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Abstract: Anthropometric traits are of global clinical relevance as risk factors for a wide 8 

range of disease, including obesity1,2. Yet despite many hundreds of genetic variants having 9 

been associated with anthropometric measurements, these variants still explain little 10 

variation of the traits3,4. Joint-modeling of multiple anthropometric traits, has the potential 11 

to boost discovery power, but has not been applied to global-scale meta-analyses of 12 

genome-wide association studies (meta-GWAS). Here, we develop a simple method to 13 

perform multi-trait meta-GWAS using summary statistics reported in standard single-trait 14 

meta-GWAS and replicate the findings in an independent cohort. Using the summary 15 

statistics reported by the GIANT consortium meta-GWAS of 270,000 individuals5, we 16 

discovered 359 novel loci significantly associated with six anthropometric traits. The 17 

“overeating gene” GRM5 (P = 4.38×10-54) was the strongest novel locus6-8, and was 18 

independently replicated in the Generation Scotland cohort (n = 9,603, P = 4.42×10-3). The 19 

novel variants had an enriched rediscovery rate in the replication cohort. Our results 20 

provide new important insights into the biological mechanisms underlying anthropometric 21 

traits and emphasize the value of combining multiple correlated phenotypes in genomic 22 

studies. Our method has general applicability and can be applied as a secondary analysis of 23 

any standard GWAS or meta-GWAS with multiple traits. 24 

 25 

Joint-modeling of multiple traits of shared biological relevance has yet to be fully exploited in 26 

GWAS, because efficient and appropriate multivariate statistical tools are lacking. Recent efforts 27 

have indicated the potential power of jointly analyzing multiple phenotypes9-11. It has been noted 28 

that multi-trait statistical testing can be conducted based on standard single-trait meta-GWA 29 

summary statistics11. However, a general method is still needed to provide meaningful genetic 30 
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 2 

effects estimates and to perform corresponding replication analysis. Here, we show that a classic 31 

multivariate analysis of variance (MANOVA) test statistic can be calculated for every genomic 32 

marker using only single-trait summary statistics, without knowing the original individual-level 33 

data (see Methods). We also demonstrate how the multi-trait genetic effect can be expressed as 34 

an additive genetic effect on a newly defined phenotype, so that the genetic effect can be 35 

interpreted and replicated in different cohorts. 36 

 37 

We first downloaded the meta-GWAS summary statistics for six anthropometric traits: body 38 

mass index (BMI), height, weight, hip circumference, waist circumference, and waist-hip ratio, 39 

reported by the GIANT consortium5. In total, the summary statistics of 2,476,216 single 40 

nucleotide polymorphisms (SNPs) in common for all six single-trait meta-GWAS were passed 41 

onto subsequent analyses. Next, we estimated the correlation matrix of the six traits in the 42 

original meta-GWAS using the single-trait t-statistics of the genome-wide variants and computed 43 

the MANOVA test statistic of the six traits against each SNP (see Methods). The resulted p-44 

values for all the variants were obtained with subsequent genomic control12 (𝜆 = 1.001, 45 

Supplementary Fig. 1). 46 

 47 

The association p-values from our multi-trait meta-GWAS were compared to those from each 48 

original single-trait meta-GWAS (Fig. 1). We considered the significant SNPs located on the 49 

same chromosome and less than 500Kb apart as one locus. Among the 558 multi-trait genome-50 

wide significant loci (P < 5×10-8), 99 loci overlap with at least one of the single-trait analysis 51 

results (see also Supplementary Fig. 5-6 and Supplementary Table 9). For each SNP that had a p-52 

value less than 5×10-8 in any of the six single-trait meta-GWAS and in the largest meta-GWAS 53 

to-date3,4,13, a window ± 500kb was defined. To ensure that any additional multi-trait association 54 

was in reality an extension of the single-trait locus, we excluded 100 loci located inside these 55 

