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Abstract (250 words in total) 28 

African Pygmies practicing a mobile hunter-gatherer lifestyle are phenotypically and genetically diverged 29 

from other anatomically modern humans, and they likely experienced strong selective pressures due to 30 

their unique lifestyle in the Central African rainforest. To identify genomic targets of adaptation, we 31 

sequenced the genomes of four Biaka Pygmies from the Central African Republic and jointly analyzed 32 

these data with the genome sequences of three Baka Pygmies from Cameroon and nine Yoruba famers. 33 

To account for the complex demographic history of these populations that includes both isolation and 34 

gene flow, we fit models using the joint allele frequency spectrum and validated them using independent 35 

approaches. Our two best-fit models both suggest ancient divergence between the ancestors of the farmers 36 

and Pygmies, 90,000 or 150,000 years ago. We also find that bi-directional asymmetric gene-flow is 37 

statistically better supported than a single pulse of unidirectional gene flow from farmers to Pygmies, as 38 

previously suggested. We then applied complementary statistics to scan the genome for evidence of 39 

selective sweeps and polygenic selection. We found that conventional statistical outlier approaches were 40 

biased toward identifying candidates in regions of high mutation or low recombination rate. To avoid this 41 

bias, we assigned P-values for candidates using whole-genome simulations incorporating demography 42 

and variation in both recombination and mutation rates. We found that genes and gene sets involved in 43 

muscle development, bone synthesis, immunity, reproduction, cell signaling and development, and energy 44 

metabolism are likely to be targets of positive natural selection in Western African Pygmies or their 45 

recent ancestors. 46 
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Introduction 55 

Recent archaeological and genetic studies suggest that anatomically modern humans (AMH) 56 

originated in Africa prior to 160-190 thousand year ago (kya, Cavalli-Sforza 1986). Before the invention 57 

of agriculture in the Neolithic (~6–10 kya), hunting and gathering was the subsistence strategy employed 58 

by early human societies (Cavalli-Sforza 1986; Henshilwood et al. 2002; Scheinfeldt et al. 2010). Among 59 

extant African human populations, the Pygmies, commonly identified by their short stature (mean adult 60 

height < 150–160 cm), are one of the few populations that still predominantly practice a hunting and 61 

gathering lifestyle. The common view in archeology is that the Pygmy people have been forest dwellers, 62 

dating from at least 40 kya (Cavalli-Sforza 1986).  63 

African Pygmies forage in the equatorial rainforests of Central Africa and can be divided into 64 

Western and Eastern Pygmies. Western Pygmies (e.g., Baka and Biaka) mainly reside in rainforest west 65 

of the Congo Basin, while Eastern Pygmies (e.g., Mbuti and Efe) live in and around the Ituri rainforest 66 

and further south extending toward Lake Victoria (Cavalli-Sforza et al. 1994). Although still living as 67 

mobile hunter-gatherers, moving from one camping site to another in the forest regularly, archeological 68 

and cultural studies indicate that Pygmies have established social and economic contacts with nearby 69 

settled farmers (Cavalli-Sforza et al. 1994). For example, in addition to hunting animals and collecting 70 

plant foods, such as yams and honey, the Efe Pygmies trade forest food to Lese farmers in exchange for 71 

cultivated goods (Terashima 1987; Terashima 1998). Moreover, most Pygmies now speak Niger-72 

Kordofanian (e.g. Bantu) or Nilo-Saharan languages, possibly acquired from neighboring farmers, 73 

especially since the expansion of Bantu-speaking agriculturalists, beginning about 5 kya (Blench 2006).  74 

Recent genetic evidence favors a single origin of African Pygmies (Patin et al. 2009; Batini et al. 75 

2011; Veeramah et al. 2011).Western Pygmies have likely experienced greater genetic admixture with 76 

neighboring non-Pygmy farmer populations than Eastern Pygmies (Cavalli-Sforza 1986; Patin et al. 2009; 77 

Tishkoff et al. 2009; Veeramah et al. 2011; Verdu et al. 2013). Several mitochondrial and multi-locus 78 

DNA studies have estimated that African Pygmies diverged from the ancestors of present-day Niger-79 

Cordofanian agriculturalists ~60 kya (95% C.I.: 25–130 kya, Patin et al. 2009), ~70 kya (95% C.I.: 51–80 

106 kya, Batini et al. 2011), and ~49 kya (95% C.I.: 10-105 kya, Veeramah et al. 2011). However, 81 
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because each of these studies employed less than 60 genomic loci, these studies either made strong a 82 

priori assumptions to restrict the parameter space they searched in their demographic modeling (Patin et 83 

al. 2009) or did not have sufficient statistical power to infer gene flow between populations (Batini et al. 84 

2011, Veeramah et al. 2011). Thus, a comprehensive understanding of the demographic prehistory of 85 

African Pygmies remains lacking. 86 

Pygmy populations have long been studied biologically and genetically because of their distinct 87 

phenotypes, particularly short stature. Physiological evidence suggests that short stature is associated with 88 

low growth hormone binding protein and insulin-like growth factor-I (IGF-I) levels in Pygmy groups in 89 

different parts of the world (Baumann et al. 1989; Dávila et al. 2002). Using high-density SNP chip data, 90 

several population genetic studies have reported candidates for Pygmy short stature, including genes in 91 

the IGF-I pathway (Pickrell et al. 2009; Jarvis et al. 2012; Migliano et al. 2013), the iodine-dependent 92 

thyroid hormone pathway (Herráez et al. 2009; Migliano et al. 2013), and the bone homeostatsis/skeletal 93 

remodeling pathway (Mendizabal et al. 2012). Lachance et al. (2012) searched signals of positive 94 

selection in five high-coverage Western Pygmy genomes and suggested that short stature may be due to 95 

selection on genes involved in development of the anterior pituitary, as well as the crosstalk between the 96 

adiponectin and insulin-singling pathways. A more recent study using admixture mapping identified 16 97 

regions associated with height in Batwa Pygmies, which were enriched for SNPs associated with height in 98 

Europeans and for genes with growth hormone receptor and regulation functions (Perry et al. 2014). 99 

Several hypotheses have been proposed regarding Pygmy adaptation to the dense, humid forest 100 

environment, all of which may influence stature. These include thermoregulatory adaptation to the 101 

tropical forest (Cavalli-Sforza 1986), reduction of caloric intake in a food-limited environment (Shea and 102 

Bailey 1996), improved mobility in the dense forest (Diamond 1991), and earlier reproduction to 103 

compensate for short lifespans (Migliano et al. 2007). In addition, the equatorial rainforest in Central 104 

Africa is enriched in pathogens and parasites, such as malaria and haemorrhagic fever (Ohenjo et al. 105 

2006). Loci that are involved in immunity have thus been suggested to be targets for adaptation to this 106 

challenging forest environment (Jarvis et al. 2012; Lachance et al. 2012). 107 
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Although previous studies have identified many possible targets of adaptive selection in African 108 

Pygmies, challenges remain. First, demographic events and local genomic architecture (e.g., 109 

heterogeneity in mutation and recombination rates) can mimic the genetic patterns generated by 110 

adaptation (Schaffner et al. 2005; Teshima et al. 2006). High false positive and false negative rates are 111 

expected in studies that determine candidates of natural selection based solely on selecting outliers from 112 

the distribution of a test statistic (Jeffreys et al. 2005; Schaffner et al. 2005; Teshima et al. 2006; Akey 113 

2009). In addition, the large genomic sizes of candidate regions (on the order of 100 kb), especially for 114 

those reported in SNP-microarray studies, make inference of the genetic basis of adaptation difficult. 115 

Understanding genetic adaptation in African Pygmies, therefore, requires not only leveraging 116 

high-coverage whole-genome data to perform a thorough scan for selective signatures, but also realistic 117 

demographic models to assess the statistical significance of the candidates. To provide a genomic 118 

perspective on adaptation in Pygmies, we sequenced four western Biaka Pygmies from the Central 119 

African Republic using Complete Genomics (CGI) technology (Drmanac et al. 2010) and combined these 120 

data with similar data from three Baka Pygmies (Lachance et al. 2012) from Cameroon and nine unrelated 121 

Yoruba farmers. We inferred the demographic history of these populations and searched for positive 122 

selection using several complementary statistical methods. We assessed statistical significance in our 123 

selection scan analyses using genome-scale simulations performed with MaCS (Chen et al. 2009) that 124 

incorporated recombination and mutation rate heterogeneity along the genome. Finally, we functionally 125 

annotated our candidates, and we discuss their biological impact. Our analysis thus provides unique 126 

insights into the complex demographic and adaptive history of Western African Pygmies. 127 

