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Abstract

When sequencing an ancient DNA sample from a hominin fossil, DNA from
present-day humans involved in excavation and extraction will be sequenced
along with the endogenous material. This type of contamination is prob-
lematic for downstream analyses as it will introduce a bias towards the
population of the contaminating individual(s). Quantifying the extent of
contamination is a crucial step as it allows researchers to account for possi-
ble biases that may arise in downstream genetic analyses. Here, we present
an MCMC algorithm to co-estimate the contamination rate, sequencing er-
ror rate and demographic parameters - including drift times and admixture
rates - for an ancient nuclear genome obtained from human remains, when
the putative contaminating DNA comes from present-day humans. We as-
sume we have a large panel representing the putative contaminant population
(e.g. European, East Asian or African). The method is implemented in a
C++ program called ’Demographic Inference with Contamination and Er-
ror’ (DICE). We applied it to simulations and genome data from ancient
Neanderthals and modern humans. With reasonable levels of genome se-
quence coverage (> 3X), we find we can recover accurate estimates of all
these parameters, even when the contamination rate is as high as 50%.
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1. Author Summary1

When extracting and sequencing ancient DNA from human remains, a2

recurrent problem is the presence of DNA from the paleontologists, archae-3

ologists or geneticists that may have handled the fossil. If a DNA library is4

highly contaminated, this will introduce biases in downstream analyses, so it5

is important to determine the amount of extraneous DNA. Different meth-6

ods exist for this purpose, but few are applicable to the nuclear genome, and7

none of them can extract reliable genomic information from highly contami-8

nated samples. Thus, samples with high rates of contamination are usually9

discarded. Here, we present a method to jointly estimate contamination and10

error rates, along with demographic parameters, like drift times and admix-11

ture rates. Our method can serve to uncover important details about the12

evolutionary history of archaic and early modern humans from ancient DNA13

samples, even if those samples are highly contaminated.14

2. Introduction15

When sequencing a human genome using ancient DNA (aDNA) recovered16

from fossils, a common practice is to assess the amount of present-day human17

contamination in a sequencing library [1, 2, 3, 4, 5, 6]. Several methods exist18

to obtain a contamination estimate. First, one can look at ’diagnostic posi-19

tions’ in the mitochondrial genome at which a particular archaic population20

may be known to differ from all present-day humans. Then, one counts how21

many aDNA fragments support the present-day human base at those posi-22

tions. This is the most popular technique and has been routinely deployed in23

the sequencing of Neanderthal genomes [7, 1]. However, contamination levels24

of the mitochondrial genome may sometimes differ drastically from those of25

the nuclear genome [8, 9].26

A second technique involves assessing whether the sample was male or27

female using the number of fragments that map to the X and the Y chromo-28

somes. After determining the biological sex, the proportion of reads that are29

non-concordant with the sex of the archaic individual are used to estimate30

contamination from individuals of the opposite sex (e.g. Y-chr reads in an31

archaic female genome are indicative of male contamination) [8, 1, 10, 4].32

Another method uses a maximum-likelihood approach to estimate contami-33

nation, but is only applicable to single-copy chromosomes, like the X chro-34

mosome in individuals known a priori to be male [11, 12]. Finally, one last35
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technique involves using a maximum-likelihood approach to co-estimate the36

amount of contamination, sequencing error and heterozygosity in the entire37

autosomal nuclear genome [1, 3], using an optimization algorithm such as38

L-BFGS-B [13].39

Afterwards, if the aDNA library shows low levels of present-day human40

contamination (< ∼2%), demographic analyses are performed on the se-41

quences while ignoring the contamination. If the library is highly contam-42

inated, it is usually treated as unusable and discarded. Neither of these43

outcomes is optimal: contaminating fragments may affect downstream anal-44

yses, while discarding the library as a whole may waste precious genomic45

data that could provide important demographic insights.46

One way to address this problem was proposed by Skoglund et al. [14],47

who developed a statistical framework to separate contaminant from endoge-48

nous DNA fragments by using the patterns of chemical deamination charac-49

teristic of ancient DNA. The method produces a score which reflects the odds50

that a particular fragment is endogenous or not. This approach, however,51

may not be able to make a clean distinction between the two sources of DNA,52

especially for young ancient DNA samples, as chemical degradation may not53

have affected all fragments belonging to the ancient individual.54

Instead of (or in addition to) attempting to separate the two type of frag-55

ments before performing a demographic analysis, one could incorporate the56

uncertainty stemming from the contaminant fragments into a probabilistic57

inference framework. Such an approach has already been implemented in the58

analysis of a haploid mtDNA archaic genome [15]. However, mtDNA rep-59

resents a single gene genealogy, and, so far, no equivalent method has been60

developed for the analysis of the nuclear genome, which contains the richest61

amount of population genetic information. Here, we present a method to62

co-estimate the contamination rate, per-base error rate and a simple demog-63

raphy for an autosomal nuclear genome of an ancient hominin. We assume64

we have a large panel representing the putative contaminant population, for65

example, European, Asian or African 1000 Genomes data [16]. The method66

uses a Bayesian framework to obtain posterior estimates of all parameters67

of interest, including population-size-scaled divergence times and admixture68

rates.69
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3. Methods70

3.1. Basic framework for estimation of error and contamination71

We will first describe the probabilistic structure of our inference frame-72

work. We begin by defining the following parameters:73

• rc: contamination rate in the ancient DNA sample coming from the74

contaminant population75

• ε: error rate, i.e. probability of observing a derived allele when the true76

allele is ancestral, or vice versa.77

• i: number of chromosomes that contain the derived allele at a particular78

site in the ancient individual (i = 0, 1 or 2)79

• dj: number of derived fragments observed at site j80

• d: vector of dj counts for all sites j = {1, ..., N} in a genome81

• aj: number of ancestral fragments observed at site j82

• a: vector of aj counts for all sites j = {1, ..., N} in a genome83

• wj: known frequency of a derived allele in a candidate contaminant84

panel at site j (0 ≤ wj ≤ 1)85

• w: vector of wj frequencies for all sites j = {1, ..., N} in a genome86

• K: number of informative SNPs used as input87

• θ: population-scaled mutation rate. θ = 4Neµ, where Ne is the effective88

population size and µ is the per-generation mutation rate.89

We are interested in computing the probability of the data given the90

contamination rate, the error rate, the derived allele frequencies from the91

putative contaminant population (w) and a set of demographic parameters92

(Ω). We will use only sites that are segregating in the contaminant panel93

and we will assume that we observe only ancestral or derived alleles at every94

site (i.e. we ignore triallelic sites). In some of the analyses below, we will95

also assume that we have additional data (O) from present-day populations96

that may be related to the population to which the sample belongs. The97
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nature of the data in O will be explained below, and will vary in each of the98

different cases we describe. The parameters contained in Ω may simply be99

the population-scaled times separating the contaminant population and the100

sample from their common ancestral population. However, Ω may include101

additional parameters, such as the admixture rate - if any - between the102

contaminant and the sample population. The number of parameters we can103

include in Ω will depend on the nature of the data in O.104

For all models we will describe, the probability of the data can be defined105

as:106

P [ a, d | rC , ε,w,Ω,O] =
K∏
j=1

P [aj, dj|rC , ε, wj,Ω,O] (1)

where107

P [aj, dj|rC , ε, wj,Ω,O] =
2∑
i=0

P [aj, dj | i, rC , ε, wj]P [i |Ω,O] (2)

