.837% _7554080.773

(0.117% — 0.119%)

(0.945% — 0.964%)

(0.409 — 0.418)

(2.66 — 2.702)

(1.766% — 1.961%)

We also applied the method to the low-coverage Mezmaiskaya Nean-
derthal genome. As before, we are able to reach convergence for all param-
eters (including the admixture rate) with the exception of the Neanderthal
drift, which gets stuck in the upper boundary of parameter space (Table .

6. Discussion

We have developed a new method to jointly infer demographic parame-
ters, along with contamination and error rates, when analyzing an ancient
DNA sample. The method can be deployed using a C++ program (DICE)
that is easy to use and freely downloadable. We therefore expect it to be
highly applicable in the field of paleogenomics, allowing researchers to derive
useful information from previously unusable (highly contaminated) samples,
including archaic humans like Neanderthals, as well as ancient modern hu-
mans.

Applications to simulations show that the error and contamination pa-
rameters are estimated with high accuracy, and that demographic parameters
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sos can also be estimated accurately so long as enough information (e.g. a large
so0 panel of modern humans) is available. The drift time estimates reflect how
si0 much genetic drift has acted to differentiate the archaic and modern popu-
s lations since the split from their common ancestral population, and can be
s1i2 converted to divergence times in generations if an accurate history of popula-
s13  tion size changes is also available (for example, via methods like PSMC, [34]).
sia  Although we cannot perform proper model testing, we found via extensive
s1i5 simulations that the posterior mode of an MCMC run was a robust heuristic
s16  statistic to help detect which panel was most likely to have contaminated the
s1i7 sample. We caution, however, that the fact that a particular panel yields a
si8  higher posterior mode than another is no guarantee that it is a better fit to
510 the data for demographic scenarios that may be different from the ones we
520 simulated.

521 We also applied our method to empirical data, specifically to two Ne-
s22 anderthal genomes at high and low coverage, a present-day high-coverage
523 Yoruba genome, and several ancient genome sequences of varying degrees
s« Oof coverage, some obtained via shotgun-sequencing and some via SNP cap-
55 ture. For the high-coverage Yoruba genome, we infer no contamination, as
s26 would be expected from a modern-day sample, and drift times indicating the
527 Yoruba sample indeed belongs to an African population.

528 The contamination and sequencing error estimates we obtained for the
s20 Altai Neanderthal are roughly in accordance with previous estimates [4].
s30 The drift times we obtain under the three-population model for the African
s population (7¢ + Tay,) are approximately 0.411 4 0.009 = 0.42 drift units.
522 'The geometric mean of the history of population sizes from the PSMC re-
533 sults in Priifer et al. [4] give roughly that N, ~ 21,818 since the African
53¢ population size history started differing from that of Neanderthals, assum-
s3s ing a mutation rate of 1.25 x 1078 per bp per generation. If we assume a
s36  generation time of 29 years, and use our drift time in the equation relat-
s37  ing divergence time in generations to drift time (¢/(2N.) =~ 7), this gives
s an approximate human-Neanderthal population divergence time of 531,486
539 years. This number roughly agrees with the most recent estimates obtained
sa0 via other methods [4]. Additionally, the Neanderthal-specific drift time is
sa1  approximately 6.5 times as large as the modern human drift time, which is
sz expected as Neanderthals had much smaller population sizes than modern
sa3 humans 35, 4]. The admixture rate from archaic to modern humans that
saa we estimate is 1.72%, which is consistent with the rate estimate obtained
sss via methods that do not jointly model contamination (1.5 —2.1%) [4]. In
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sa6  the case of the Altai Neanderthal, we observe that the sample was probably
sz contaminated by one or more individuals with European ancestry.