 128 

Results 129 

Demographic history inference for West African Pygmies and Farmers 130 

We used the demographic inference tool !a!i (Gutenkunst et al. 2009) to infer the joint 131 

demographic history of one farmer (Yoruba) and two Pygmy (Baka and Biaka) populations using our 132 

high coverage (median=60.5X) CGI whole genome data. After removing single nucleotide variant 133 

(SNVs) that failed our quality control criteria (see Materials and Methods), we used 1.58 million 134 
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intergenic autosomal SNVs to build a 3-population unfolded allele frequency spectrum (AFS). Ancestral 135 

states were inferred using chimpanzee as the outgroup. The estimated sequence divergence between 136 

human and chimpanzee based on these non-genic sequences is 1.14%. Because misspecification of 137 

ancestral states might alter the AFS and lead to patterns that can mimic positive selection through an 138 

excess of high frequency variants, we used the method of Hernandez et al. (2007) implemented in !a!i to 139 

statistically correct the AFS for the ancestral misspecification. Because linkage among sites means that 140 

!a!i calculates a composite likelihood rather than the full likelihood, we estimated confidence intervals 141 

via conventional non-parametric bootstraps (see Materials and Methods). 142 

To guide development of three-population models, we first considered simpler one- and two-143 

population models. These initial simpler models consistently suggested a more recent divergence between 144 

the two Pygmy populations than between either of those populations and the farmers. Based on these 145 

results and previously published inferences (Patin et al. 2009; Batini et al. 2011; Veeramah et al. 2011; 146 

Verdu et al. 2013), we tested multiple three-population models, considering a variety of scenarios for 147 

gene flow and population size changes. The best-fit three-population demographic model, Model-1 148 

(continuous asymmetric gene flow, composite log-likelihood= –6,712), is illustrated in Figure 1A. The 149 

maximum composite-likelihood estimates for the 10 free parameters are reported in Table 1. The joint 150 

frequency spectra resulting from this model qualitatively reproduce the data, as seen in the second and 151 

third rows of Figure 1C, although our model does produce an excess of high frequency shared variants. 152 

In Model-1, the ancestors of contemporary farmers and Pygmies diverged ~156 kya (95% C.I.: 140–164 153 

kya) from an ancestral population that had expanded roughly three-fold prior to divergence. The ancestors 154 

of the farmers and Pygmies remained isolated until ~40 kya (95% C.I.: 36–44 kya), at which point bi-155 

directional gene flow began, with the flow from farmers to Pygmies being 10 times greater than from 156 

Pygmies to farmers (Table 1). Following the Pygmy-farmer divergence, the effective population size of 157 

farmers increased and the effective population size of Pygmies decreased. The Baka and Biaka diverged 158 

much more recently, about 5 kya (95% C.I.: 4.7–5.7 kya). Because our small sample size limits the power 159 

to infer recent demographic events (Robinson et al. 2014), we assumed that the Baka-Biaka divergence 160 

did not change the rates of gene flow with the Yoruba, and our model includes no Baka-Biaka gene flow. 161 
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Our second best-fit model involves a recent pulse of unidirectional gene flow from farmers to 162 

Pygmies (Model-2, Figure 1B and 1C) after the divergence of the two populations. The maximum 163 

composite-likelihood estimates for the 9 free parameters are shown in Table 1. The maximum composite 164 

log-likelihood of Model-2 (-7,737) is lower than Model-1. In Model-2, we inferred that Pygmies and 165 

farmers diverged about 90 kya (95% C.I.: 85–92 kya). The pulse of gene flow is estimated to have 166 

occurred ~7 kya (95% C.I.: 6.8–7.7 kya), while the inferred admixture proportion in our Pygmy sample 167 

resulting from the pulse of gene flow from the farmers is ~68% (C.I.: 67.9–68.2%). 168 

 169 

Model Selection and Validation of Demographic inference 170 

We used three approaches to validate our demographic inference (see Materials and Methods). First, to 171 

remove the effects of linkage we refit our models to a subset of the data in which variant sites were at 172 

least 0.01 centiMorgan (cM) apart. The two best-fitting models remained the same as using the whole 173 

dataset, and the parameter estimates were compatible (Table S1). Under the assumption that the 174 

likelihoods calculated using the thinned dataset are full likelihoods, we applied the Akaike (AIC, Akaike 175 

1974) and Bayesian information criteria (BIC, Schwarz 1978) for model selection. Both AIC and BIC 176 

prefer the continuous asymmetric gene-flow model to the single-pulse gene flow model (Table S1). 177 

As a second validation, we used patterns of linkage disequilibrium (LD) decay, information not 178 

utilized by !a!i. We calculated LD using sliding windows of 0.1 cM in the real data and in simulated 179 

whole-genome data, using 100 models drawn from the parameter confidence intervals of our two best-fit 180 

demographic models. We found that the patterns of LD decay predicted by the models generally matched 181 

the data well for both Pygmies and farmers (Figure S1). In Pygmies, Model-1 matches the LD decay in 182 

the real data for pairs of sites close to or far from each other, but not for sites with intermediate separation 183 

(Figure S1A). On the other hand, Model-2 matches the data for pairs of sites with intermediate and large 184 

separations, but not for small separations. Similar differences are observed for the farmers (Figure S1B). 185 

These discrepancies suggest that neither of our two best-fit models perfectly captures the full 186 

demographic history of our populations, although they do capture important features of that history. 187 
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As a third validation, we applied the pairwise sequentially Markovian coalescent (PSMC, Li and 188 

Durbin 2011) as an independent means to explore the demographic history of our populations (Materials 189 

and Methods). PSMC infers effective population size over time from a single diploid genome. We applied 190 

PSMC to our whole genome non-genic data that pass our quality control metrics. The PSMC curves of 191 

the farmers begin to separate from those of the Pygmies roughly 100–200 kya and are completely 192 

separated by about 70–90 kya (Figure S2). The separation of PSMC curves of individuals from different 193 

populations is evidence of population divergence (Li and Durbin 2011). Thus, our PSMC analysis 194 

suggests that the ancestors of the farmers and Pygmies began differentiating from each other as early as 195 

100–200 kya, consistent with the inferred divergence time in Model-1. To test whether Model-1 and/or 196 

Model-2 recapitulates the observed deep divergence time between farmers and Pygmies seen via PSMC, 197 

we applied PSMC to two simulated genomes under both models for the farmer and Pygmy groups, 198 

respectively (Figure S3). Under Model-1, the PSMC curves of the simulated Pygmy genomes depart 199 

from those of the simulated farmer genomes at about the same time as in the PSMC analysis of the real 200 

data (Figure S3A), while the PSMC curves of the two groups simulated under Model-2 does not show 201 

clear separation until ~70 kya (Figure S3B). Together, these results suggest that that the ancient 202 

divergence time inferred using Model-1 is plausible.  203 

In general, these validations suggest that Model-1 is our best estimate of demographic history for 204 

these populations, but it is an imperfect model. In order to lessen the impact of model misspecification on 205 

our selection inference, we conservatively report candidates under both Model-1 and Model-2. 206 

 207 

Prioritizing Selection Candidates using Whole Genome Demographic Simulations 208 

Because conventional statistical outlier approaches are prone to false positives, we used whole-209 

genome simulations under our realistic demographic models to assign statistical significance (P-values) in 210 

our selection scan. We used the coalescent simulator MaCS (Chen et al. 2009) in order to model both 211 

recombination- and mutation-rate heterogeneity across the entire genome. To assess possible biases on 212 

selection inference due to imperfection of the genetic recombination map, we ran two sets of simulations, 213 
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using two published recombination maps: the African American genetic recombination map (Hinch et al. 214 

2011) and the HapMap Yoruba genetic recombination map (Frazer et al. 2007) (Materials and Methods). 215 

Methods for detecting natural selection often rely on summaries of local genetic variation, and 216 

they may be biased by variation in mutation rate across the human genome (Reich et al. 2002; Drake et al. 217 