windows. This resulted in 359 novel loci (Supplementary Table 1). 56 

 57 

We ranked the newly detected SNPs according to their MANOVA p-values: the most significant 58 

four SNPs (rs669724, rs567687, rs575392 and rs12286973) were located in the intron region of 59 

the gene GRM5 on chromosome 11. The top variant rs669724 had a p-value of 4.38×10-54 in a 60 

sample size of 38,800, with a minor allele frequency (MAF) 0.025 in HapMap II CEU (build 22) 61 
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(Table 1). We constructed a six-trait combined phenotype score that defined a new phenotype, S, 62 

based on the multiple regression of the allelic dosage of rs669724 on the six measured traits. 63 

Although the coefficients in such a multiple regression were unknown, they could be estimated 64 

from the single-trait meta-GWAS summary statistics (see Methods). We estimated the effect of 65 

rs669724 on S in the GIANT population as 0.0068 (s.e. = 0.0004) based on the MANOVA test 66 

statistic, which indicates that rs669724 explains 0.68% variance-covariance of the six traits (see 67 

Methods). For comparison, we estimated the phenotype score of the FTO locus. The top variant 68 

rs11642841 (MAF = 0.45, P = 5.88×10-56) at the FTO locus explains only 0.37% of the variance-69 

covariance of the six traits. This indicated that the information measured by the six 70 

anthropometric traits captured by the GRM5 rare variant rs669724 is nearly twice as much as that 71 

by the FTO variant rs11642841. 72 

 73 

In the recently available Generation Scotland cohort14, which was not a part of the GIANT 74 

analysis, we computed the same phenotype score S for 9,603 individuals, using the above 75 

coefficients estimated in the GIANT population. The allelic dosages of rs669724 were extracted, 76 

with a MAF of 0.003 and imputation R-square 0.77. With such a low MAF, the power of 77 

replication was limited; nevertheless, the genetic effect of rs669724 on S was replicated with a p-78 

value of 4.42×10-3 (Table 1). Given the effect size and standard error in the GIANT population, 79 

and MAF in the Generation Scotland cohort, we estimated the 95% confidence interval of the 80 

replication p-value in the Generation Scotland cohort should be (0.0029, 0.0211), which covers 81 

our replication p-value. 82 

 83 

Although the molecular mechanism of the multiple GRM5 intron variants is unclear, our finding 84 

is consistent with previous reports. A large CNV (duplication) with length about 5.1Mb at the 85 

GRM5 locus was found amongst those enriched in obese subjects7. The expression of GRM5 in 86 

obese mice was significantly higher than lean mice8. The antagonist of GRM5, MTEP 87 

(C11H8N2S), was shown to reduce overeating in baboons6.  88 

 89 

The strength of the GRM5 multi-trait association in the GIANT meta-analysis favored 90 

replication, but we lacked sufficient power to specifically replicate other individual findings after 91 

correction for multiple testing. Nevertheless, we conducted the same replication procedure 92 
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(coefficients to construct phenotype scores given in Supplementary Table 1) and obtained the 93 

replication p-values for all the newly associated SNPs. In order to examine whether our method 94 

mapped true signals, we computed the rediscovery rates (RDR)15 of these loci in the Generation 95 

Scotland cohort (Figure 2). The RDR is defined as the proportion of SNPs replicable in the 96 

replication cohort at 5% significance threshold, given a particular p-value threshold in the 97 

discovery meta-GWAS that determines which SNPs are passed onto replication analysis. 98 