548 When testing modern human and Neanderthal ancient genomes of lower
sa0 coverage than the Altai Neanderthal, we obtain reasonable parameter esti-
sso mates for samples of medium to high-coverage. However, we run into prob-
ss1 lems in estimation when the samples are of low coverage. For these reasons,
s2 and from our simulation results, we recommend that our method should be
ss3  used on nuclear genomes with > 3X coverage. The method may converge un-
ssa  der certain conditions at coverages as low as 0.5X (for example, in the case of
ss5  the Mezmaiskaya genome under the two-population model when using AFR
ss6 as the anchor and contaminant panel), but, in such cases, we caution the
ss7 user to check convergence is achieved before drawing any conclusions from
sss the estimates. For SNP capture data, we obtain reliable estimates for sam-
ss0  ples with a minimum coverage of 500,000 sites that are polymorphic in the
se0 anchor panel.

561 The demographic models used in our approach are simple, involving no
se2 more than three populations and a single admixture event. This is partly
s63  due to limitations of known theory about the diffusion-based likelihood of an
sea arbitrarily complex demography for the 2-D site-frequency spectrum - in the
ss case of the two-population method - and to the inability of 0adi [20] to handle
se6 more than 3 populations at a time. In recent years, several studies have made
se7  advances in the development of methods to compute the likelihood of an SF'S
ses for larger numbers of populations using coalescent theory [36, 37, 38|, with
se0 multiple population size changes and admixture events. We hope that some
s7o - of these techniques could be incorporated in future versions of our inference
s framework.
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Figure 1. A) Schematic of two-population modeling framework: at each site, derived
and ancestral fragments (a, d) are binomially sampled from the true genotype of the
archaic individual, with some amount of contamination and error. In turn, the true
genotype depends on a demographic model, which can include the contaminant
population. B) Schematic of three-population modeling framework, incorporating
admixture between the archaic population and one of two anchor populations.
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Figure 3. Estimation of parameters for a low-coverage ancient DNA genome (3X) with
low sequencing error (0.1%), no admixture and a large anchor population panel (100
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 4. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a large anchor population panel
(100 haploid genomes). Error bars represent 95% posterior intervals.
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Figure 5. We tested the performance of the two-population method under a variety of
drift and contamination scenarios for a sample of very low (0.5X) or very high (30X)
coverage. We found that we needed more sites (= 1.6 million) to obtain accurate
estimates from the low coverage sample. The MCMC chain was also run for a longer
time (1 million steps). The top row shows the absolute difference between the estimated
and the simulated contamination rate, while the bottom row shows the absolute
difference corresponding to the anchor drift. In all simulations, the anchor drift was set
to be equal to the ancient sample drift.

29


https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/022285; this version posted January 19, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1-error model 2-error model
* True Error rate = 0.004267 Error rate 1 =0.000975
o | o Posterior mode o Error rate 2 = 0.026217
- - P[Error rate 1]=0.842923
« <
s P
k| E
o go T
5° 5°
£ 1|z g
5 ? ¥ E . ¢
Q L T
o oS
o o
S S
—— e—
o o
S S
contamination c Ta  contamination c Ta
ts/tv model ASM model
Tv error rate = 0.00057 Error rate = 0.004709
o Ts error rate =0.01169 o Mispolarization rate = 0.002853
« <
s S
k| E
o So
5 5o
H I )
g % g
g gy
=3 =3
o o
S S
[ [=—
o o
oS oS
contamination c Ta  contamination c Ta
BAM model
=
©
S
3
o
5" ;
E
g ?
[ I
=3
o
oS
N
o
oS
contamination G Ta