2005; Schaffner et al. 2005; Sainudiin et al. 2007). For example, G2D values (Nielsen et al. 2009) are 218 

correlated with local genetic diversity (Pearson correlation 0.298, p<2.2x10-16, Figure S4). We addressed 219 

this by estimating and incorporating local mutation rate variation across the whole genome in our 220 

simulations (Materials and Methods). Our whole-genome neutral simulation approach reproduces the 221 

pattern of local genetic diversity in the real data well (Pearson correlation=0.902, Figure S5). To assess 222 

whether mutation-rate heterogeneity could bias downstream inferences of selection, we compared results 223 

using two different sets of simulations under Model-1 to assign P-values. In the first set, the local 224 

mutation rate for each window was assigned to be the mean rate of the recombination decile to which that 225 

window belonged (Figure S6). In the second set, we estimated a local mutation rate for each window 226 

individually (Figure S7). The P-value distributions of G2D based on these two sets of simulations were 227 

calculated, and for both analyses we chose the top 0.5% windows in the P-value distributions as the top-228 

hits. There is a clear shift to larger heterozygosity (estimated using "/base) for the top hits in the first 229 

simulation set (Figure S6A), compared with the second set (Figure S7A). As expected, the top hits in the 230 

first simulation set tended to be windows with larger numbers of variants, while the top hits from the 231 

second set were distributed across the whole range of observed heterozygosity across the genome (Figure 232 

S6B vs. Figure S7B). This suggests that incorrectly incorporating mutation rate variation in whole-233 

genome simulations might lead to biases toward regions with unusually high mutation rate as candidates 234 

of natural selection. From here on, we thus used the per-window mutation rate approach (Materials and 235 

Methods) for all of the simulations. We recognize that this approach may discount some selection signals, 236 

yielding a more conservative inference of natural selection. 237 

 To identify genomic regions with signals of selection, we used sliding windows of 500 238 

consecutive SNVs that pass our quality control metrics, with a step size of 100 SNVs. We first assessed 239 

the statistical significance of each window using 1,000 neutral whole genome simulations with parameters 240 
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drawn from the confidence intervals of each of the two best-fit demographic models. Our top hits are the 241 

top 0.5% of windows in the P-value distribution of each test statistic. For finer P-value resolution, for 242 

each of our top candidates we then performed an additional 100,000 local simulations. 243 

The distribution of P-values was sensitive to the genetic recombination map used in the 244 

simulations (Figure S8). In particular, the distribution of G2D p-values using the African American 245 

recombination map (Hinch et al. 2011) is shifted more toward p=1 than using the Yoruba HapMap 246 

recombination map, suggesting that inference using the African American recombination map would be 247 

more conservative (Figure S8). To avoid potential biases due to the choice of map and/or null model, we 248 

restricted our list of candidates to those that are top hits using all four combinations of the two 249 

recombination maps and the two best-fit demographic models. Because the P-value distributions based on 250 

the two null demographic models are highly correlated (Pearson correlation=0.984, p<2.2x10-16, Figure 251 

S9), and the analysis based on the African American genetic recombination model is more conservative, 252 

unless mentioned otherwise we report the P-values and false discovery rates obtained using Model-1 and 253 

the African American recombination map for our candidates. 254 

 To illustrate the importance of using P-values to determine candidates, rather than relying on 255 

outliers in the distribution of a test statistic, we plotted the P-value based on Model-1 as a function of the 256 

G2D statistic for each of the windows that we surveyed (Figure 2; similar result holds for the iHS 257 

analysis, Figure S10). Quadrant I contains the many windows that have extreme G2D values but are not 258 

statistically significant when the confounding effects of demography and genomic architecture are 259 

controlled for. Conversely, Quadrant III contains the many windows that are statistically significant even 260 

though their G2D values are not extreme on a genome-wide basis. Because the association between 261 

functional elements (e.g. exon and regulatory sequences) and selection is not expected if a large fraction 262 

of significant tests are false positives, we validated our P-value approach by comparing the spatial 263 

distribution of our candidates for selection with the distribution of known functional sequences in the 264 

genome (Voight et al. 2006; Williamson et al. 2007; Mendizabal et al. 2012). As expected, we found that 265 

our top hits of the P-value approach were enriched in exons of genes (Table S2; one-sided Fisher exact 266 
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test, p=0.029). Interestingly, we find no enrichment of top hits in regions deemed functional based on five 267 

types of ENCODE (Gerstein et al. 2012) regulatory elements (Materials and Methods; Table S2).  268 

 269 

Evidence of Local Adaptation in Western African Pygmies: iHS 270 

To detect recent incomplete selective sweeps, we scanned the genome using the haplotype-based 271 

iHS statistic (Voight et al. 2006) for the farmer and Pygmy samples separately. Each window was scored 272 

by the proportion of SNVs with standardized iHS score greater than 2, and the per-window P-value is the 273 

fraction of simulations in which that window’s score exceeded that in the real data (Materials and 274 

Methods). Using all four simulation sets, we defined Pygmy-specific signals as those windows that were a 275 

top-hit (the top 0.5% in the P-value distribution) in the Pygmy sample, but not in the Yoruba sample (not 276 

within the top 1% in the P-value distribution), yielding 35 distinct genomic regions (Table S3). We used 277 

a looser P-value cutoff to define Yoruba top-hits in order to be more conservative in identifying regions 278 

as Pygmy-specific. 279 

Five of our candidate regions contain genes associated with bone synthesis. EPHB1, (locus: 280 

chr3:134572433-134716365, Figure 3A) is an Ephrin receptor at sites of osteogenesis. Interestingly, this 281 

region has been previously associated with the short stature in Pygmies (Jarvis et al. 2012). Our candidate 282 

region spans ~140 kb, containing exon 2 and exon 3 of EPHB1 (which has a size of >460 kb and 16 283 

coding exons). Elevated FST has been widely used to infer selection (Nielsen et al. 2009; Pickrell et al. 284 

2009; Jarvis et al. 2012), and FST is elevated in this region, although we found no non-synonymous 285 

variants. To further investigate the signal of selection, we used hierarchical clustering and network 286 

analysis of the phased haplotypes for the region around exon 3 (± 10kb). Interestingly, both analyses 287 

suggest that Pygmy and farmer groups are almost fixed for different haplotypes (Figure 3B-C). This is 288 

consistent with an incomplete selective sweep (Voight et al. 2006; Pickrell et al. 2009; Pritchard et al. 289 

2010) and indicative of different selective pressures in these two groups. The other four bone-synthesis 290 

related candidates are SLCO2A1 (locus: chr3:133506737-133863702), ZBTB38 (locus: chr3:141105569-291 

141333249), TSPAN5 (locus: chr4:99496207-99673561), and GAREM (locus: chr18:29766032-292 

29896024).  SLCO2A1 encodes a prostaglandin transporter protein, and mutations in this gene have been 293 
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shown causing Primary Hypertrophic Osteoarthropathy, a rare genetic disease that affects both skin and 294 

bones (Zhang et al. 2012). ZBTB38 encodes a zinc finger transcriptional activator expressed in the brain, 295 

and has been associated with adult height in multiple populations (Lettre et al. 2008; Weedon et al. 2008; 296 

Wang et al. 2013). TSPAN5 is a member of the tetraspanin protein family and is up-regulated during 297 

osteoclast differentiation (Iwai et al. 2007); knockdown of its expression dramatically inhibits 298 

osteoclastogenesis in vitro (Iwai et al. 2007; Zhou et al. 2014), suggesting its regulatory role in bone 299 

development. GAREM is an adapter protein in intracellular signaling cascades and has recently been 300 

associated with human height in a whole-exome sequencing association study (Kim et al. 2012). A few 301 

large FST (# 0.2) non-synonymous amino acid substitutions were observed within these candidate regions, 302 

but they are not suggested as functionally important by SIFT (Kumar et al. 2009) or PolyPhen2 303 

(Adzhubei et al. 2010). Regions near four out of these five genes, however, show high levels of 304 

differentiated SNVs in enhancer and/or Polycomb-repressed sequences, implying that Pygmy short 305 

stature might arise partly through cis-regulatory evolution (Figure S11). 306 

Consistent with the hypothesis of selection for mobility (Diamond 1991), we found candidate loci 307 

in several muscle-related genes. In particular, OBSCN (spans >150 kb with 81 exons within the candidate 308 

locus chr1:228103665-228842760, Figure 4A), an obscurin gene, has an important role in the 309 

organization of myofibrils during assembly and may mediate interactions between the sarcoplasmic 310 

reticulum (striated muscle fibers found in the skeletal system) and myofibrils (Young et al. 2001; 311 

Ackermann et al. 2014). Within this gene, 16 out of 46 non-synonymous amino acid variants are 312 

predicted as functionally important by either SIFT or PolyPhen2. The SNV with the largest FST 313 