Here, i is the true (unknown) genotype of the ancient sample, and P [i |Ω,O]108

is the probability of genotype i given the demographic parameters and the109

data.110

We focus now on computation on the likelihood for one site j in the111

genome. In the following, we abuse notation and drop the subscript j. Given112

the true genotype of the ancient individual, the number of derived and an-113

cestral fragments at a particular site follows a binomial distribution that114

depends on the genotype, the error rate and the rate of contamination [1, 3]:115

P [a, d|i, rC , ε, w] =

(
a+ d

d

)
qdi (1− qi)a (3)

where116

q2 = rC (w(1− ε) + (1− w)ε) + (1− rC)(1− ε) (4)

q1 = rC (w(1− ε) + (1− w)ε) + (1− rC) ((1− ε)/2 + ε/2) (5)

q0 = rC (w(1− ε) + (1− w)ε) + (1− rC)ε (6)
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In the sections below, we will turn to the more complicated part of the117

model, which is obtaining the probability P [i|Ω,O] for a genotype in the118

ancient sample, given particular demographic parameters and additional data119

available. We will do this in different ways, depending on the kind of data120

we have at hand.121

3.2. Diffusion-based likelihood for neutral drift separating two populations122

First, we will work with the case in which O = y, where y is a vector of123

frequencies yj from an “anchor” population that may be closely related to the124

population of the ancient DNA sample. An example of this scenario would125

be the sequencing of a Neanderthal sample that is suspected to have contam-126

ination from present-day humans, from which many genomes are available.127

For all analyses below, we restrict to sites where 0 < yj < 1. Note128

that it is entirely possible (but not required) that y = w, meaning that,129

aside from the ancient DNA sample, the only additional data we have are130

the frequencies of the derived allele in the putative contaminant population,131

which we can use as the anchor population too. However, it is also possible to132

use a contaminant panel that is different from the anchor population (Figure133

1.A). We will assume we have sequenced a large number of individuals from134

a panel of the contaminant population (for example, The 1000 Genomes135

Project panel) and that the panel is large enough such that the sampling136

variance is approximately 0. In other words, the frequency we observe in the137

contaminant panel will be assumed to be equal to the population frequency138

in the entire contaminant population. In this case, Ω = {τC, τA}, where τA139

and τC are defined as follows:140

τA: drift time (i.e. time in generations scaled by twice the haploid effective141

population size) separating the population to which the ancient individual142

belongs from the ancestor of both populations143

τC : drift time separating the anchor population from the ancestor of both144

populations145

We need to calculate the conditional probabilities P [i|Ω,O] = P[i|y, τC, τA]146

for all three possibilities for the genotype in the ancient individual: i =147

0, 1 or 2. To obtain these expressions, we rely on Wright-Fisher diffusion148

theory (reviewed in Ewens [17]), especially focusing on the two-population149

site-frequency spectrum (SFS) [18]. The full derivations can be found in150

Appendix A, and lead to the following formulas:151
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P [ i = 0 | y, τC , τA ] = 1−y∗e−τC− 1

2
∗y∗e−τA−τC +y

(
y − 1

2

)
e−τA−3τC (7)

P [ i = 1 | y, τC , τA ] = y ∗ e−τA−τC + y (1− 2y) e−τA−3τC (8)

P [ i = 2 | y, τC , τA ] = y ∗ e−τC − 1

2
∗ y ∗ e−τA−τC + y

(
y − 1

2

)
e−τA−3τC (9)

We generated 10,000 neutral simulations using msms [19] for different152

choices of τC and τA (with θ = 20 in each simulation) to verify our analytic153

expressions were correct (Figure 2). The probability does not depend on θ,154

so the choice of this value is arbitrary.155

The above probabilities allows us to finally obtain P [i | yj,Ω,O].156

3.3. Estimating drift and admixture in a three-population model157

Although the above method gives accurate results for a simple demo-158

graphic scenario, it does not incorporate the possibility of admixture from159

the ancient sample to the contaminant population. This is important, as160

the signal of contamination may mimic the pattern of recent admixture. We161

will assume that, in addition to the ancient DNA sample, we also have the162

following data, which constitute O:163

1) A large panel from a population suspected to be the contaminant in164

the ancient DNA sample. The sample frequencies from this panel will be165

labeled w, as before.166

2) Two panels of genomes from two “anchor” populations that may be167

related to the ancient DNA sample. One of these populations - called pop-168

ulation Y - may (but need not) be the same population as the contaminant169

and may (but need not) have received admixture from the ancient population170

(Figure 1.B). The sample frequencies for this population will be labeled as171

y. The other population - called Z - will have sample frequencies labeled z.172

We will assume the drift times separating these two populations are known173

(parameters τY and τZ in Figure 1.B). This is a reasonable assumption as174

these parameters can be accurately estimated without the need of using an175

ancient outgroup sample, as long as admixture is not extremely high.176

We can then estimate the remaining drift parameters, the error and con-177

tamination rates and the admixture time (β) and rate (α) between the archaic178
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population and modern population Y . The diffusion solution for this three-179

population scenario with admixture is very difficult to obtain analytically.180

Instead, we use a numerical approximation, implemented in the program181

∂a∂i [20].182

3.4. Markov Chain Monte Carlo method for inference183

We incorporated the likelihood functions defined above into a Markov184

Chain Monte Carlo (MCMC) inference method, to obtain posterior proba-185

bility distributions for the contamination rate, the sequencing error rate, the186

drift times and the admixture rate. Our program - which we called ’DICE’187

- is coded in C++ and is freely available at: http://grenaud.github.io/188

dice/. We assumed uniform prior distributions for all parameters, and the189

boundaries of these distributions can be modified by the user.190

For the starting chain at step 0, an initial set of parameters X0 = {191

rC0, ε0, Ω0 } is sampled randomly from their prior distributions. At step192

k, a new set of values for step k + 1 is proposed by drawing values for each193

of the parameters from normal distributions. The mean of each of those194

distributions is the value for each parameter at state Xk and the standard195

deviation is the difference between the upper and lower boundary of the prior,196

divided by a constant that can be increased or decreased to achieve a desired197

rate of acceptance of new states [21]. By default, this constant is equal to198

1,000 for all parameters. The new state is accepted with probability:199

P [accept] = min

(
1,
P [a,d | Xk+1]

P [a,d | Xk]

)
(10)

where P [a,d | Xk] is the likelihood defined in Equation 1.200

Unless otherwise stated below, we ran the MCMC chain for 100,000 steps201

in all analyses, with a burn-in period of 40,000 and sampling every 100 steps.202