Figure 6. Estimation of parameters for a high-coverage ancient DNA genome (30X)
simulated under a realistic scenario in which fragments from the ancient and
contaminant genome were generated and then mapped to a reference genome. We
allowed for multiple substitutions at the same site after the split from chimp, as well as
sequencing errors and post-mortem deamination errors at the ends of the fragments. The
five panels show results from inferring parameters under five different error rate models.
Top-left: single-error model. Top-right: two-error model [5]. Middle-left: model with
separate errors for transitions (ts) and tranversions (tv). Middle-right: single-error
model with an ancestral state misidentification parameter. Bottom-left: Model in which
errors were inferred individually at each site, using base and mapping qualities obtained
from the simulated BAM file. Error bars represent 95% posterior intervals.
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Figure 7. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time was recent (0.005 drift units ago). The prior used for the admixture time
was uniform over [0, 0.01]. Error bars represent 95% posterior intervals.
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Figure S1. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with high sequencing error (10%), no admixture and a large anchor population panel
(100 haploid genomes). Error bars represent 95% posterior intervals.
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Table S3. Posterior modes of parameter estimates under the two-population inference

framework for the Mezmaiskaya Neanderthal autosomal genome. We used different

1000G populations as candidate contaminants. AFR were the anchor population in all
cases, so the modern human drift is with respect to Africans. Values in parentheses are
95% posterior quantiles. Except when using AFR as the contaminant, the Neanderthal

drift parameter gets stuck at the upper boundary (5 drift units) of parameter space.

C?nta— An- Error Contamination Modern Neanderthal Log-posterior

minant chor human .
rate rate . drift mode

panel panel drift
0.295% 5.568% 0.425 4.984

EUR AFR (0.284% — 0.306%)  (5.472% — 5.673%)  (0.423 — 0.420)  (4.95 — 5) -883632.4637
0.316% 5.333% 0.426 4.994

AMR — AFR (G300 0.322%)  (5.261% — 5.48%)  (0.422 — 0.428)  (4.952 — 4.999)  °o4312.5366
0.328% 5.203% 0.426 4.996

SAS AFR (0.317% — 0.341%)  (5.007% — 5.313%)  (0.422 — 0.428)  (4.946 — 4.999)  ~054684.3521
0.393% 4.53% 0.423 4.99

EAS AFR (0.379% — 0.402%)  (4.48% — 4.684%)  (0.421 — 0.426)  (4.887 — 4.999)  ~580493.7081

0 3 3
AFR AFR 0.515% 0.007% 0.406 1.756 _889165.6704

(0.5% — 0.525%)

(0.002% — 0.126%)

(0.403 — 0.409)

(1.701 — 1774)

Table S4. Posterior modes of parameter estimates under the three-population inference

framework for the Mezmaiskaya Neanderthal autosomal genome. We used different

1000G populations as candidate contaminants. In all cases, Africans were the unadmixed
anchor population and Europeans were the admixed anchor population. The ancestral
human drift refers to the drift in the modern human branch before the split of

Europeans and Africans. The post-split European-specific and African-specific drifts

were estimated separately without the archaic genome (74f, = 0.009, Tgyr = 0.255). In

all cases, the Neanderthal drift parameter gets stuck at the upper boundary (5 drift

units) of parameter space.

Cont Unad- Ad- Ancestral
onta- mixed mixed Error Contamination cestra Neanderthal Admixture Log-posterior
minant human .
anchor anchor rate rate . drift rate mode
panel drift
panel panel
0.517% 4.663% 0.428 4.999 1.609%
AFR AFR BUR  (0.502% — 0.526%)  (4.564% — 4.787%)  (0.426 — 0.432)  (4.989 — 5) (1.585% — 1.63%)  ~1025944.516
0.71% 2.471% 0.415 4.997 1.486%
EAS AFR EUR  (0.697% — 0.721%)  (2.403% — 2.564%)  (0.412 — 0.418)  (4.985 — 5) (1.462% — 1.508%)  ~1028456.347
0.727% 2.288% 0.414 4.999 1.482%
AMR - AFR - BUR (5719 —0.733%)  (2.208% — 2.361%)  (0.412 — 0.417)  (4.985 — 5) (1.459% — 1.501%) 1028866312
0.724% 2.315% 0.414 4.998 1.479%
SAS AFR EUR  (0.709% — 0.732%)  (2.219% — 2.375%)  (0.412 — 0.418)  (4.984 — 5) (1.458% — 1.5%) -1028823.568
0.761% 1.875% 0.413 4.998 1.463%
EUR AFR EUR  (0.745% — 0.77%)  (1.784% — 1.928%)  (0.41 — 0.415)  (4.984 — 2.5) (1.457% — 1.495%)  ~1029429.156
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A) |estimated — truth| at 0.5 X coverage for rpreq. B) |estimated — truth| at 1.5 X coverage for rpreq.
(~ 165000 sites) (~ 80000 sites)
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Figure S2. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, for different levels of coverage.
In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for tcpreq. B) |estimated — truth| at 1.5 X coverage for tcpreq.
(~ 165000 sites) (~ 80000 sites)
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Figure S3. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, for different levels of coverage. In all
simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for tapred. B) |estimated — truth| at 1.5 X coverage for tapred.
(~ 165000 sites) (~ 80000 sites)