(chr1:228475848, rs437129, FST = 0.54) in this region is fixed for the ancestral allele (Guanine, PanTro3, 314 

Hg19) in our Pygmy sample but is segregating at much lower frequency in our Yoruba farmer sample 315 

(allele frequency for G = 0.39 or 7/18), in both homozygote and heterozygote forms. The ancestral allele 316 

(G) frequencies of rs437129 in Yoruba, Luhya, and African American based on the 1000 Genome Project 317 

(Phase I) are 0.551, 0.665, and 0.590 (dbSNP 137). Analyses of the haplotypes between the two non-318 

synonymous sites with FST > 0.5 (chr1:228475848 and chr1:228520973, including the 10kb flanking 319 

region; Figure 4B-C) suggest the existence of two major haplotypes in our sample that are relatively 320 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2015. ; https://doi.org/10.1101/022194doi: bioRxiv preprint 

https://doi.org/10.1101/022194
http://creativecommons.org/licenses/by-nc-nd/4.0/


population-specific. We thus postulate that natural selection might have acted in different directions for 321 

this region between these two groups. Other muscle-related genes identified by our scan include COX10 322 

(locus: chr17:13911228-14241158) and LARGE (locus: chr22:34224706-34359718). COX10 is a 323 

cytochrome c oxidase, and Diaz et al. (2005) reported that COX10 knockout mice develop a slowly 324 

progressive myopathy. LARGE is a member of the N-acetylglucosaminyltransferase gene family, and 325 

mutations in this gene cause a form of congenital muscular dystrophy (Longman et al. 2003). 326 

Interestingly, Andersen et al. (2012) recently found evidence that variants in LARGE might have been 327 

positively selected for the resistance of Lassa fever in Western African populations.  328 

Our whole-genome selection scan also identified a variety of genes (Table S3) involved in 329 

immune function, one of the most common targets of adaptive evolution (Williamson et al. 2007; Barreiro 330 

and Quintana-Murci 2009), and in reproduction, which is compatible with the life-history tradeoff 331 

hypothesis (Migliano et al. 2007). Other functional categories for genes of potential interest within the top 332 

hits of our iHS signals (Table S3) include energy metabolism, cell signaling, and neural development. 333 

 334 

Evidence of Local Adaptation in Western African Pygmies: G2D 335 

To complement our iHS scan, we performed a scan using the G2D statistic (Nielsen et al. 2009), 336 

which measures how different the local farmer-Pygmy 2-D joint allele frequency spectrum is from the 337 

genome-wide spectrum. We found low P-value top-hit windows on all 22 chromosomes (Figure S12). To 338 

identify Pygmy-specific signals of selection, we used the composite likelihood ratio (CLR, Nielsen et al. 339 

2005) statistic, which is essentially the 1-D version of the G2D statistic. Our Pygmy-specific top-hit 340 

windows satisfied three conditions for all four simulation sets: 1) they were in the top 0.5% of the P-value 341 

distribution of the G2D statistic, 2) they were in the top 0.5% of the P-value distribution of the Pygmy-342 

specific CLR statistic, and 3) they were not within the top 1% of the P-value distribution of the Yoruba-343 

specific CLR statistic. This procedure identified 7 distinct Pygmy-specific candidates (Table S4). These 344 

candidates do not overlap with those from iHS scan, highlighting the complementarity of the G2D and 345 

iHS statistics. 346 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2015. ; https://doi.org/10.1101/022194doi: bioRxiv preprint 

https://doi.org/10.1101/022194
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our top candidate region from the G2D scans (locus: chr6:32968692-33049012; Figure 5A; P-347 

value=9.90x10-6, FDR=0.03) includes three members of the Class II Human Leukocyte Antigen (HLA) 348 

gene family, HLA-DPB1, HLA-DOA, and HLA-DPA1. These genes encode proteins that are expressed on 349 

antigen-presenting cells and that present extracellular peptides for T-cell recognition. They thus play a 350 

critical role in in initiating the immune response to invading pathogens (Barreiro and Quintana-Murci 351 

2009; O'Brien et al. 2011). The HLA region has a complex genomic architecture with several 352 

recombination hotspots (Figure 5A; also see Jeffreys et al. 2005). To avoid possible artifacts due to 353 

sequencing and genotyping errors, we reanalyzed this region after removing variants violating Hardy-354 

Weinberg Equilibrium, an indicator of possible genotyping errors. 14 out of 1478 SNVs in this region fail 355 

the HWE test (cutoff p < 0.05); yet the P-value for this region remains the same after their removal. 11 356 

non-synonymous variants were found in this region; of these sites, five are predicted to be deleterious or 357 

possibly damaging by SIFT (SIFT score $ 0.05, Kumar et al. 2009) and/or PolyPhen2 (PolyPhen2 score # 358 

0.995, Adzhubei et al. 2010). Haplotype analyses (Figure 5B-C) of the region with elevated FST around 359 

the gene HLA-DPA1 show that while the farmer samples possess two major haplotypes, most of the 360 

Pygmy samples belong to a single haplogroup. Because of the existence of several recombination 361 

hotspots in this locus, we plotted the diplotypes for this region in our sample to avoid possible biases due 362 

to phasing error (Figure S13). Consistent with the haplotype analyses, most of the Pygmy samples (5 out 363 

of 7) are homozygous for a single diplotype, while the farmers have two diplotypes. We thus hypothesize 364 

that a specific immunity-related pressure has driven the evolution of this locus in the Pygmies.  365 

This scan also identified two candidate regions that contain genes associated with bone synthesis 366 

and development. The gene FLNB in the first region (locus: chr3:57918877-58055004) encodes filamin 367 

B, a multifunctional cytoplasmic protein that plays a critical role in skeletal development. Flnb knockout 368 

mice are phenotypically similar to individuals with spondylocarpotarsal syndrome as they exhibited short 369 

stature and similar skeletal abnormalities (Farrington-Rock et al. 2008). FLNB is known to be associated 370 

with height in African Pygmies (Jarvis et al. 2012; Lachance et al. 2012) and has also been reported to be 371 

associated with osteoporosis in women (Wilson et al. 2009). Although we did not find any amino acid 372 

substitution variants in FLNB in our sample, we did find many variants with large FST that may lie in 373 
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regulatory elements (Figure S14). The second region (locus: chr1:179361049-179468857) contains the 374 

gene AXDND1. Although the function of AXDND1 is still unclear, a recent multiple-cohort genome-wide 375 

association study reported a statistically significant association between this gene and fracture risk. This 376 

implies a potential role of AXDND1 in bone synthesis or other musculoskeletal traits (Medina-Gomez and 377 

Rivadeneira 2014). 378 

One of our candidate regions (locus: chr1:183076845-183184161) includes the gene LAMC1, 379 

which plays a role in reproductive development. LAMC1 expression increases in bovine, pig, and rabbit 380 

basal lamina during follicular development (Irving-Rodgers and Rodgers 2005), and is also expressed in 381 

the human ovary (Berkholtz et al. 2006). A recent genome-wide association study reported that 382 

polymorphisms in LAMC1 are associated with an increased risk of premature ovarian failure, which is 383 

characterized as the cessation of ovarian function before the age of 40 and could result in amenorrhea and 384 

infertility (Pyun et al. 2012). Another interesting candidate region (chr19:12386669-12523799) contains 385 

cell signal transmission genes, the ZNF genes, which encode proteins with KRAB and zinc-finger 386 

domains. Genes in this protein family have been previously shown to be under positive selection in 387 

African Americans (Nielsen et al. 2005; Nielsen et al. 2009). It is unclear what phenotype these variants 388 

are associated with, but the role of ZNF442 in transcriptional binding activity suggests trans-regulatory 389 

evolution might play a role in the adaptation of Pygmies.  390 

  391 

Inference of Polygenic Selection in Western African Pygmies 392 

Many human traits, such as body weight and height and skin pigmentation, are polygenic. Our 393 

G2D and iHS scans were designed to detect large changes in allele frequency at single loci, but polygenic 394 

selection can result in small changes in allele frequency at multiple loci that involved in a specific 395 

biological function or pathway (Pritchard et al. 2010; Berg and Coop 2014). To detect polygenic selection, 396 

we used the FST statistic (Weir and Cockerham’s estimator) to estimate the level of population 397 

differentiation for each SNV and compared the FST distribution of the SNVs of all genes in a given gene 398 

set (a specific biological function or pathway) to that in the rest of our genic sequences. We used 1,454 399 
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Gene Ontology (GO) gene sets downloaded from the Gene Set Enrichment Analysis (GSEA) project 400 