The sampled values were then used to construct posterior distributions for203

each parameter.204

3.5. Multiple error rates and ancestral state misidentification205

Fu et al. [5] showed that, when estimating contamination, ancient DNA206

data can be better fit by a two-error model than a single-error model. In207

that study, the authors co-estimate the two genome-wide error rates along208

with the proportion of the data that is affected by each rate. Therefore,209

we also included this error model as an option that the user can choose to210

incorporate when running our program.211
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Furthermore, we developed an alternative error estimation method that212

allows the user to flag transition polymorphisms, which are more likely to213

have occurred due to cytosine deamination in ancient DNA. These sites are214

therefore likely to be subject to different error rates than those common in215

present-day sequencing data [22, 23]. Our program can then estimate two216

error rates separately: one for transitions and one for transversions. Finally,217

we incorporated an option to include an ancestral state misidentification218

(ASM) parameter, which should serve to correct for mispolarization of alleles219

[24].220

3.6. BAM file functionality221

The standard input for DICE is a file containing counts of particular222

ancestral/derived base combinations and SNP frequencies (see README223

file online). As an additional feature, we also developed a module for the224

user to directly input a BAM file and a file containing population allele225

frequencies for the anchor and contaminant panels, rather than the standard226

input. The user can either choose to convert the BAM file to native DICE227

format using a program provided with the software package and then run the228

program, or run it directly on the BAM file. In the latter case, instead of229

calculating genome-wide error parameters, the program will calculate error230

parameters specific to each sequenced fragment, based on mapping qualities,231

base qualities and estimated deamination rates at each site (see Appendix232

B).233

4. Results: two-population method234

4.1. Simulations235

We first used DICE to obtain posterior distributions from simulated data,236

under the two-population inference framework. We simulated two popula-237

tions (i.e. an archaic and a modern human population) with constant pop-238

ulation size that split a number of generations ago. For each demographic239

scenario tested, we generated 20,000 independent replicates (theta=1) in ms240

[25], making sure each simulation had at least one usable SNP. In general,241

this yielded ∼80,000 usable SNPs in total. We then proceeded to sample242

derived and ancestral allele counts using the same binomial sampling model243

we use in our inference framework, under different sequencing coverage and244

contamination conditions. In all simulations, the contaminant panel was the245
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same as the anchor population panel. We then applied our method to the246

combined set of ∼80,000 SNPs.247

Figure 3 and 4 show parameter estimation results from various demo-248

graphic and contamination scenarios for a low-coverage (3X) and a high-249

coverage (30X) archaic genome, respectively, with low sequencing error (0.1%),250

and a contaminant/anchor population panel of 100 haploid genomes. In both251

cases, the method accurately estimates the error rate, the contamination rate252

and the drift parameters. All parameters are also accurately estimated for253

the same scenarios even if the sequencing error rate is high (10%) (Figure254

S1).255

Figures 5, S2, S3, S4 show how well the method does at estimating param-256

eters over a wide range of contamination and drift scenarios, by displaying257

the absolute difference between simulated parameters and their correspond-258

ing posterior modes. So long as coverage is high (for example, 5X or 30X),259

the contamination and anchor drift parameters are accurately estimated even260

at 75% contamination. The method performs well even if the drift times on261

both sides of the tree are as small as ≈ 0.001 or as large as ≈ 5, but starts262

becoming inaccurate when contamination is extremely high. In general, the263

contamination rate and anchor drifts are easier to determine than the drift264

corresponding to the ancient population.265

We find that for samples of very low coverage (0.5X, 1X, 1.5X) we re-266

quire a larger number of sites to obtain accurate estimates (Figures S5, S6,267

S7). For example, for a sample of 0.5X coverage, we tried different numbers268

of independent replicate simulations and found that at 800,000 replicates,269

we obtained approximately 1.6 million valid SNPs for inference, which was270

enough to reach reasonable levels of accuracy (Figure S14). We note that this271

number of SNPs is approximately the same as what is available, for example,272

in the low-coverage (0.5X) Mezmaiskaya Neanderthal genome [4], which con-273

tains about 1.55 million valid sites with coverage ≥ 1, and which we analyze274

below. We also observed that the MCMC chain in some of these simula-275

tions needed a longer time to converge than when testing samples of higher276

coverage, especially when contamination is very high, and so in this set of277

simulations, we ran it for 1 million steps instead of 100,000, with a burn-in of278

940,000 steps and sampling every 100 steps. Finally, we note that our failure279

to recover the true parameters under low coverage in a single MCMC run is280

partly due to the chain failing to converge. Indeed, when we run the MCMC281

10 times and recover the estimates from the chain with the highest posterior282

probability, we are able to obtain increased accuracy relative to the single283
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run, especially when the drift parameters are extremely low and when the284

contamination rate is extremely high (Figures S8, S9, S10).285

Finally, we tested the method on simulations in a more realistic scenario,286

in which we generated ancient and contaminant fragments based on empir-287

ical fragment sizes and then mapped them to a simulated reference genome288

using BWA [26] with default parameters. We produced DNA sequences from289

the output of msms [19] via seq-gen v.1.3.3 [27] with the HKY substitution290

model [28]. This allows for multiple substitutions to occur at the same site291

since the split from chimpanzee (which could cause ASM). We then simu-292

lated ancient DNA fragments that had a fragment size distribution emulating293

empirical distributions. Contaminant fragments were also sampled from the294

contaminant population. We used the deamination rates from the single-295

stranded library from the Loschbour ancient individual [29] (∼ 8% at the 5’296

end and ∼ 34% at the 3’ end with a residual deamination rate of ∼ 1% along297

the whole fragment) to artificially deaminate the ancient fragments. We298

simulated sequencing errors on both the ancient and contaminant fragments299

using empirical sequencing error rates from a PhiX library (Illumina Corp.)300

sequenced at the Max Planck Institute for Evolutionary Anthropology on301

an Illumina HiSeq, basecalled using freeIbis[30]. With the same empirical302

PhiX dataset distribution, we generated quality scores for each nucleotide.303

Fragments were mapped back to a random individual from the contaminant304

panel. Figure 6 shows DICE’s performance on this scenario with different305

error models. In all cases, we find that the parameters are estimated with306

high accuracy. As expected, the ts/tv model infers a higher error rate at307

transitions, due to the additional errors introduced by deamination on the308

ends of the ancient fragments.309

4.2. Performance under violations of model assumptions310

We evaluated the consequences of different violations of model assump-311

tions. We started by observing the effects of using a small modern human312

panel. Figure S12 shows results for cases in which the contaminant/anchor313

panel is made up of only 20 haploid genomes. In this case, all parameters314

are estimated accurately, with only a slight bias towards overestimating the315

drift parameters, presumably because the low sampling of individuals acts316

as a population bottleneck, artificially increasing the drift time parameters317

estimated.318

Additionally, we simulated a scenario in which only a single human con-319

taminated the sample. That is, rather than drawing contaminant fragments320
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from a panel of individuals, we randomly picked a set of two chromosomes321

at each unlinked site and only drew contaminant fragments from those two322

chromosomes. Figure S13 shows that inference is robust to this scenario,323

unless the contamination rate is very high (25%). In that case, the drift324

of the archaic genome is substantially under-estimated, but the error, con-325

tamination and anchor drift parameters only show slight inaccuracies in the326

estimate.327

We then investigated the effect of admixture in the anchor/contaminant328

population from the archaic population, occurring after their divergence,329

which we did not account for in the simple, two-population model (Figure330

S11). In this case, the error and the contamination rates are accurately331

estimated, but both drift times are underestimated. This is to be expected,332

as admixture will tend to homogenize allele frequencies and thereby reduce333

the apparent drift separating the two populations.334

4.3. Identifying the contaminant population335

We sought to see whether we would use our method to identify the con-336

taminant population, from among a set of candidate contaminants (for ex-337

ample, different present-day human panels). Because our MCMC samples338

are samples from the posterior distribution of the parameters and not the339

marginal likelihood of the data over the entire parameter space, we cannot340

perform proper Bayesian model selection. Instead, we used the posterior341

mode as a heuristic statistic that may suggest which panel is most likely to342

have contaminated the sample. We validated this choice of statistic using343

simulations under a variety of demographic scenarios (Figure S15). We sim-344

ulated 5-population trees of varying drift times. The outgroup was chosen345

to be the ancient population and the rest were chosen to be the present-day346

human populations (A, B, C and D). One of the populations (A) was the347

true contaminant. To add another layer of complexity, we also allowed for348

admixture (at 0%, 5% and 50% rate) from the ancient population to the an-349

cestral population of A and B. We then ran our MCMC method four times350

on each of these demographic scenarios, using D as the anchor and different351

panels as the putative contaminant in each run.352

Figure S16 shows that the lowest posterior mode always corresponds to353

the run that uses the true contaminant (A), and that the mode decreases354

the farther the tested contaminant is from the true contaminant in the tree.355

Additionally, Figures S17, S18, S19 show the effect of misspecifying the con-356

taminant panel for different admixture scenarios. The error rate and the an-357
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chor drift time are correctly estimated, even when the candidate contaminant358