E £
)-_7) @ - )_'7’ ™ -
o~ o o
o —+— o —F
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C) |estimated — truth| at 5 X coverage for Tapred. D) |estimated — truth| at 30 X coverage for Taped.
(~ 103500 sites) (~ 104000 sites)
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Figure S4. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, for different levels of coverage.
In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for rpreq. B) |estimated — truth| at 1 X coverage for rpreq.
(~ 1650000 sites, 1M MCMC chains) (~ 1320000 sites, 1M MCMC chains)
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Figure S5. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for tcpreq. B) |estimated — truth| at 1 X coverage for Tcpred.
(~ 1650000 sites, 1M MCMC chains) (~ 1320000 sites, 1M MCMC chains)
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Figure S6. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for Tapred. B) |estimated — truth| at 1 X coverage for Tapred.
(~ 1650000 sites, 1M MCMC chains) (~ 1320000 sites, 1M MCMC chains)
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Figure S7. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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A) |estimated — truth| at 0.5 X coverage for rpreq. B) |estimated - truth| at 1 X coverage for ryreq.
(~ 1650000 sites, 10X1M MCMC chains) - (~ 1320000 sites, 10X1M MCMC chains) o
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Figure S8. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift
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A) |estimated - truth| at 0.5 X coverage for Tgpred. B) |estimated - truth| at 1 X coverage for Tgpreq.
(~ 1650000 sites, 10X1M MCMC chains) (~ 1320000 sites, 10X1M MCMC chains)
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Figure S9. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift
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Figure S10. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift.
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Figure S11. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), a large anchor population panel (100 haploid genomes)
and admixture in the anchor population from the archaic population (5%), using the
two-population inference framework, which does not model admixture. Error bars

represent 95% posterior intervals.
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Figure S12. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a small anchor population panel (20
haploid genomes). Error bars represent 95% posterior intervals.
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Figure S13. Estimation of parameters for a high-coverage ancient DNA genome (30X),
when the contaminant fragments are exclusively drawn from a single diploid individual
from the contaminant panel. Error bars represent 95% posterior intervals.
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Figure S14. Estimation of parameters for an ancient DNA genome of very low coverage
(0.5X) with low sequencing error (0.1%) and a large anchor population panel (100
haploid genomes). Note that unlike the rest of the simulations, the number of SNPs used
in this case was approximately 1.6 million instead of 80,000, and the MCMC chain was
run for 1 million steps instead of 100,000. Using a lower number of SNPs or running the
chain for a shorter time resulted in inaccurate inferences. Error bars represent 95%
posterior intervals.
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Figure S15. Three demographic models used to test the method when the contaminant
is misspecified. When testing the two-population method, we set panel A as the true
contaminant and panel D as the anchor. When testing the three-population method, we
set panel A as the true contaminant, panel D as the unadmixed anchor and panel B as
the admixed anchor. The numbers on the branches represent the drift parameters. The
parameter « represents the admixture rate from the ancient population into the ancestor

of A and B.
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Figure S16. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the two-population model corresponds to the
true contaminant (panel A). The y-axis shows the difference between the log-posterior
for contaminant panel A and the log-posterior for different candidate contaminant panels
(A, B, C, D). We added a 1 to the difference to be able to plot the difference on a
logarithmic scale. The three panels contain results for three admixture scenarios (from
left to right: admixture rate of 0%, 5% and 50%) and each panel shows the difference
under different contamination rates and demographic models (see Figure [S15)).
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Figure S17. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 0%. The anchor panel used was panel