Assuming the size of each SNP effect is the same in the discovery and replication populations, 99 

we also computed the expected RDR in the Generation Scotland cohort given its sample size and 100 

allele frequencies. The results showed that our RDR across all the novel SNPs had an 101 

enrichment, not only compared to the null, but also better than the expectation when a stringent 102 

discovery threshold is applied. 103 

 104 

Besides the GRM5 locus, we also investigated the published biological evidence among the 25 105 

novel meta-GWAS loci that had a p-value less than 2×10-16 (observed RDR larger than or equal 106 

to expected). More than half of these loci harbor candidate genes with reported relevance to 107 

obesity or obesity-associated disease (Supplementary Table 1-2). For instance, very recent 108 

evidence shows that IRF5 (rs15498, P = 1.90×10-20) controls mass of adipose tissue depots and 109 

insulin sensitivity in obesity16. TGFBR2 (rs6794685, P = 3.05×10-19) is a receptor of TGF-beta 110 

which is closely associated with BMI, obesity and type 2 diabetes17. HDAC9 (rs11770723, P = 111 

3.38×10-19) leads to obesity-induced body fat dysfunction and metabolic disease during high-fat 112 

feeding in mice18, and recently, similar behaviors have been reported for AHR at the same 113 

locus19.  114 

 115 

According to the Genetic Association of Complex Diseases and Disorders (GAD) database, 252 116 

genes at the novel loci were previously found to be associated with different types of disease, 117 

e.g. metabolic, cardiovascular, psychiatric diseases and cancer (Supplementary Table 5.4). 118 

When we conducted high-throughput functional annotation analysis using DEPICT20 for the 119 

novel loci, but no clear enrichment of functional gene sets were found (Supplementary Table 120 

5.2). This is consistent with results from loci identified in the single-trait meta-GWAS, for which 121 

no significant gene set enrichment was found at a false discovery rate (FDR) threshold of 5%. 122 

However, when combining the multi-trait and single-trait loci together, 7 gene sets showed FDR 123 
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< 5%, including MP:0009395 that regulates nucleated erythrocyte cell number, MP:0004810 that 124 

regulates hematopoietic stem cell number, and three GO items (GO:0040008, GO:0001558, 125 

GO:0045926) which all regulate growth (Supplementary Table 8.5).  126 

 127 

Our analysis substantially improved the power of mapping novel variants by combining 128 

correlated traits, which is analog to combining repeated measurements of a single trait. With 129 

such power, we observed novel discoveries across different MAF values, but most of the novel 130 

variants had low MAF (Supplementary Fig. 2). Thus, we expect that more rare variants than 131 

common ones can be detected if the sample size meta-GWAS increases.  132 

 133 

We conclude that constructing a combined phenotype score from directly measured traits adds 134 

statistical power to detect additional loci and explain missing heritability. The modified 135 

MANOVA statistic is a highly practical method that can be readily applied to any number of 136 

correlated phenotypes in large-scale association studies reliant only on summary data. Our 137 

approach holds promise for extracting further value from the ever-increasing number of large-138 

scale meta-analyses emerging from established consortia with quantitative trait measures, 139 

including multi-omic data. 140 

 141 

Our analysis translates each SNP-multi-trait association into a single additive effect parameter, 142 

so that replication of the genetic effect is meaningful. This is the major advantage of our method 143 

compared to previous tools10,11. The demonstration of equivalence between MANOVA test 144 

statistic and this additive effect is also statistically novel.  145 

 146 

With our results, we emphasize the value of combining multiple related phenotypes in large-147 

scale genomic studies. We expect immediate application of our method to the massive available 148 

meta-GWAS summary statistics from different global-scale consortia, which would substantially 149 

boost the discovery power and reveal more interesting biological knowledge for multiple 150 

complex traits. 151 

 152 

  153 
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LEGENDS 154 

Figure 1: Comparison of -log10P-values from the multi-trait and six single-trait genome-155 

wide association meta-analyses. The dashed lines represent the genome-wide significance 156 

threshold of 5×10-8. 157 

 158 

Figure 2: Rediscovery rates of the multi-trait genome-wide association meta-analyses at 159 

different significance thresholds in the discovery population. The threshold of rediscovery 160 

was set to 0.05. The observed rediscovery rates were calculated by testing the significant SNPs 161 

that passed each discovery threshold in the replication cohort and calculating the replicated 162 

proportion. The expected rediscovery rates were estimated assuming that the effect size of each 163 