is highly diverged from the true contaminant, while the other two parame-359

ters are more sensitive to misspecification. In general, the correct candidate360

contaminant produces the highest posterior probability and yields the best361

parameter estimates.362

4.4. Empirical data363

We first applied our method to published ancient DNA data from a high-364

coverage genome (52X) from Denisova cave in Siberia (the Altai Neanderthal)365

[4], and visually ensured that the chain had converged. The demographic,366

error and contamination estimates are shown in Table 1. We used the African367

(AFR) 1000 Genomes Phase 3 panel [16] as the anchor population. The drift368

times estimated for both samples are consistent with the known demographic369

history of Neanderthals and modern humans, and the contamination rates370

largely agree with previous estimates (see Discussion below).371

We ran our method with different putative contaminant panels: Africans372

(AFR), East Asians (EAS), Native Americans (AMR), Europeans (EUR),373

South Asians (SAS). For the Altai sample, we observe a contamination rate374

of ∼ 1% and an error rate of ∼ 0.1%, regardless of which panel we use.375

Furthermore, the drift on the Neanderthal side of the tree seems to be 6376

times as large as the drift on the modern human side of the tree, reflecting377

the smaller effective population size of Neanderthals after their divergence.378

The EUR panel is the one with the highest posterior mode (Table 1).379

We then tested a variety of ancient DNA nuclear genome sequences at380

different levels of coverage, obtained via different methods (shotgun sequenc-381

ing and SNP capture) and from different hominin groups (modern humans382

and Neanderthals). We used AFR as the anchor panel and either AFR (Ta-383

ble S1) or EUR (Table S2) as the contaminant panel. For samples of high384

and medium average coverage, the MCMC converges to reasonable values385

for all parameters. For example, we estimate the ancient population drift386

parameter (τA) to be larger in Neanderthals than in various modern humans387

sampled across Eurasia, as the effective population size of the former was388

smaller and their split time to Africans was larger.389

However, for samples of very low coverage, we observe a failure of some390

of the parameters to properly converge, as the MCMC seems to get stuck391

in the boundaries of parameter space. We tested different boundaries and392

the problem remains. This appears to be less of a problem when using AFR393

as the putative contaminant panel than when using EUR as the putative394
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contaminant panel, presumably because of the larger amount of SNPs that395

may be informative for inference. In the former case, we only observe this396

problem when samples are at lower than ∼ 0.5X coverage. In the latter case,397

we observe the problem for samples at lower than ∼ 3X coverage.398

For example, the low-coverage Neanderthal genome (0.5X) from Mez-399

maiskaya Cave in Western Russia [4] seems to converge to parameters within400

the prior boundaries when using AFR as the contaminant panel but the an-401

cient population drift gets stuck in the upper limit of parameter space when402

any of the other panels are used as contaminants (Table S3). Regardless of403

which contaminant panel is used, there is good agreement with the modern404

human drift parameter obtained when using the Altai Neanderthal genome.405

However, we note that when using non-African populations as the contam-406

inants, we obtain a higher (∼ 5%) contamination rate in the Mezmaiskaya407

Neanderthal than in the Altai Neanderthal. It is currently unclear to us408

whether this is due to the MCMC failing to properly converge or to a real409

feature of the data.410

Table 1. Posterior modes of parameter estimates under the two-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. Africans were the anchor population in all cases,
so the modern human drift is with respect to Africans. Values in parentheses are 95%
posterior quantiles.

Conta-
minant
panel

An-
chor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift

Log-posterior
mode

EUR AFR 0.12%
(0.119% − 0.12%)

0.952%
(0.949%− 0.956%)

0.414
(0.411− 0.414)

2.497
(2.49 − 2.504)

-6476175.868

AMR AFR 0.118%
(0.118%− 0.118%)

0.964%
(0.963%− 0.967%)

0.414
(0.411− 0.414)

2.499
(2.494− 2.506)

-6484270.973

SAS AFR 0.12%
(0.12% − 0.121%)

0.95%
(0.946%− 0.951%)

0.411
(0.411− 0.414)

2.496
(2.493 − 2.5)

-6489357.978

EAS AFR 0.13%
(0.129% − 0.13%)

0.888%
(0.888%− 0.891%)

0.414
(0.412− 0.414)

2.493
(2.488− 2.493)

-6521082.384

AFR AFR 0.112%
(0.111%− 0.112%)

0.969%
(0.966%− 0.973%)

0.412
(0.41 − 0.413)

2.495
(2.495− 2.504)

-6574080.092

We sought to determine the robustness of our results to different levels of411

GC content. We did this because we initially hypothesized that endogenous412

DNAmight be preserved at lower rates when GC content is low, leading to the413

presence of proportionally more contaminant DNA. We partitioned the Altai414

Neanderthal genome into three different regions of low (0%− 30%), medium415

(31% − 69%) and high (70% − 100%) GC content, using the ’GC content’416
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track downloaded from the UCSC genome browser [31]. We then used the417

two-population method to infer contamination, error and drift parameters,418

using Africans as the anchor population and Europeans as the contaminant419

population (Figure S20). We observe that contamination rates are higher in420

low-GC regions than in medium-GC regions (Welch one-sided t-test on the421

posterior samples, P < 2.2e-16), which in turn have higher contamination422

rates than high-GC regions (P < 2.2e-16). The opposite trend occurs in the423

error estimates, while the drift parameters are largely unaffected. However,424

we find that the differences we observe across GC levels are almost entirely425

eliminated by removing CpG sites from the input dataset (Figure S20), as426

CpG sites are known to have higher mutation rates than the rest of the427

genome. For this reason, we recommend filtering them out when testing for428

contamination on ancient DNA datasets, which is what was done in Tables429

1 and 2.430

Finally, we tested a present-day Yoruba genome (HGDP00936) sequenced431

to high coverage [4], which should not contain any contamination. Indeed,432

when applying our method, we find this to be the case (Figure S21). We433

infer 0% contamination, regardless of whether we use EUR or AFR as the434

candidate contaminant. Furthermore, the anchor drift time is very close to435

0 when using AFR as the anchor population (as the sample belongs to that436

same population), while it is non-zero (= 0.22) when using EUR, which is437

consistent with the drift time separating Europeans from the ancestor of438

Europeans and their closest African sister populations [32].439

5. Results: three-population method440

5.1. Simulations441

We applied our three-population method to estimate both drift times442

and admixture rates. We simulated a high-coverage (30X) archaic human443

genome under various demographic and contamination scenarios. Each of the444

two anchor population panels contained 20 haploid genomes. The admixture445

time was 0.08 drift units ago, which under a constant population size of446

2N=20,000 would be equivalent to 1,600 generations ago. When running our447

inference program, we set the admixture time prior boundaries to be between448

0.06 and 0.1 drift units ago.449

We find that the admixture time is inaccurately estimated under this450

implementation - likely due to lack of information in the site-frequency spec-451