(Subramanian et al. 2005).  401 

Using the Mann Whitney U test, we found 113 gene sets that show significant evidence of having 402 

larger FST values compared to the FST distributions of the rest of genic sequences (one-sided test, 403 

Bonferroni corrected p < 10-10). To evaluate our false positive rate, we conducted the same analysis using 404 

our four sets of neutral whole genome simulations. Surprisingly, we found as many or more significant 405 

gene sets in 72.9% and 48.5% of our simulations under the Model-1 and Model-2, respectively. This 406 

suggests that demographic processes and genomic architecture can mimic the signals of polygenic 407 

adaptation, and in turn suggests that many of these 113 significant gene sets are false positives. 408 

Only 3 out of the 113 significant gene sets had significant U tests less than 5% of the time in all 409 

of our neutral whole genome simulation sets, and we consider these sets as true positives (Table S5). 410 

Among these three gene sets, there were no overlapping genes, nor did any genes overlap with those 411 

identified in our G2D and iHS analysis. The two strongest signals of polygenic selection we detected are 412 

both related to immunity. The Gene Ontology (GO) category “Antigen binding” (Bonferroni p-value = 413 

2.31x10-25) consists of antigen binding proteins, which interact selectively with an antigen or any 414 

substance which is capable of inducing a specific immune response and of reacting with the products of 415 

that response (GO:0003823). The GO category “Pattern Recognition Receptor Activity” (Bonferroni p-416 

value = 5.04x10-14) includes molecules in the innate immune system that recognize microorganisms 417 

through a series of pattern recognition receptors and that are highly conserved in evolution (Dziarski 418 

2003). Although no overlap among candidate regions is observed from the iHS, G2D, and polygenic 419 

selection tests, the pervasive selective signals for immunity in all three tests highlight the importance of 420 

adaptation against parasites and infectious disease pathogens in Pygmy evolution. The other candidate of 421 

polygenic selection is the GO category “G1 phase of mitotic cell cycle” (Bonferroni p-value = 1.75x10-422 

19). Although the corresponding phenotype for this group is unknown, accurate transition from G1 phase 423 

of the cell cycle is crucial for control of eukaryotic cell proliferation (Bertoli et al. 2013). 424 

 425 

Discussion 426 
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Ancient Divergence and More Recent Gene Flow between African Farmer and Pygmy Populations 427 

Our demographic inference for the farmer (Yoruba) and Western Pygmy hunter-gatherer groups (Baka 428 

and Biaka) offers insight into the demographic dynamics of sub-Saharan Africa over the past hundreds of 429 

thousands years. The deep divergence time between the ancestors of the agricultural and Pygmy groups 430 

we found in Model-1 (~155 kya, 95% C.I.: 139–164 kya) is inconsistent with several recent publications 431 

(Patin et al. 2009; Batini et al. 2011; Veeramah et al. 2011), in which 95% confidence intervals of 432 

divergence times were estimated to be 25–130 kya (Patin et al. 2009), 51-106 kya (Batini et al 2011), and 433 

10-105 kya (Veeramah et al 2011). In our Model-2, although still relatively old, this divergence time (~90 434 

kya, 95% C.I. 85– 91 kya) is more consistent with those earlier studies. Our PSMC analysis in consistent 435 

with old divergence between the ancestors of the two groups (Figure S2); but these results must be 436 

interpreted carefully because the PSMC does not explicitly model population divergence. In the late 437 

Pleistocene, the African continent experienced dramatic climate fluctuations between dry and wet 438 

conditions near the end of Marine Isotope Stage 6 (MIS 6, 190-135 kya) and through the whole MIS 5 439 

(75–135 kya) (Blome et al. 2012; Rito et al. 2013). Paleoclimatic and archaeological data suggest that late 440 

Pleistocene hominin movements and occupation favored drier intervals, when droughts caused forest 441 

defragmentation and open grassland expansion (Blome et al. 2012, Ziegler et al. 2013). Within tropical 442 

Central Africa, human populations were relatively buffered from the effects of climate change, so this 443 

region may have provided refugia during the glacial MIS 6 and MIS 5 (Blome et al. 2012, Rito et al. 444 

2013, Ziegler et al. 2013). These refugia may have in turn promoted population isolation and 445 

differentiation (Blome et al. 2012, Ziegler et al. 2013). Combining these climatic observations with our 446 

genetic inferences, we speculate that environmental change and forest fragmentation may have caused the 447 

ancestors of Pygmy rainforest dwellers to diverge from the ancestors of agricultural groups within the 448 

past 75–190 kya. Although Model-1 is the best-fit model for our data, the deep Pygmy-farmer divergence 449 

could be in part due to imperfections in the model. For example, our model does not incorporate archaic 450 

introgression, which has been reported recently in Western African Pygmies (Hammer et al. 2011). Such 451 

introgression might cause us to overestimate the Pygmy-farmer divergence. 452 
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 Our inference of asymmetric gene flow in Model-1 is consistent with observed socio-economic 453 

contacts and intermarriage practices between Pygmies and farmers (Terashima 1987; Terashima 1998; 454 

Bahuchet 2012), and was also observed previously in Patin et al. (2009). However, Patin et al. (2009) had 455 

little power to infer gene flow since divergence (95% C.I. covers 0). Our best-fit model, Model-1 involves 456 

strongly asymmetric gene flow that did not begin until 40 ky (C.I.: 36–43 ky) after the ancestors of 457 

Pygmies and farmers diverged. This timing coincides with the aftermath of most of the large waves of 458 

population expansion and technological improvement within Africa, dated 55–75 kya (Henshilwood et al. 459 

2002, Ziegler et al. 2013). This early improvement in hunting tools, stone, and shell ornaments might 460 

have increased the carrying capacity of populations associated with this radical technological evolution, 461 

and thus might also have promoted contacts between different human groups, including the ancestors of 462 

farmers and Pygmy hunter-gatherers. 463 

There are important differences between the approach used here and those used in earlier 464 

demographic studies of African Pygmies (Patin et al. 2009, Batini et al. 2011, Veeramah et al. 2011). 465 

First, we jointly estimated all parameters simultaneously for a given model, but some previous studies 466 

first estimated effective population sizes and then optimized other model parameters given the pre-467 

estimated population sizes (Patin et al. 2009). They thus explored a smaller region of parameter space, 468 

potentially biasing their inferences. Second, our inference was based on whole genome sequencing data 469 

with a relative small sample size of 16 genomes, while these previous studies all used less than 60 loci, 470 

but had much larger samples of  >100 individuals. Two of these studies (Patin et al. 2009; Batini et al. 471 

2011) inferred recent population contraction in the Pygmy groups, a process our relatively small sample 472 

may not have had power to detect (Robinson et al. 2014).  473 

Our second best-fit model, Model-2, suggests a single pulse of gene flow from farmers to 474 

Pygmies ~7 kya (C.I.: 6–7 kya), resulting in a ~68% (C.I.: 67.9%–68.2%) admixture in our Western 475 

Pygmy sample. The observation of substantial agriculturalist genetic ancestry in Pygmies has been 476 

hypothesized as the consequence of the recent expansion of Bantu/Niger-Kordofanian-speaking farmers 477 

from West Africa about 5 kya (Cavalli-Sforza 1986; Tishkoff et al. 2009; Patin et al. 2014). The observed 478 

substantial admixture proportion in our Western Pygmy sample is consistent with the recent finding of 479 
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Verdu et al. (2013), which analyzed autosomal microsatellite data of 800 individuals among 23 Central 480 

African Pygmy and non-Pygmy populations and inferred admixture proportions of up to 50-70% in these 481 

Pygmy populations. Other studies also found evidence of genetic admixture in African Pygmies although 482 

their proportions vary between 0-90% among individual Pygmies (Patin et al. 2009; Tishkoff et al. 2009; 483 

Jarvis et al. 2012; Patin et al. 2014). Our inferred time of admixture coincides with the time of Neolithic 484 

agricultural development in Africa about 5–10 kya (Phillipson 2005), as well as with the estimated times 485 

of agriculturalist expansion for both Bantu-speaking (5.6 kya, 95% C.I.: 3.2–8.2 kya) and Niger-486 

Kodorfanian-speaking (7.3 kya, 95% C.I.: 5.7–9.6 kya) people, reported by Li et al. (2014). Many 487 