SNP is the same in both the discovery and replication populations. 164 

 165 

Table 1: Discovery and replication summary statistics of the GRM5 locus. βS is the effect 166 

size on the combined phenotype score. Chr: chromosome. f: allele frequency. A: allele. The p-167 

value for the discovery sample was obtained from the six-trait MANOVA, and the replication p-168 

value was obtained by testing the phenotype score estimated in the discovery sample on the 169 

genotype in the replication cohort. 170 

 171 

Supplementary Figure 1: Quantile-quantile plot of the multi-trait meta-GWAS results. The 172 

red line indicates equality, i.e. the null distribution. 173 

 174 

Supplementary Figure 2: The multi-trait meta-GWAS results at different minor allele 175 

frequencies (MAF). A: all variants across the genome. B: novel variants. 176 

 177 

Supplementary Figure 3: Empirical null p-value distribution of Pillai’s trace statistic with 178 

the shrinkage phenotypic correlation matrix. Two traits with correlation coefficient of 0.7 179 

were simulated. The simulated total sample size was 50,000. Genotypes of a single SNP were 180 

simulated under Hardy-Weinberg equilibrium. Prop. Overlap: proportion of sample overlap. 181 

MAF: minor allele frequency. 182 

 183 

Supplementary Figure 4: Empirical null p-value distribution of Pillai’s trace statistic with 184 
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the original phenotypic correlation matrix. Two traits with correlation coefficient of 0.7 were 185 

simulated. The simulated total sample size was 50,000. Genotypes of a single SNP were 186 

simulated under Hardy-Weinberg equilibrium. Prop. Overlap: proportion of sample overlap. 187 

MAF: minor allele frequency. 188 

 189 

Supplementary Figure 5: Venn diagram of significant loci overlapping for meta-GWAS of 190 

multi-trait (mv), height and weight. 191 

 192 

Supplementary Figure 6: Venn diagram of significant loci overlapping for meta-GWAS of 193 

multi-trait (mv), BMI, height and weight. 194 

 195 

Supplementary Table 1: A list of all the novel loci mapped in the multi-trait meta-GWAS. 196 

Candidate genes with reported relevance to obesity or obesity-associated disease are highlighted 197 

in bold. Beta.S is the estimated effect in the GIANT population on the new phenotype scores, 198 

where the coefficients for constructing the new phenotypes are given in the last six columns. N is 199 

the minimum sample size among the six traits. Chr: chromosome. Freq: allele frequency. A: 200 

allele. MAF: minor allele frequency. 201 

 202 

Supplementary Table 2: Relevance to obesity or obesity-associated disease of the candidate 203 

genes at the loci with enriched rediscovery rate (P < 2×10-16). Each locus is defined as a 204 

±500kb interval centered at the most significant marker. 205 

 206 

Supplementary Table 3: Estimated shrinkage and original phenotypic correlation matrices.  207 

 208 

Supplementary Table 4: Average proportions of sample overlap between each pair of 209 

traits.  210 

 211 

Supplementary Table 5: Summary of DEPICT results for the novel loci from multi-trait 212 

meta-GWAS. 213 

 214 

Supplementary Table 6: Summary of DEPICT results for the novel loci from multi-trait 215 
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meta-GWAS at different significance thresholds. 216 

 217 

Supplementary Table 7: Summary of DEPICT results for the significant loci from single-218 

trait meta-GWAS at different significance thresholds.  219 

 220 

Supplementary Table 8: Summary of DEPICT results for all the significant loci from both 221 

multi-trait and single-trait meta-GWAS at different significance thresholds.  222 

 223 

Supplementary Table 9: List of the defined loci and the overlap across traits. 224 

 225 

 226 

 227 
21,22 228 
  229 
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METHODS 390 