trum - so we do not show estimates for that parameter below. For admixture452

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


rates of 0%, 5% or 20%, the error and contamination parameters are esti-453

mated accurately in all cases (Figures S22, S23 and S24, respectively). The454

method is less accurate when estimating the demographic parameters, espe-455

cially the admixture rate which is sometimes under-estimated. Importantly456

though, the accuracy of the contamination rate estimates are not affected by457

incorrect estimation of the demographic parameters.458

We also tested what would happen if the admixture time was simulated459

to be recent: 0.005 drift units ago, or 100 generations ago under a constant460

population size of 2N=20,000. When estimating parameters, we set the prior461

for the admixture time to be between 0 and 0.01 drift units ago. In this last462

case, we observe that the drift times and the admixture rate (20%) are more463

accurately estimated than when the admixture event is ancient (Figure 7).464

As before, we also verified that the posterior mode was a good proxy to465

identify the true contaminant (A), when running the MCMC using different466

contaminant panels (A, B, C and D). In all cases, we used D as the unadmixed467

anchor panel and B as the admixed anchor panel. Results are shown in Figure468

S25 for all the demographic scenarios from Figure S15. Again, we observe469

that the true contaminant (A) is always the one that corresponds to the470

lowest posterior probability, though we again caution that because we do not471

have the marginal probabilities, we cannot formally perform model selection472

to favor a particular panel. Furthermore,the admixture rate from the ancient473

population into the ancestors of A and B is robustly estimated unless the true474

contaminant (A) is highly diverged from the candidate contaminant (Figures475

S26, S27, S28, for admixture rates of 0%, 5% and 50%, respectively).476

5.2. Empirical data477

We also applied the three-population inference framework to the high-478

coverage Altai Neanderthal genome. We first estimated the two drift times479

specific to Europeans and Africans after the split from each other (τY and480

τZ , respectively), using ∂a∂i and the L-BFGS-B likelihood optimization al-481

gorithm [13], but without using the archaic genome (τAfr = 0.009, τEur =482

0.255). Then, we used our MCMC method to estimate the rest of the drift483

times, the archaic admixture rate and the contamination and error parame-484

ters in the Neanderthal genome. We set the admixture time prior boundaries485

to be between 0.06 and 0.1 drift units ago, which is a realistic time frame486

given knowledge about modern human - Neanderthal cohabitation in Eurasia487

[33]. The error rate and contamination rates we obtain are similar to those488

obtained under the two-population method, and we estimate an admixture489
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rate from Neanderthals into modern humans of 1.72% for the choice of con-490

taminant panel with the highest posterior mode - which is again EUR (Table491

2).492

Table 2. Posterior modes of parameter estimates under the three-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. In all cases, Africans were the unadmixed
anchor population and Europeans were the admixed anchor population. The ancestral
human drift refers to the drift in the modern human branch before the split of
Europeans and Africans. The post-split European-specific and African-specific drifts
were estimated separately without the archaic genome (τAfr = 0.009, τEur = 0.255).

Conta-
minant
panel

Unad-
mixed
anchor
panel

Ad-
mixed
anchor
panel

Error
rate

Contamination
rate

Ancestral
human
drift

Neanderthal
drift

Admixture
rate

Log-posterior
mode

EUR AFR EUR 0.119%
(0.119% − 0.12%)

0.967%
(0.954%− 0.967%)

0.411
(0.405− 0.414)

2.669
(2.656− 2.689)

1.72%
(1.682%− 1.805%)

-7452958.125

AMR AFR EUR 0.119%
(0.118% − 0.12%)

0.967%
(0.962%− 0.974%)

0.407
(0.402− 0.412)

2.677
(2.651− 2.708)

1.661%
(1.618%− 1.696%)

-7461041.325

SAS AFR EUR 0.122%
(0.122%− 0.123%)

0.95%
(0.944%− 0.955%)

0.399
(0.398− 0.406)

2.682
(2.677− 2.695)

1.469%
(1.422% − 1.48%)

-7465214.726

EAS AFR EUR 0.13%
(0.129%− 0.132%)

0.896%
(0.884%− 0.903%)

0.421
(0.413− 0.428)

2.702
(2.658− 2.706)

2.388%
(2.009%− 2.447%)

-7509504.053

AFR AFR EUR 0.117%
(0.117%− 0.119%)

0.957%
(0.945%− 0.964%)

0.409
(0.409− 0.418)

2.681
(2.66 − 2.702)

1.837%
(1.766%− 1.961%)

-7554080.773

We also applied the method to the low-coverage Mezmaiskaya Nean-493

derthal genome. As before, we are able to reach convergence for all param-494

eters (including the admixture rate) with the exception of the Neanderthal495

drift, which gets stuck in the upper boundary of parameter space (Table S4).496

6. Discussion497

We have developed a new method to jointly infer demographic parame-498

ters, along with contamination and error rates, when analyzing an ancient499

DNA sample. The method can be deployed using a C++ program (DICE)500

that is easy to use and freely downloadable. We therefore expect it to be501

highly applicable in the field of paleogenomics, allowing researchers to derive502

useful information from previously unusable (highly contaminated) samples,503

including archaic humans like Neanderthals, as well as ancient modern hu-504

mans.505

Applications to simulations show that the error and contamination pa-506

rameters are estimated with high accuracy, and that demographic parameters507
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can also be estimated accurately so long as enough information (e.g. a large508

panel of modern humans) is available. The drift time estimates reflect how509

much genetic drift has acted to differentiate the archaic and modern popu-510

lations since the split from their common ancestral population, and can be511

converted to divergence times in generations if an accurate history of popula-512

tion size changes is also available (for example, via methods like PSMC, [34]).513

Although we cannot perform proper model testing, we found via extensive514

simulations that the posterior mode of an MCMC run was a robust heuristic515

statistic to help detect which panel was most likely to have contaminated the516

sample. We caution, however, that the fact that a particular panel yields a517

higher posterior mode than another is no guarantee that it is a better fit to518

the data for demographic scenarios that may be different from the ones we519

simulated.520

We also applied our method to empirical data, specifically to two Ne-521

anderthal genomes at high and low coverage, a present-day high-coverage522

Yoruba genome, and several ancient genome sequences of varying degrees523

of coverage, some obtained via shotgun-sequencing and some via SNP cap-524

ture. For the high-coverage Yoruba genome, we infer no contamination, as525

would be expected from a modern-day sample, and drift times indicating the526

Yoruba sample indeed belongs to an African population.527

The contamination and sequencing error estimates we obtained for the528

Altai Neanderthal are roughly in accordance with previous estimates [4].529

The drift times we obtain under the three-population model for the African530

population (τC + τAfr) are approximately 0.411 + 0.009 = 0.42 drift units.531

The geometric mean of the history of population sizes from the PSMC re-532

sults in Prüfer et al. [4] give roughly that Ne ≈ 21, 818 since the African533

population size history started differing from that of Neanderthals, assum-534

ing a mutation rate of 1.25 ∗ 10−8 per bp per generation. If we assume a535

generation time of 29 years, and use our drift time in the equation relat-536

ing divergence time in generations to drift time (t/(2Ne) ≈ τ), this gives537

an approximate human-Neanderthal population divergence time of 531,486538

years. This number roughly agrees with the most recent estimates obtained539

via other methods [4]. Additionally, the Neanderthal-specific drift time is540

approximately 6.5 times as large as the modern human drift time, which is541

expected as Neanderthals had much smaller population sizes than modern542

humans [35, 4]. The admixture rate from archaic to modern humans that543

we estimate is 1.72%, which is consistent with the rate estimate obtained544

via methods that do not jointly model contamination (1.5 − 2.1%) [4]. In545
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the case of the Altai Neanderthal, we observe that the sample was probably546