D (see Figure [S15).
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Figure S18. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 5%. The anchor panel used was panel

D (see Figure.
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Figure S19. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 50%. The anchor panel used was

panel D (see Figure [S15)).
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Figure S20. Estimation of parameters for the Altai Neanderthal genome across
different GC levels using the two-population model, while keeping (black) or removing
(red) CpG sites from the input dataset. Error bars represent 95% posterior intervals.
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Figure S21. We tested one of the Yoruba genomes from Priifer et al. [4] and obtain an
estimate of 0% contamination, regardless of whether we use Europeans or Africans as the
candidate contaminant. The anchor drift time is close to 0 when using Africans as the
anchor population, as the sample belongs to that same population, while it is non-zero
(= 0.22) when using Europeans. Error bars represent 95% posterior intervals.
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Figure S22. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 0%. The prior used
for the admixture time was uniform over [0.06,0.1]. Error bars represent 95% posterior
intervals.
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Figure S23. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 5% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06,0.1]. Error bars represent 95% posterior intervals.
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Figure S24. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06,0.1]. Error bars represent 95% posterior intervals.
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Figure S25. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the three-population model corresponds to
the true contaminant (panel A). The y-axis shows the difference between the
log-posterior for contaminant panel A and the log-posterior for different candidate
contaminant panels (A, B, C, D). We added a 1 to the difference to be able to plot the
difference on a logarithmic scale. The three panels contain results for three admixture
scenarios (from left to right: admixture rate of 0%, 5% and 50%) and each panel shows

the difference under different contamination rates and demographic models (see Figure
S15)).
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Figure S26. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 0%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure .
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Figure S27. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 5%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure .
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Figure S28. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 50%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure .
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26 Appendix A. Genotype probabilities conditional on a demography

727 Below we derive formulas [7], [§ and [0} Recall that we are interested in
728 calculating the conditional probabilities P[i|€2, O] = Plily, 7c,7a] for all
720 three possibilities for the genotype in the ancient individual: ¢ = 0, 1 or 2.
730 These can be obtained from the definition of conditional probability. Let
7 [PP be the joint probability that a site has frequency y (0 < y < 1) in the
732 contaminant panel and is homozygous for the derived allele in the ancient
733 individual. Let fyDA be the joint probability that a site has frequency y in the
73¢ contaminant panel and is heterozygous in the ancient individual. Finally, let
735 fyAA be the joint probability that a site has frequency y in the anchor panel
736 and is homozygous for the ancient allele in the ancient individual. Then:

AA FAA
Pli=0]y,10,7a]| =" = Y Al
[ | ] f, f?le_i_fyDA + fPD (A1)
fDA fDA
Pli=1|y, 10,74 =L = Y A2
fDD fDD
Pli=2 Y, TC,TA | = Y = Y A3
[ | ] f, f;xA_'_fzf)A_i_fé)D (A-3)
737 In the above expressions, the functions f depend on 7¢ and 74, but we