Pygmies today speak languages adopted from neighboring Bantu- and/or Sudanic-speaking farmer groups, 488 

with whom they exchange goods (Bahuchet 2012). Because the social-economic relationship between the 489 

two groups can sometimes promote intermarriage (Terashima 1987, Bahuchet 2012), this symbiotic bond 490 

may contribute to the observed substantial admixture in the Pygmy groups, especially since the 491 

development and expansion of agriculture in Africa. 492 

 Our inferred dates are based on a phylogeny-based mutation rate of 2.35x10-8 per-site per-493 

generation (Gutenkunst et al. 2009; compatible with Nachman and Crowell 2000) and a generation time 494 

of 25 years. Our date estimates would be much older if we used the rate of ~1.2x10-8 per-site per-495 

generation estimated by recent pedigree-based whole genome sequence studies (Conrad et al. 2011; Kong 496 

et al. 2012). Both approaches to estimating the human mutation rate have limitations, including 497 

inaccuracy of the human-chimpanzee divergence time in the phylogenetic approach and false negative 498 

mutations in the pedigree sequencing approach (Veeramah and Hammer 2014). We used the phylogenetic 499 

estimate because of its history in population genetic inference, but caution is advised when comparing 500 

population genetic date estimates with the archeological and fossil record. 501 

 502 

Importance of Prioritizing Selection Candidates Using P-values From Whole Genome Simulations  503 

Our results highlight the importance of using a model-based approach to assess statistical 504 

significance in whole-genome selection scans. Genomic scan studies using the tail of an empirical 505 

summary statistic distribution (an “outlier” approach) to define a significance cutoff for positive selection 506 
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have been highly criticized. Non-selective forces, including demography and local genomic architecture, 507 

such as variation in mutation and recombination rates (Reich et al. 2002; Drake et al. 2005; Jeffreys et al. 508 

2005; Schaffner et al. 2005; Sainudiin et al. 2007) across loci, can produce signals similar to positive 509 

selection (Tajima 1989; Andolfatto and Przeworski 2000; Wall et al. 2002; Jensen et al. 2005; Schaffner 510 

et al. 2005; Teshima et al. 2006). For example, we observed that larger G2D scores are associated with 511 

higher heterozygosity (Figure S6), so candidates determined using an empirical outlier approach might be 512 

biased towards regions with higher mutation rates. By matching local mutation rate in our simulations to 513 

local heterozygosity in the data, we eliminate this bias (Figure S7). Worryingly, the false targets 514 

identified by a genomic scan that fails to account for non-selective forces can be misleading because they 515 

might still make biological sense a posteriori (Pavlidis et al. 2012). 516 

Many outlier windows in our empirical distributions are not atypical when the underlying 517 

demography and genomic architecture are controlled for (Figure 2, Quadrant I). Prioritizing selection 518 

candidates based on P-values also identifies regions whose summary statistic values are modest, yet 519 

atypical compared to the same regions in our simulations (Figure 2, Quadrant III). Even more striking 520 

is the high proportion of GO gene sets that are identified as significant by a Mann-Whitney U test but that 521 

are not significant when compared against our neutral simulations that account for demographic history 522 

and genomic architecture. Caution is still advised when interpreting our results, however, because no 523 

simulation can account for all potential confounding factors (Pavlidis et al. 2012). 524 

 525 

Candidates of adaptation in Western African Pygmy groups 526 

With our high coverage whole-genome sequencing data, we conducted a comprehensive model-527 

based whole-genome scan for natural selection for Western African Pygmies using a series of 528 

complementary statistical approaches. Many loci detected by our approach are involved in muscle 529 

development, bone synthesis, immunity, reproduction, cell signaling and development, and energy 530 

metabolism (see Results).  531 

Of particular interest are several genomic regions that show signatures of selection in African 532 

Pygmies that might contribute to short stature. Seven genes known to be associated with bone synthesis 533 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2015. ; https://doi.org/10.1101/022194doi: bioRxiv preprint 

https://doi.org/10.1101/022194
http://creativecommons.org/licenses/by-nc-nd/4.0/


were identified by either iHS or G2D analysis. Among them, FLNB, EPHB1, and TSPAN5 have been 534 

functionally shown to affect body size through gene knockout or knockdown experiments in mice (Iwai et 535 

al. 2007; Farrington-Rock et al. 2008; Benson et al. 2012; Zhou et al. 2014), and FLNB, AXDND1, 536 

ZBTB38, and GAREM have been shown to be associated with human height in multiple populations 537 

(Lettre et al. 2008; Weedon et al. 2008; Kim et al. 2012; Wang et al. 2013; Medina-Gomez and 538 

Rivadeneira 2014; Wood et al. 2014). EPHB1 was reported to be genetically associated with height in 539 

African Pygmies (Jarvis et al. 2012). Interestingly, although we found no non-synonymous variants in the 540 

locus containing EPHB1, the Pygmy and farmer populations are each nearly fixed for a single population-541 

specific haplotype (Figure 3B-C), an pattern expected under an incomplete selective sweep (Voight et al. 542 

2006, Pickrell et al. 2009, Pritchard et al. 2010). FLNB (locus: chr3:57,918,877-58,055,004) is within the 543 

locus chr3:45–60Mb that was also previously reported to be associated with height in Pygmies (Jarvis et 544 

al. 2012, Lachance et al. 2012). Clinically, nonsense mutations in FLNB cause of Spondylocarpotarsal 545 

synostosis syndrome (SCT), a recessive disease characterized by short stature and fusions of the vertebrae 546 

and carpal and tarsal bones (Krakow et al. 2004). Our observation of many large FST variants within 547 

ENCODE regulatory sequences (Figure S14) around this locus suggests that short stature in Western 548 

African Pygmies might arise through cis-regulatory evolution. 549 

Several studies (e.g. Diamond 1991; Venkataraman et al. 2013) have hypothesized that the ability 550 

to quickly climb trees and move in dense forest is a potential adaptation of Pygmy hunter-gatherers. The 551 

most highly differentiated SNV rs437129 in our candidate gene OBSCN, a myofibrils regulating obscurin 552 

gene, is predicted by PolyPhen2 (score = 0.968) to be a functionally important nonsynonymous variant 553 

(although not by SIFT; SIFT score = 0.43). Our haplotype analyses suggest that this SNV is associated 554 

with population-specific haplotypes in the Pygmies and the farmers (Figure 4B-C), although the signal is 555 

noisy. In Pygmies, the fixed allele of this SNV is consistent with the ancestral state (PanTro3, Hg19). 556 

Under a classic selective sweep model, one might expect a derived beneficial allele to sweep up in 557 

frequency, but a nearby ancestral allele could hitchhike with the selected site (Smith and Haigh 1974). 558 

However, selection may sometimes favor an ancestral allele that has been segregating in the population 559 

(Pritchard et al. 2010). Because accessing essential foods is crucial for hunter-gatherers, mobility-related 560 
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adaptation to locomotor efficiency amid dense vegetation has been emphasized in several recent studies 561 

(Diamond 1991; Bramble and Lieberman 2004; Perry and Dominy 2009). Indeed, Venkataraman et al. 562 

(2013) recently presented evidence of a positive correlation between tree climbing ability and muscle 563 

fiber length in African Twa and Asian Agta Pygmies compared to neighboring non-tree-climbing farmers. 564 

This suggests that tree falls could be a substantial selective pressure, and natural selection might in turn 565 

have favored anatomical structures (e.g. muscle fiber length) that promote safe vertical climbing 566 

(Venkataraman et al. 2013). A plausible evolutionary explanation for our observed selective signal is that 567 

natural selection favors the ancestral haplotype of OBSCN possessed in hunter-gatherer Pygmies to adapt 568 

specific muscle architecture to locomotor efficiency, while local adaptation outside the forest to an 569 

alternative allele or relaxation of selection might promote the observed population differentiation around 570 

this locus. The selective signal we found around the gene OBSCN could thus be the first genetic evidence 571 

that supports the mobility hypothesis. 572 

 We employed several complementary statistical tests to detect different modes of adaptation. The 573 

haplotype-based iHS test has greatest power for detecting recent (< 30 kya) incomplete sweeps, but the 574 

frequency-spectrum-based G2D test is capable of detecting completed and ongoing sweeps that occurred 575 

< 300 kya as well as balancing selection (Sabeti et al. 2006; Nielsen et al. 2009). Our gene set enrichment 576 

analysis, on the other hand, has little power to detect sweeps but can detect polygenic selection (Daub et 577 

al. 2013). It is thus not surprising that there is no overlap among the candidates identified by our different 578 

tests. All three tests did, however, detect regions including genes associated with immunity (see Results). 579 