contaminated by one or more individuals with European ancestry.547

When testing modern human and Neanderthal ancient genomes of lower548

coverage than the Altai Neanderthal, we obtain reasonable parameter esti-549

mates for samples of medium to high-coverage. However, we run into prob-550

lems in estimation when the samples are of low coverage. For these reasons,551

and from our simulation results, we recommend that our method should be552

used on nuclear genomes with > 3X coverage. The method may converge un-553

der certain conditions at coverages as low as 0.5X (for example, in the case of554

the Mezmaiskaya genome under the two-population model when using AFR555

as the anchor and contaminant panel), but, in such cases, we caution the556

user to check convergence is achieved before drawing any conclusions from557

the estimates. For SNP capture data, we obtain reliable estimates for sam-558

ples with a minimum coverage of 500,000 sites that are polymorphic in the559

anchor panel.560

The demographic models used in our approach are simple, involving no561

more than three populations and a single admixture event. This is partly562

due to limitations of known theory about the diffusion-based likelihood of an563

arbitrarily complex demography for the 2-D site-frequency spectrum - in the564

case of the two-population method - and to the inability of ∂a∂i [20] to handle565

more than 3 populations at a time. In recent years, several studies have made566

advances in the development of methods to compute the likelihood of an SFS567

for larger numbers of populations using coalescent theory [36, 37, 38], with568

multiple population size changes and admixture events. We hope that some569

of these techniques could be incorporated in future versions of our inference570

framework.571
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9. Figures724

Figure 1. A) Schematic of two-population modeling framework: at each site, derived
and ancestral fragments (a, d) are binomially sampled from the true genotype of the
archaic individual, with some amount of contamination and error. In turn, the true
genotype depends on a demographic model, which can include the contaminant
population. B) Schematic of three-population modeling framework, incorporating
admixture between the archaic population and one of two anchor populations.
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Figure 2. Comparison of analytic solutions to P [i|y, τC , τA] and simulations under
neutrality from msms, for different choices of τA and τC .
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Figure 3. Estimation of parameters for a low-coverage ancient DNA genome (3X) with
low sequencing error (0.1%), no admixture and a large anchor population panel (100
haploid genomes). Error bars represent 95% posterior intervals.
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Figure 4. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a large anchor population panel
(100 haploid genomes). Error bars represent 95% posterior intervals.
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Figure 5. We tested the performance of the two-population method under a variety of
drift and contamination scenarios for a sample of very low (0.5X) or very high (30X)
coverage. We found that we needed more sites (≈ 1.6 million) to obtain accurate
estimates from the low coverage sample. The MCMC chain was also run for a longer
time (1 million steps). The top row shows the absolute difference between the estimated
and the simulated contamination rate, while the bottom row shows the absolute
difference corresponding to the anchor drift. In all simulations, the anchor drift was set
to be equal to the ancient sample drift.
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Figure 6. Estimation of parameters for a high-coverage ancient DNA genome (30X)
simulated under a realistic scenario in which fragments from the ancient and
contaminant genome were generated and then mapped to a reference genome. We
allowed for multiple substitutions at the same site after the split from chimp, as well as
sequencing errors and post-mortem deamination errors at the ends of the fragments. The
five panels show results from inferring parameters under five different error rate models.
Top-left: single-error model. Top-right: two-error model [5]. Middle-left: model with
separate errors for transitions (ts) and tranversions (tv). Middle-right: single-error
model with an ancestral state misidentification parameter. Bottom-left: Model in which
errors were inferred individually at each site, using base and mapping qualities obtained
from the simulated BAM file. Error bars represent 95% posterior intervals.
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Figure 7. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time was recent (0.005 drift units ago). The prior used for the admixture time
was uniform over [0, 0.01]. Error bars represent 95% posterior intervals.
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Supporting Information725

Figure S1. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with high sequencing error (10%), no admixture and a large anchor population panel
(100 haploid genomes). Error bars represent 95% posterior intervals.
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Table S3. Posterior modes of parameter estimates under the two-population inference
framework for the Mezmaiskaya Neanderthal autosomal genome. We used different
1000G populations as candidate contaminants. AFR were the anchor population in all
cases, so the modern human drift is with respect to Africans. Values in parentheses are
95% posterior quantiles. Except when using AFR as the contaminant, the Neanderthal
drift parameter gets stuck at the upper boundary (5 drift units) of parameter space.

Conta-
minant
panel

An-
chor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift

Log-posterior
mode

EUR AFR 0.295%
(0.284%− 0.306%)

5.568%
(5.472%− 5.673%)

0.425
(0.423− 0.429)

4.984
(4.95 − 5)

-883632.4637

AMR AFR 0.316%
(0.3% − 0.322%)

5.333%
(5.261% − 5.48%)

0.426
(0.422− 0.428)

4.994
(4.952− 4.999)

-884312.5366

SAS AFR 0.328%
(0.317%− 0.341%)

5.203%
(5.097%− 5.313%)

0.426
(0.422− 0.428)

4.996
(4.946− 4.999)

-884684.3521

EAS AFR 0.393%
(0.379%− 0.402%)

4.53%
(4.48% − 4.684%)

0.423
(0.421− 0.426)

4.99
(4.887− 4.999)

-885493.7081

AFR AFR 0.515%
(0.5% − 0.525%)

0.007%
(0.002%− 0.126%)

0.406
(0.403− 0.409)

1.756
(1.701 − 1774)

-889165.6704

Table S4. Posterior modes of parameter estimates under the three-population inference
framework for the Mezmaiskaya Neanderthal autosomal genome. We used different
1000G populations as candidate contaminants. In all cases, Africans were the unadmixed
anchor population and Europeans were the admixed anchor population. The ancestral
human drift refers to the drift in the modern human branch before the split of
Europeans and Africans. The post-split European-specific and African-specific drifts
were estimated separately without the archaic genome (τAfr = 0.009, τEur = 0.255). In
all cases, the Neanderthal drift parameter gets stuck at the upper boundary (5 drift
units) of parameter space.