73e omit this conditioning for ease of notation. As can be seen, all we need
730 to find is the joint probabilities f;‘A, ffA and fyDD . Here is where diffusion
720 theory comes into play. Let ¢(y, 7|z, 0) be the Kimura solution to the neutral
701 forward diffusion equation in the absence of mutation [42], given a frequency
722 o at time 0 and an elapsed drift time 7:

o0

By, e, 0) = da(l — ) 3 2O (1 - 2) O (1 — 2g)e U2
—~j+1)
(A.4)
743 Here, x is the unknown rpoyulation frequency of the derived allele in the
744 ancestral population and Cf(i/f (e) is the Gegenbauer polynomial of order h-1
745 [43]
746 Assuming the ancestral population follows an equilibrium frequency dis-

77 tribution g(z) = 0/x, we can write f”” as follows:
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7= | (7ol 0)g() (/ 1 Ao le0)i) b (A5)

748 where z is the unknown population frequency of a derived allele in the
720 population to which the ancient individual belongs.
750 The expression in parentheses is the second moment of the transition

71 density and its solution is known [44]:

1
/ (2, 7alr,0)dz = 2 — 2(1 — x)e A (A.6)
0

752 This results in:
1
o =g / oy, rele, O)[1 — (1 — z)e ™]da (A7)
0

1

1 1
frr=0 [/o oy, 7c|r,0)dr — e‘“/o oy, 7olx, 0)dw + €_TA/ x ¢(ya7'0|$70)d4

0
(A.8)
753 The integral of the first two terms of the sum was solved in Chen et al.
754 [18]
1
/ (y, To|z, 0)dz = e (A.9)
0

755 The third term of the sum can be solved by noting that, though the
76 integrand is an infinite sum (i.e. formula multiplied by z), only the
757 integrals of the first two terms of that infinite sum are not equal to 0. This
758 can be seen by integrating the parts of the terms of that infinite sum that
750 depend on x:

1 /12 h=1
/ r3(1 - az)C’}(L?’_/f)(l —2z)dr =< —1/20 h=2
’ 0 h>3
760 Therefore, after integrating the first two terms of the infinite sum, we
761 Obtain:
! 1 1
[ oty el 0de = ek (=3 ) e (o
0
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762 So we finally arrive at:
DD —TC 1 —TA—TC 1 —TA—3TC
[, =101le — 3¢ + y—g)e (A.11)
763 We can obtain ffA in a similar fashion:

A= /01 oy, 7c|r,0)g(x) (/01 22(1 — z)¢(z,rA|x,0)dz) dr  (A.12)

764 Solving the term in the parentheses:

1 1 1
/ 22(1=2)¢(z, Talx,0)dz = 2 (/ 2¢(z,Talx,0)dz — / 2¢(z, Talz, O)dz)
0 0 0

(A.13)
765 The first term of the difference is the first moment of the transition den-
766 sity, which is equal to x [44], while the second term is the second moment
(formula [A.6]). Therefore:

76

M

fPA =20e" UOI oy, 7e|z,0)(1 — x)dm] (A.14)

1 1
fPA = 20¢™ {/ oy, 7c|z, 0)dx —/ r ¢y, 7c|z,0) dx} (A.15)
0 0

768 And after using formulas and [A.10] we obtain:

=0T+ (1—2y)e ™) (A.16)
760 To obtain fyAA, we know that, assuming the anchor population to be at
770 equilibrium:
fy=29) (A.17)
m And therefore:
0
A [P+ PP = y (A.18)
72 So we finally obtain:
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1 1 1
AA _ —T —TA—T —TA—3T
[, =10 ;—e 0—56 A C+<y—§)e A C} (A.19)
73 We now have all the elements necessary to obtain the conditional probabil-

774 ities from formulas|A.1] [A.2] and [A.3] which immediately lead us to formulas

775 E], and @]

776  Appendix B. Probabilistic inference using BAM files

777 Here, we briefly explain the way we infer fragment-specific error parame-
778 ters in the optional BAM mode of DICE. Let R be the set of all fragments in
770 the BAM file, and R; € R be a particular aligned fragment of length [. For
7s0 fragment R;, let {b;1,...,b;;} be the individuals nucleotides in the fragment.
7s1 At each position of the fragment, there is a specific probability x,, that the
782 base is erroneous. This probability is provided by the basecaller. Below, we
7ss will compute the likelihood of observing a base b;; € R; under a bi-allelic
7ea model, given an error rate k;;. Below, we focus on an individual fragment
7ss  R; and an individual position i on that fragment, so for simplicity, we drop
786 the subscripts ¢ and j and we let b;; = b and x;; = K.

