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ABSTRACT 
Summary: Recent technological advancements enable measuring 
the binding of a transcription factor to thousands of DNA sequences, 
in order to infer its binding preferences. High-throughput-SELEX 
measures protein-DNA binding by deep sequencing over several 
cycles of enrichment. We devised a new algorithm called HTS-IBIS 
for the inference task. HTS-IBIS corrects for technological biases, 
selects the cycle and k, and builds a motif starting from a consensus 
k-mer in that cycle. In large scale tests, HTS-IBIS outperformed the 
extant automatic algorithm for the motif finding task on both in vitro 
and in vivo binding prediction. 
Availability: HTS-IBIS is available on acgt.cs.tau.ac.il/HTS-IBIS. 
Contact: rshamir@tau.ac.il 
 

1 INTRODUCTION  
Recent technological advancements provide high-resolution meas-
urements on the binding preference of a specific transcription fac-
tor (TF) to thousands of double-stranded DNA oligos. Protein 
binding microarrays (PBMs) measure in vitro binding to thousands 
of microarray probes (Berger et al. 2006). ChIP-seq technology 
sequences in vivo bound genomic sequences (Barski and Zhao 
2009). The most recent of these technologies, high-throughput-
SELEX (HTS), utilizes deep sequencing to measure TF binding 
preference through several cycles of enrichment (Zhao et al. 2009; 
Jolma et al. 2010; Slattery et al. 2011). Jolma et al. (2010) describe 
an algorithm, which we call Toivonen’s algorithm, for this task. 
That algorithm was later used in (Jolma et al. 2013) to infer bind-
ing site motifs in 547 experiments. However, for a fraction of the 
reported motifs the starting solution (seed) was manually picked 
(E. Ukkonen, private communication).  
Here we describe a new fully automatic algorithm called HTS-
IBIS (HTS Inference of BInding Sites) for inferring a binding 
model from HTS data, while addressing systematic biases, such as 
over-concentration and sequence biases. We compare HTS-IBIS to 
Toivonen’s algorithm and to the models published in (Jolma et al. 
2013). 

2 APPROACH 
First, we describe our strategy to overcome systematic biases in 
HTS data. The k-mer distribution in oligos of the initial cycle is 
near-random. As cycles advance it becomes more skewed towards 
the binding site, with a risk of eventual over-concentration on one 
or few k-mers. To select the best cycle we compute KL-divergence 
score of the 100·4k-6 most frequent k-mers in each cycle for k=6-8. 
The first cycle with a score > 0.1 (or the last, if all cycles have a 
score ≤ 0.1) is chosen. Additionally, in (Orenstein and Shamir 
2014) we identified systematic biases in k-mer frequencies in HTS 
data. We address such biases here using the observation that they 
are strand-specific. To score k-mers, we use counts and not ratios 
between counts in consecutive cycles, since we observed that the 
former are more correlated to PBM binding intensities. For every 
k-mer 𝑆 with count 𝑐(𝑆) and its reverse complement 𝑆, we replace 
𝑐(𝑆) by min  (𝑐 𝑆 , 𝑐 𝑆 )  if either 𝑐 𝑆 ≥ 4𝑐(𝑆) or 𝑆 has k-2 iden-
tical nucleotides or more. 
HTS-IBIS works in stages: (i) The cycle to work on is found as 
described above. (ii) k is chosen in the selected cycle as in 
(Slattery et al. 2011). (iii) The k-mer counts are corrected as above 
and the most frequent k-mer (consensus or seed) is found. (iv) 
PWM generation is akin to our RAP algorithm for PBM data 
(Orenstein et al. 2013): a set of 20·4k-4 top scoring k-mers is 
aligned to the seed and nucleotide probabilities in each column are 
calculated based on their relative scores in the aligned position. (v) 
The PWM is extended to the sides, and then uninformative side 
positions are trimmed. An efficient implementation of the software 
runs in ~5 seconds. See Supplementary Information for details. 

3 RESULTS 
We first assessed our seed finding process. We calculated the suc-
cess rate in finding a seed that fits (a) the top-ranking 8-mer in a 
PBM experiment on the same TF, and (b) one of the seeds pub-
lished by Jolma et al. (2013) for the same TF. In both cases, our 
seed finding process (step (i)-(iii) above) achieved increased suc-
cess rate compared to selecting the most frequent 8-mer (Figure 1A 
and Supplementary Table 1). 
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Second, we compared the PWMs produced by HTS-IBIS to two 
others: (1) Toivonen’s algorithm (Jolma et al. 2010), which gener-
ates a model given a seed. Since we could not reproduce the seed 
finding process in (Jolma et al. 2010), we ran that algorithm 
providing the consensus obtained in step (iii) of HTS-IBIS as a 
seed. (2) The models published in (Jolma et al. 2013). To achieve 
these results, the authors used Toivonen’s algorithm, but occasion-
ally with manual intervention to determine the seed. We used these 
models to predict PBM binding (Robasky and Bulyk 2011) and 
ChIP-seq binding (Landt et al. 2012). The algorithm of (Slattery et 
al. 2011) was excluded from the comparison since it uses an 'all k-
mers' model, which has far more parameters than a PWM model. 
The results are summarized in Figure 1B and Supplementary Table 
2. For predicting PBM binding, HTS-IBIS is on par with the pub-
lished models, while significantly better than Toivonen’s algo-
rithm. As for in vivo binding prediction, the published models per-
form significantly better than HTS-IBIS, which outperforms Toi-
vonen’s algorithm. 

4 DISCUSSION 
HTS technology produces measurements of in vitro binding on an 
unprecedented scale, but suffers from systematic biases. Over-
concentration may occur at high cycles, where only high-affinity k-
mers may be captured. Biases in oligo generation, sequencing and 
PCR may explain the observed abundance of A-rich and C-rich k-
mers. We developed ways to address these biases. We use the KL-
divergence score to choose a cycle that is not too specific, and we 
correct inflated k-mer counts by comparing them to their reverse 
complements and by down-scaling degenerate 'sticky' k-mers. 
We developed the HTS-IBIS algorithm to infer a binding model 
from the data, and tested it extensively on both in vivo and in vitro 
binding prediction. The models published in (Jolma et al. 2013) 
performed best in both tasks. However, since some of these models 
used external information on the seed, the comparison is improper: 
one cannot make a meaningful comparison between algorithms 
that work automatically and algorithms that receive additional 
external information. Toivonen’s algorithm, run on the same set of 
seeds, performed worse than HTS-IBIS in both tasks. We believe 
this is due to the 'strictness' of models produced by Toivonen’s 
algorithm, which uses only k-mers at Hamming distance at most 1 
from the consensus. 

The rich available HTS data provide a great opportunity to advance 
our understanding of TF–DNA binding. Improved models combin-
ing additional considerations, e.g. biomechanical and structural 
properties, may be developed in the future. 
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Fig. 1. Success rate in seed finding and quality of binding prediction. A) Accuracy in seed finding, with and without bias correction and cycle selec-
tion.  Success is defined as finding a seed similar (i.e. different in ≤2 positions, and with ≤2 positions offset) to the top-ranking 8-mer in a PBM exper-
iment on the same protein (tested on 237 paired PBM-HTS experiments) or to the seeds published by Jolma et al. (tested on 547 HTS experiments). B) 
Binding prediction quality of HT-IBIS, Toivonen's algorithm, and models published in Jolma et al. (2013), which used some manual inputs. Perfor-
mance was evaluated by AUC for predicting in vitro and in vivo binding (tested on 344 paired PBM-HTS and 59 paired ChIP-seq-HTS experiments). 
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