Anthropometric traits meta-GWAS summary statistics 391 

We downloaded the summary statistics of six sex-stratified anthropometric traits meta-GWAS by 392 

the GIANT consortium from: 393 

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 394 

For each trait, we computed the summary statistics un-stratified by sex by meta-analyzing the 395 

effects and standard errors of the two genders. As HapMap II allele frequencies were reported in 396 

the meta-GWAS instead of pooled allele frequencies across all the cohorts, we excluded SNPs 397 

with sample size less than 30,000, for which the HapMap allele frequencies might not be 398 

representative. SNPs with missing allele frequencies were also excluded. 399 

 400 

Generation Scotland cohort 401 

The data were obtained from the Generation Scotland: Scottish Family Health Study 402 

(GS:SFHS)14. Ethical approval for the study was given by the NHS Tayside committee on 403 

research ethics (reference 05/s1401/89). Governance of the study, including public engagement, 404 

protocol development and access arrangements, was overseen by an independent advisory board, 405 

established by the Scottish government.  406 

 407 

Individuals were genotyped with the Illumina OMNIExpress chip (706,786 SNPs). We used 408 

GenABEL version 1.7-623 and PLINK version 1.0724 to exclude SNPs that had a missingness > 409 

2% and a Hardy-Weinberg Equilibrium test P < 10-6. Duplicate samples, individuals with gender 410 

discrepancies and those with more than 2% missing genotypes were also removed. After this 411 

quality control, the data set consisted in 9,603 individuals, genotyped for 646,127 SNPs on the 412 

22 autosomes. Individual height, weight and waist and hip circumferences were recorded as 413 

previously described14. The six anthropometric phenotypes were adjusted for age and sex and 414 

inverse-Gaussian transformed. The population structure was corrected using a linear mixed 415 

model, following the procedures ibs(weight = “freq”) and polygenic() in GenABEL. 416 

 417 

 418 
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Genomic control 433 

In a large sample, the null distribution of our test statistic for the six traits is asymptotically chi-434 

square with 6 degrees of freedom. We estimated the genomic inflation factor 𝜆 as the ratio of the 435 

observed median chi-square value across the genome to its expectation 5.348. The estimated 𝜆 = 436 

1.001, thus the chi-square values were divided by the estimated 𝜆, and the corresponding 437 

genomic-controlled p-values were reported. 438 

 439 

Locus definition  440 

For each trait and multi-trait (MV) meta-GWAS, significant loci were defined by collapsing 441 

adjacent markers. We selected the SNPs with p-value < 5×10-8 and checked if they were located 442 

on the same chromosome and less than 500 Kb apart - we considered these SNPs as one locus 443 

and used the most significant SNP to represent the locus. This resulted in 656 significant loci 444 

across all meta-GWAS, including 558 loci from MV GWAS, 158 for height, and 50, 30, 11, 7, 5 445 

for weight, BMI, waist circumference (WC), hip circumference (HIP) and waist-hip-ratio 446 

(WHR), respectively. For two meta-GWAS, if the top variants at a locus are less than 500 Kb 447 

apart, the locus is considered overlapping between the two meta-GWAS (see also Supplementary 448 

Table 9 and Supplementary Fig. 5-6). 449 

  450 

Functional annotation  451 

We conducted high-throughput functional annotation of the novel discoveries. For prioritizing 452 

genes in associated regions, gene set enrichment and tissue/cell type enrichment, we used the 453 

DEPICT software20. We first analyzed the loci that were found using single-trait GWAS only, 454 

then we analyzed all the loci that were found using the MV approach, thereafter we analyzed all 455 

these loci together (Supplementary Table 5-8). In each step, we applied two thresholds: P < 456 

1×10-9 and P < 1×10-16, in order to compare the results at different RDR (see main text).  457 

 458 

Availability 459 

The developed multi-trait GWA method is implemented and freely available in the 460 

MultiSummary() procedure of the R package MultiABEL (The GenABEL project packages 461 

URL: https://r-forge.r-project.org/R/?group_id=505). 462 
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Figure 1 464 

 465 
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Figure 2 467 

 468 
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Table 1 470 
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