In particular, our analyses suggest an ongoing sweep in Pygmies near the immunity gene HLA-DPA1 580 

(Figure 5). The pervasive signals of natural selection on immune function we find are consistent with the 581 

view that genes involved in pathogen response are among the most common targets of adaptive evolution 582 

(Williamson et al. 2007; Barreiro and Quintana-Murci 2009; Jarvis et al. 2012; Novembre and Han 2012). 583 

We leveraged whole-genome sequence data from African Pygmy and agriculturalist populations 584 

to infer their prehistory and search for Pygmy-specific adaptation signals through a carefully designed 585 

computational and statistical framework. In doing so, we accounted for many potentially confounding 586 

factors, including demography and mutation and recombination rate heterogeneity. Future work may be 587 
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needed to account for additional confounding factors, but we believe the framework presented here offers 588 

great promise for shedding light on the complex demographic and adaptive history of human populations. 589 

 590 

Materials and Methods 591 

Whole genome sequencing data and data quality assurance 592 

Our Biaka Pygmy (N=4) DNA samples were obtained from publicly available cell lines administrated by 593 

the Centre d’Etude du Polymorphism Human Genome Diversity Panel (Li et al. 2008). Details regarding 594 

the Baka Pygmies (N=3) samples are in Lachance et al. (2012). Whole-genome sequencing data for the 595 

unrelated Yoruba farmers (N=9) were downloaded from the CGI data repository (Coriell sample IDs: 596 

NA18501, NA18502, NA18504, NA18505, NA18508, NA18517, NA19129, NA19238, and NA19239). 597 

The median coverage across the samples was 60.5X (s.d. = 8.54X). Genome assembly and variant calling 598 

were done using the standard CGI Assembly Pipeline 1.10, CGA Tools 1.4, and NCBI Human Reference 599 

Genome build 37. Before any quality control filters, 13,276,198 autosomal single nucleotide variants 600 

(SNVs) were called in our samples. Unless mentioned otherwise, we analyzed only variants that were 1) 601 

fully called across all samples, 2) not in any known or called indels, 3) not in any known or called copy 602 

number variants, 4) not in any known segmental duplication regions, and 5) aligned against chimpanzee 603 

(PanTro3, Hg19). Databases that used for steps 3, 4, and 5 were downloaded from UCSC Genome 604 

Browser in May 2013. We used Hg19 coordinates, using the UCSC Genome Browser liftOver program if 605 

necessary. After filtering, our data consist of 10,865,288 SNVs. 606 

 607 

Estimation of demographic parameters using !a!i 608 

We used the demographic inference tool !a!i (Gutenkunst et al. 2009) to build and fit our demographic. 609 

In short, !a!i is a forward time simulator of allele frequency spectrum (AFS) based on a diffusion 610 

approximation (Kimura 1964). To ensure genotype quality for demographic inference, SNVs were 611 

removed if they overlapped with any known repetitive genomic regions based on the UCSC Genome 612 

Browser databases, Self Chain (if sequence identity > 0.9) and RepeatMasker. Sites within genes or 1,000 613 

flanking base pairs were excluded to minimize possible effects of natural selection. Coordinates of genes 614 
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were from the RefSeq genes database, downloaded from the UCSC Genome Browser in May 2013. We 615 

used the remaining 1,575,394 SNVs from a total of 325,957,426 non-genic base pairs to build an 616 

unfolded AFS, polarized via human-chimpanzee alignment (PanTro3, Hg19). We used the !a!i 617 

implementation of a context-dependent substitution model to statistically correct the unfolded AFS to 618 

mitigate possible biases due to ancestral state misidentification (Hernandez et al. 2007). To estimate 619 

demographic parameters, the derivative-based BFGS algorithm was used to optimize the composite log-620 

likelihood. Confidence intervals were estimated fitting 100 non-parametric bootstraps of the non-genic 621 

data. We converted parameters from the population-genetic units to physical units using a phylogenetic-622 

based mutation rate of 2.35x10-8 per-base per-generation (Nachman and Crowell 2000; Gutenkunst et al. 623 

2009) and a generation time of 25 years. 624 

 625 

Assessment of demographic model 626 

The composite likelihood !a!i calculates is not the full likelihood due to the linkage. To minimize linkage 627 

in our model selection analysis, we thinned our data by choosing variants at least 0.01 cM apart and re-fit 628 

the candidate models to the resulting sub-dataset. We then calculated AIC (Akaike 1974) and BIC 629 

(Schwarz 1978) as -2logL + kP, where L is the likelihood function, k is the number of parameters in the 630 

model, and P is 2 for AIC and log(n) for BIC, where n is the sample size. In our comparisons of real and 631 

simulated LD decay, we estimated LD between pairs of variants by their correlation coefficient (r2) using 632 

a genotype code (0, 1, or 2 reference alleles). We performed our PSMC analysis with v0.6.3 (Li & Durbin 633 

2011), using the parameters suggested by the authors: psmc -N25 -t15 -r5 -p "4+25*2+4+6". To assess 634 

variation in the inferred PSMC curves, we analyzed 100 non-parametric bootstraps using the utility 635 

provided in the PSMC software. 636 

 637 

Coalescent whole-genome simulations 638 

We used MaCS (Chen et al. 2009) for our coalescent simulations, because of its ability to efficiently 639 

perform whole genome simulations with recombination. To avoid potential underestimation of 640 

recombination rates, we removed the first 5 Mb on each chromosome as suggested by the creators of the 641 
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African American recombination map (Hinch et al. 2011). For consistency, we also did this for the 642 

HapMap map (Frazer et al. 2007). To model mutational heterogeneity, carried out a 3-step procedure. 643 

First, we divided the genome into 25,000 bp windows and estimated the population genetic mutation 644 

parameter !! using !a!i given a demographic model. Second, we performed each MaCS using a mutation 645 

parameter !!"#, the largest " estimated among all of the windows. Third, for each window we adjusted 646 

its mutation rate by dropping a proportion 1 – (
!!!

!!"#!
! of the simulated variants. All simulations presented 647 

here model the effects of demography, recombination heterogeneity, and mutation heterogeneity. For our 648 

simulations, we excluded the regions that were excluded in the real data due to our quality control criteria.  649 

 650 

Scan for signals of selective sweeps 651 

All test statistics were calculated using pre-defined sliding windows of 500 SNVs, with a step size of 100 652 

SNVs. Windows longer than 1 Mb were dropped to avoid complex genomic regions, such as centromeres 653 

or large structure variants. To maximize statistical power and focus on signals of selection in Western 654 

Pygmies generally, for all our tests we combined samples from the two Pygmy populations because they 655 

are so recently diverged. We calculated statistical significance of each window using our whole-genome 656 

coalescent simulations under the best-fit demographic models. To account uncertainty in parameter, we 657 

drew 1,000 parameter sets from the confidence intervals from each model, assuming that they had a 658 

multivariate normal distribution. The per-window P-value was defined as the fraction of simulations with 659 

statistic values greater or equal to the observed value of the same window in the real data. Candidates for 660 

each neutrality test were defined as the top 0.5% of the corresponding P-value distribution. We then ran 661 

100,000 additionally local simulations for each candidate window to obtain a finer P-value resolution. We 662 

estimated false discovery rates using the method of Williamson et al. (2006). 663 

The G2D test searches for evidence of hard selective sweeps by comparing the spatial distribution 664 

of the frequency spectrum of a locus to the expected one based on the whole genome (Nielsen et al. 2009). 665 

This statistic is defined as 666 

!!! ! !" !! !!
!" !! !!