787 Let v be the base that was originally sampled at a given site, before
738 deamination or mismapping. This base could be ancestral or derived. Let
780 Pyum|[v — b] be the probability of substitution from v to b due to post-
790 mortem chemical damage. The probabilities of different types of damage
71 (e.g. C—=T or G—A) occurring at different positions of a fragment can be
792 computed following Ginolhac et al. [45] and Jonsson et al. [46], producing
703 & matrix that can be provided to DICE as input. We offer the possibility
704 of specifying different post-mortem damage matrices for the endogenous and
705 the contaminant fragments.

796 Let E denote the event that a sequencing error has occurred, let D the
707 event that chemical damage has occurred, let M be the event that R; was
798 correctly mapped and let — denote the complement of an event (i.e. event
790 has not occurred). We define the probability of observing sequenced base
soo b given that no sequencing error has occurred at a position on a correctly
g1 mapped fragment that was originally v, by summing over two possibilities,
so2 either chemical damage occurred or it did not:

Plblv, M,~E] = 1(v = b) - P[~D] + (1 — 1(v = b)) - P[D] (B.1)
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sos Here, 1(v = b) is an indicator function that is equal to 1 if v is equal to b,
soa and 0 otherwise. The probabilities P[D] and P[-D] are respectively equal
g5 10 Pyym[v — b] and 1 — Pygn[v — b).

806 Subsequently, we compute P[b|v, M], the probability of observing b given
so7 v under the assumption that R; was mapped at the correct genomic location.
sos We have:

Plblv, M| = (1 — k) - P[blv, M, —|E]+/<-% (B.2)

soo This is because if a sequencing error has occurred, the probability of observing
a0 b is independent of v, and therefore P[blv, M, E] = i. Finally, let P[M] be
s the probability that the fragment R, is mapped at the correct location as
s12 given by the mapping quality. The probability of seeing b given that v was
s13 the base that was sampled before deamination is then:

Plbjo] = PIM] - Plblo, M] + P[=M] - % (B.3)

s1ia  The probability of observing b given that the fragment was mismapped is
s1s independent of v, hence P[blv, = M] = % If either the base quality or mapping
s16 quality indicate a probability of error of 100%, P[b|v] will be equal to % These
g1z probabilities are used instead of the genome-wide error term € in equations
s[4 [p] and [6} For instance, equation [4] for a specific base b in fragment R;
s19  becomes:

go = ro(w - Plb = der|v = der, contaminant]+
(1 —w) - P[b = der|v = anc, contaminant])+ (B.4)

(1 —r¢) - Plb=der|v = der, ancient]
s20 Here, der is the derived base and anc is the ancestral base. In case different
g1 post-mortem damage matrices are provided by the user for the ancient and

g2 the contaminant fragments, the events contaminant and ancient serve to
s23  denote which damage probabilities (i.e. Py, ) should be used in each case.

36


https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Author Summary
	Introduction
	Methods
	Basic framework for estimation of error and contamination
	Diffusion-based likelihood for neutral drift separating two populations
	Estimating drift and admixture in a three-population model
	Markov Chain Monte Carlo method for inference
	Multiple error rates and ancestral state misidentification
	BAM file functionality

	Results: two-population method
	Simulations
	Performance under violations of model assumptions
	Identifying the contaminant population
	Empirical data

	Results: three-population method
	Simulations
	Empirical data

	Discussion
	Acknowledgments
	References
	Figures
	Genotype probabilities conditional on a demography
	Probabilistic inference using BAM files