Conta-
minant
panel

Unad-
mixed
anchor
panel

Ad-
mixed
anchor
panel

Error
rate

Contamination
rate

Ancestral
human
drift

Neanderthal
drift

Admixture
rate

Log-posterior
mode

AFR AFR EUR 0.517%
(0.502%− 0.526%)

4.663%
(4.564%− 4.787%)

0.428
(0.426− 0.432)

4.999
(4.989 − 5)

1.609%
(1.585% − 1.63%)

-1025944.516

EAS AFR EUR 0.71%
(0.697%− 0.721%)

2.471%
(2.403%− 2.564%)

0.415
(0.412− 0.418)

4.997
(4.985 − 5)

1.486%
(1.462%− 1.508%)

-1028456.347

AMR AFR EUR 0.727%
(0.71% − 0.733%)

2.288%
(2.208%− 2.361%)

0.414
(0.412− 0.417)

4.999
(4.985 − 5)

1.482%
(1.459%− 1.501%)

-1028866.312

SAS AFR EUR 0.724%
(0.709%− 0.732%)

2.315%
(2.219%− 2.375%)

0.414
(0.412− 0.418)

4.998
(4.984 − 5)

1.479%
(1.458% − 1.5%)

-1028823.568

EUR AFR EUR 0.761%
(0.745% − 0.77%)

1.875%
(1.784%− 1.928%)

0.413
(0.41 − 0.415)

4.998
(4.984 − 2.5)

1.463%
(1.457%− 1.495%)

-1029429.156

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, for different levels of coverage.
In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S3. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, for different levels of coverage. In all
simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S4. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, for different levels of coverage.
In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S5. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S6. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S7. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). Here, we used a large number of sites and run the MCMC chain for 1 million
steps. In all simulations, the anchor drift was set to be equal to the ancient sample drift.
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Figure S8. Absolute difference between estimated and simulated contamination rates
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift
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Figure S9. Absolute difference between estimated and simulated anchor drifts for a
variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X or
1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift
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Figure S10. Absolute difference between estimated and simulated ancient sample drifts
for a variety of anchor drift and contamination scenarios, when coverage is low (0.5X, 1X
or 1.5X). We used a large number of sites and run 10 MCMC chains for 1 million steps
each. To ensure convergence, we then selected the chain with the highest posterior
probability, and here show estimates from that chain. In all simulations, the anchor drift
was set to be equal to the ancient sample drift.
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Figure S11. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), a large anchor population panel (100 haploid genomes)
and admixture in the anchor population from the archaic population (5%), using the
two-population inference framework, which does not model admixture. Error bars
represent 95% posterior intervals.
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Figure S12. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a small anchor population panel (20
haploid genomes). Error bars represent 95% posterior intervals.
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Figure S13. Estimation of parameters for a high-coverage ancient DNA genome (30X),
when the contaminant fragments are exclusively drawn from a single diploid individual
from the contaminant panel. Error bars represent 95% posterior intervals.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S14. Estimation of parameters for an ancient DNA genome of very low coverage
(0.5X) with low sequencing error (0.1%) and a large anchor population panel (100
haploid genomes). Note that unlike the rest of the simulations, the number of SNPs used
in this case was approximately 1.6 million instead of 80,000, and the MCMC chain was
run for 1 million steps instead of 100,000. Using a lower number of SNPs or running the
chain for a shorter time resulted in inaccurate inferences. Error bars represent 95%
posterior intervals.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S15. Three demographic models used to test the method when the contaminant
is misspecified. When testing the two-population method, we set panel A as the true
contaminant and panel D as the anchor. When testing the three-population method, we
set panel A as the true contaminant, panel D as the unadmixed anchor and panel B as
the admixed anchor. The numbers on the branches represent the drift parameters. The
parameter α represents the admixture rate from the ancient population into the ancestor
of A and B.
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Figure S16. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the two-population model corresponds to the
true contaminant (panel A). The y-axis shows the difference between the log-posterior
for contaminant panel A and the log-posterior for different candidate contaminant panels
(A, B, C, D). We added a 1 to the difference to be able to plot the difference on a
logarithmic scale. The three panels contain results for three admixture scenarios (from
left to right: admixture rate of 0%, 5% and 50%) and each panel shows the difference
under different contamination rates and demographic models (see Figure S15).
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Figure S17. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 0%. The anchor panel used was panel
D (see Figure S15).
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Figure S18. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 5%. The anchor panel used was panel
D (see Figure S15).

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S19. Parameters estimates under the two-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 50%. The anchor panel used was
panel D (see Figure S15).
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Figure S20. Estimation of parameters for the Altai Neanderthal genome across
different GC levels using the two-population model, while keeping (black) or removing
(red) CpG sites from the input dataset. Error bars represent 95% posterior intervals.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2016. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S21. We tested one of the Yoruba genomes from Prüfer et al. [4] and obtain an
estimate of 0% contamination, regardless of whether we use Europeans or Africans as the
candidate contaminant. The anchor drift time is close to 0 when using Africans as the
anchor population, as the sample belongs to that same population, while it is non-zero
(= 0.22) when using Europeans. Error bars represent 95% posterior intervals.
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Figure S22. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 0%. The prior used
for the admixture time was uniform over [0.06, 0.1]. Error bars represent 95% posterior
intervals.
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Figure S23. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 5% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06, 0.1]. Error bars represent 95% posterior intervals.
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Figure S24. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06, 0.1]. Error bars represent 95% posterior intervals.
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Figure S25. When testing different putative contaminants, the highest mode of the
posterior likelihoods from the MCMC under the three-population model corresponds to
the true contaminant (panel A). The y-axis shows the difference between the
log-posterior for contaminant panel A and the log-posterior for different candidate
contaminant panels (A, B, C, D). We added a 1 to the difference to be able to plot the
difference on a logarithmic scale. The three panels contain results for three admixture
scenarios (from left to right: admixture rate of 0%, 5% and 50%) and each panel shows
the difference under different contamination rates and demographic models (see Figure
S15).
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Figure S26. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 0%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure S15).
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Figure S27. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 5%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure S15).
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Figure S28. Parameters estimates under the three-population model using different
putative contaminants, when the true contaminant is panel A. Each row of panels
represents a different set of drift parameters, keeping the contamination rate fixed at
25% and the error rate at 0.1%. In this case, the admixture rate from the ancient
population to the ancestor of A and B was kept at 50%. The unadmixed anchor panel
used was panel D and the admixed anchor panel was panel B (see Figure S15).
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Appendix A. Genotype probabilities conditional on a demography726

Below we derive formulas 7, 8 and 9. Recall that we are interested in727

calculating the conditional probabilities P [i|Ω,O] = P[i|y, τC, τA] for all728

three possibilities for the genotype in the ancient individual: i = 0, 1 or 2.729

These can be obtained from the definition of conditional probability. Let730

fDDy be the joint probability that a site has frequency y (0 < y < 1) in the731

contaminant panel and is homozygous for the derived allele in the ancient732

individual. Let fDAy be the joint probability that a site has frequency y in the733

contaminant panel and is heterozygous in the ancient individual. Finally, let734

fAAy be the joint probability that a site has frequency y in the anchor panel735

and is homozygous for the ancient allele in the ancient individual. Then:736

P [ i = 0 | y, τC , τA ] =
fAAy
fy

=
fAAy

fAAy + fDAy + fDDy

(A.1)

P [ i = 1 | y, τC , τA ] =
fDAy

fy
=

fDAy

fAAy + fDAy + fDDy

(A.2)

P [ i = 2 | y, τC , τA ] =
fDDy

fy
=

fDDy

fAAy + fDAy + fDDy

(A.3)

In the above expressions, the functions f depend on τC and τA, but we737

omit this conditioning for ease of notation. As can be seen, all we need738

to find is the joint probabilities fAAy , fDAy and fDDy . Here is where diffusion739

theory comes into play. Let φ(y, τ |x, 0) be the Kimura solution to the neutral740

forward diffusion equation in the absence of mutation [42], given a frequency741

x at time 0 and an elapsed drift time τ :742

φ(y, τ |x, 0) = 4x(1− x)
∞∑
h=1

2j + 1

j(j + 1)
C

3/2
h−1(1− 2x)C

3/2
h−1(1− 2y)e−j(j+1)τ/2

(A.4)
Here, x is the unknown population frequency of the derived allele in the743

ancestral population and C(3/2)
h−1 (•) is the Gegenbauer polynomial of order h-1744

[43].745

Assuming the ancestral population follows an equilibrium frequency dis-746

tribution g(x) = θ/x, we can write fDDy as follows:747
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fDDy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

z2φ(z, τA|x, 0)dz

)
dx (A.5)

where z is the unknown population frequency of a derived allele in the748

population to which the ancient individual belongs.749

The expression in parentheses is the second moment of the transition750

density and its solution is known [44]:751 ∫ 1

0

z2φ(z, τA|x, 0)dz = x− x(1− x)e−τA (A.6)

This results in:752

fDDy = θ

∫ 1

0

φ(y, τC |x, 0)[1− (1− x)e−τA ]dx (A.7)

fDDy = θ

[∫ 1

0

φ(y, τC |x, 0)dx− e−τA
∫ 1

0

φ(y, τC |x, 0)dx+ e−τA
∫ 1

0

x φ(y, τC |x, 0)dx

]
(A.8)

The integral of the first two terms of the sum was solved in Chen et al.753

[18]:754 ∫ 1

0

φ(y, τC |x, 0)dx = e−τC (A.9)

The third term of the sum can be solved by noting that, though the755

integrand is an infinite sum (i.e. formula A.4 multiplied by x), only the756

integrals of the first two terms of that infinite sum are not equal to 0. This757

can be seen by integrating the parts of the terms of that infinite sum that758

depend on x:759

∫ 1

0

x2(1− x)C
(3/2)
h−1 (1− 2x)dx =


1/12 h = 1

−1/20 h = 2

0 h ≥ 3

Therefore, after integrating the first two terms of the infinite sum, we760

obtain:761 ∫ 1

0

xφ(y, τC |x, 0)dx =
1

2
e−τC +

(
y − 1

2

)
e−3τC (A.10)
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So we finally arrive at:762

fDDy = θ

[
e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.11)

We can obtain fDAy in a similar fashion:763

fDAy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

2z(1− z)φ(z, τA|x, 0)dz

)
dx (A.12)

Solving the term in the parentheses:764

∫ 1

0

2z(1−z)φ(z, τA|x, 0)dz = 2

(∫ 1

0

zφ(z, τA|x, 0)dz −
∫ 1

0

z2φ(z, τA|x, 0)dz

)
(A.13)

The first term of the difference is the first moment of the transition den-765

sity, which is equal to x [44], while the second term is the second moment766

(formula A.6). Therefore:767

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)(1− x)dx

]
(A.14)

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)dx−
∫ 1

0

x φ(y, τC |x, 0) dx

]
(A.15)

And after using formulas A.9 and A.10, we obtain:768

fDAy = θ
[
e−τA−τC + (1− 2y) e−τA−3τC

]
(A.16)

To obtain fAAy , we know that, assuming the anchor population to be at769

equilibrium:770

fy = g(y) (A.17)

And therefore:771

fAAy + fDAy + fDDy =
θ

y
(A.18)

So we finally obtain:772
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fAAy = θ

[
1

y
− e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.19)

We now have all the elements necessary to obtain the conditional probabil-773

ities from formulas A.1, A.2 and A.3, which immediately lead us to formulas774

7, 8 and 9.775

Appendix B. Probabilistic inference using BAM files776

Here, we briefly explain the way we infer fragment-specific error parame-777

ters in the optional BAM mode of DICE. Let R be the set of all fragments in778

the BAM file, and Rj ∈ R be a particular aligned fragment of length l. For779

fragment Rj, let {bj,1, ..., bj,l} be the individuals nucleotides in the fragment.780

At each position of the fragment, there is a specific probability κj,i that the781

base is erroneous. This probability is provided by the basecaller. Below, we782

will compute the likelihood of observing a base bj,i ∈ Rj under a bi-allelic783

model, given an error rate κj,i. Below, we focus on an individual fragment784

Rj and an individual position i on that fragment, so for simplicity, we drop785

the subscripts i and j and we let bj,i = b and κj,i = κ.786

Let v be the base that was originally sampled at a given site, before787

deamination or mismapping. This base could be ancestral or derived. Let788

Pdam[v → b] be the probability of substitution from v to b due to post-789

mortem chemical damage. The probabilities of different types of damage790

(e.g. C→T or G→A) occurring at different positions of a fragment can be791

computed following Ginolhac et al. [45] and Jónsson et al. [46], producing792

a matrix that can be provided to DICE as input. We offer the possibility793

of specifying different post-mortem damage matrices for the endogenous and794

the contaminant fragments.795

Let E denote the event that a sequencing error has occurred, let D the796

event that chemical damage has occurred, let M be the event that Rj was797

correctly mapped and let ¬ denote the complement of an event (i.e. event798

has not occurred). We define the probability of observing sequenced base799

b given that no sequencing error has occurred at a position on a correctly800

mapped fragment that was originally v, by summing over two possibilities,801

either chemical damage occurred or it did not:802

P [b|v,M,¬E] = 1(v = b) · P [¬D] + (1− 1(v = b)) · P [D] (B.1)
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Here, 1(v = b) is an indicator function that is equal to 1 if v is equal to b,803

and 0 otherwise. The probabilities P [D] and P [¬D] are respectively equal804

to Pdam[v → b] and 1− Pdam[v → b].805

Subsequently, we compute P [b|v,M ], the probability of observing b given806

v under the assumption that Rj was mapped at the correct genomic location.807

We have:808

P [b|v,M ] = (1− κ) · P [b|v,M,¬E] + κ · 1

2
(B.2)

This is because if a sequencing error has occurred, the probability of observing809

b is independent of v, and therefore P [b|v,M,E] = 1
2
. Finally, let P [M ] be810

the probability that the fragment Rj is mapped at the correct location as811

given by the mapping quality. The probability of seeing b given that v was812

the base that was sampled before deamination is then:813

P [b|v] = P [M ] · P [b|v,M ] + P [¬M ] · 1

2
(B.3)

The probability of observing b given that the fragment was mismapped is814

independent of v, hence P [b|v,¬M ] = 1
2
. If either the base quality or mapping815

quality indicate a probability of error of 100%, P [b|v] will be equal to 1
2
. These816

probabilities are used instead of the genome-wide error term ε in equations817

4, 5 and 6. For instance, equation 4 for a specific base b in fragment Rj818

becomes:819

q2 = rC(w · P [b = der|v = der, contaminant]+

(1− w) · P [b = der|v = anc, contaminant])+

(1− rC) · P [b = der|v = der, ancient]

(B.4)

Here, der is the derived base and anc is the ancestral base. In case different820

post-mortem damage matrices are provided by the user for the ancient and821

the contaminant fragments, the events contaminant and ancient serve to822

denote which damage probabilities (i.e. Pdam) should be used in each case.823
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