,   (1) 667 
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where Xw is the SNV data in the window w and !! and !!  are the estimated joint allele frequency spectra 668 

using the SNV data in the window w and whole genome, respectively. The G2D statistic is calculated on 669 

the unfolded frequency spectrum based on the human-chimpanzee alignment (PanTro3, Hg19). Possible 670 

biases due to ancestral state misidentification are accounted for in the inference of the demographic 671 

models and, therefore, in our simulations when assessing the statistical significance. 672 

To detect regions undergoing a recent partial sweep, we used the integrated haplotype score (iHS, 673 

Voight et al. 2006) implemented in the software selscan (Szpiech and Hernandez 2014). Haplotype 674 

phasing was done using BEAGLE v3.1.1 (Browning and Browning 2007). To enhance phasing accuracy, 675 

we included additional public genotype data: a Bakola and a Bedzen genome (CGI Assembly Pipeline 676 

1.10, CGA Tools 1.4) from Lachance et al. (2012), 16 Biaka Pygmies genotyped by the Human Genome 677 

Diversity Project (HGDP, Li et al. 2008, Illumina 650 K), and 10 Baka and 10 Bakola Pygmies genotyped 678 

by the Hammer lab of the University of Arizona (Affymatrix Axiom 500K). The 9 Yoruba genomes were 679 

phased separately using the same approach, with an additional 4 Luhya genomes from the CGI public 680 

data repository, genotype data of 81 Yoruba and 86 Luhya samples from the 1000 Genomes Project and 681 

21 Yoruba and 10 Luhya samples from the HGDP. All positions were converted into Hg19 coordinates 682 

using UCSC LiftOver utility if necessary. We filtered out duplicated samples and/or related individuals 683 

using the identical-by-descent operation in the software package PLINK (Purcell et al. 2007). To account 684 

for possible biases in the downstream iHS analysis due to phasing errors, haplotype phase was estimated 685 

using the same procedure used for the real data. iHS was calculated with the default parameters in selscan, 686 

and standardized following Voight et al. (2006). For both real and simulation data, the strength of 687 

selection signal in each window was quantified by the proportion of SNVs with |iHS| > 2 (Voight et al. 688 

2006). 689 

 690 

Haplotype and diplotype analyses 691 

Hierarchical clustering for both haplotype and diplotype data was performed using the R function “hclust” 692 

in the stats package (R Development Core Team, 2012). We used the R package pegas (v.0.6, Paradis 693 

2010) to plot haplotype network, using pairwise nucleotide differences as the distance matrix. 694 
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 695 

Inference of polygenic selection 696 

We downloaded 1,454 Gene Ontology gene sets from the Gene Set Enrichment Analysis (GSEA) project 697 

at the Broad Institute in January 2014 (Subramanian et al. 2005), discarding 13 gene sets that shared more 698 

than 90% of their genes with another set. One-sided (alternative distribution is greater than the null) 699 

Mann-Whitney U tests were performed in R (R Development Core Team, 2012). In our simulations, the 700 

genic FST distributions were obtained by calculating FST for all SNVs within the same genomic regions 701 

that are defined as genes in the real data (RefSeq, downloaded from USCS Genome Browser in May 702 

2013). The likelihood of a gene set being significant was calculated as  703 

! ! !!!"#$%!!"#$"%"&'$(!!"#$%!!!!!!
!!! ,  (2) 704 

where |S| is the total number of whole genome simulations, s is a given whole genome simulation, and I is 705 

an indicator function of being significant under s. 706 

 707 

ENCODE regulatory elements 708 

We downloaded the ENCODE database (wgEncodeBroadHmmHsmmHMM) using the UCSC Genome 709 

Browser in February 2014. We used the five most reliable functional categories: Active Promoter (state 1), 710 

Strong Enhancer (states 4 and 5), Insulator (state 8), and Polycomb-repressed (state 12). This yielded 711 

134,769 regulatory elements. 712 

 713 

Data Accessibility 714 

Our Biaka genomic data will be available in the dbSNP database 715 

(http://www.ncbi.nlm.nih.gov/projects/SNP/). The Baka genomic data are in dbSNP with submitter batch 716 

IDs: Lachance2012Cell_snp, Lachance2012Cell_deletion, Lachance2012Cell_insertion, 717 

Lachance2012Cell_complex_substitution. The Yoruba genomic data are available at the CGI public data 718 

repository (http://www.completegenomics.com/public-data/). 719 

 720 
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 726 

Figure Legends 727 

Figure 1. Best-fit demographic models and observed and predicted frequency spectra for African 728 

farmer (Yoruba) and Pygmy (Baka and Biaka) populations. (A) The continuous asymmetric gene 729 

flow model (Model-1) we fit, with the 10 free parameters labeled. (B) The single-pulse admixture model 730 

(Model-2) we fit, with the 9 free parameters labeled. (C) The marginal spectra for each pair of 731 

populations. Row one is data, row two (Model-1) and four (Model-2) are models, and row three and five 732 

are Anscombe residuals of model minus data for Model-1 and Model-2, respectively.  733 

 734 

Figure 2. Importance of using P-values to define candidates in the G2D analysis. Each point is a 735 

window of 500 single nucleotide variants, and color represents the density of points. The vertical black 736 

line and the horizontal purple line are the top 0.5% significance cutoffs for the G2D and P-value 737 

distributions, respectively. Windows in Quadrant I are outliers in the G2D distribution but are not 738 

statistically significant when the effects of demography and genome architecture are controlled for. In 739 

Quadrant III are the many windows that are statistically significant even though their G2D values are 740 

modest. 741 

 742 

Figure 3. Candidate selection signal in EPHB1. (A) Distribution of FST, functional annotation (Refseq 743 

and ENCODE elements, see Materials and Methods), and recombination rate (Hinch et al. 2011) for all 744 

variants (dots) in the candidate locus chr3:134572433-134716365. Genes are shown under the plot with 745 

black (non-coding sequences) and brown (exons) lines. (B) Haplotype network for the region (chr3: 746 

134.66-134.68 Mb, the region between the two arrows in panel A) with elevated FST. Each circle is a 747 
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haplotype with size proportional to the number of chromosomes compared to the size of single 748 

chromosome shown on the legend and colors indicating the counts of that haplotype in our farmer and 749 

Pygmy samples. Haplotypes are connected by lines indicating the pairwise nucleotide distance between 750 

them. (C) Hierarchical clustering of the haplotypes in (B). Columns are SNPs, with grey and black for 751 

ancestral and derived alleles, respectively, while rows show individual haplotypes. 752 

 753 

Figure 4. Candidate selection signal near OBSCN. (A) As in Fig. 3, but for the region chr1:228103665-754 

228842760. (B-C) As in Fig. 3, but for the region chr1: 228.46-228.54 Mb with elevated FST. 755 

 756 

Figure 5. Candidate selection signal near HLA-DPA1. (A) As in Fig. 3, but for the candidate locus 757 

chr6:32968692-33049012. (B-C) As in Fig. 3, but for the region chr6: 33.03-33.05 Mb with elevated FST. 758 
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Tables 774 

 775 

Table 1. Parameter estimates and confidence intervals for two best-fit demographic models. Model-1: continuous asymmetric gene flow. Model-776 
2: single-pulse gene flow. Estimates and confidence intervals are shown for effective population sizes (N), times (T) of population divergence and gene 777 
flow onset, levels of gene flow (m) between farmer (F) and Pygmy (P) populations. Tadmixture and fadmixture refer to the timing and strength of the single-778 
pulse gene flow from the farmers (F) to Pygmies (P) in Model-2. 779 
 Model-1  

(Asymmetric gene flow) 
Model-2 

(Single-pulse gene flow) 
Demographic parameters Estimates +95% C.I. Estimates +95% C.I. 
Na: Ne

* ancestral population 6,727 6,676 – 6,819 6,735 6,671- 6,826 
Nep: Ne ancestral population after expansion 20,473 15,560 – 27,561 15,236 14,436 – 15,894 
NF: Ne contemporary Farmer (F) 11,900 11,714 – 12,138 13,854 13,721 – 14,055 
NP: Ne contemporary Pygmy (P) 5,831 5,631 – 5,986 5,373 5,217 – 5,530 
Tep: Time† of ancestral expansion 221,118 210,513 – 236,634 232,629 223,172 – 244,327 
Tsplit-PF: Time of P-F split 155,671 139,661 – 164,280 89,645 85,503– 91,725 
Tmig-PF: Time of onset of gene flow between P and F 39,337 36,565 – 43,550 – – 
Tadmixture: Time of admixture from F to P – – 7,136 6,887 – 7,656 
Tsplit-P: Time of split between the two P populations 5,139 4,762 – 5,630 4,049 3,803 - 4,396 
mPF: Gene flow‡ (P ! F) 9.0x10-4 8.4x10-4 – 9.4x10-4 – – 
mFP: Gene flow (F ! P) 9.1x10-5 8.2x10-5- 1x10-4 – – 
fadmixture: Strength of admixture (P ! F) – – 0.6799 0.6789 – 0.6818 
*Effective population size in individuals. †Time in years, assuming 25 years per generation and mutation rate 2.35x10-8 per base per generation 780 
(Gutenkunst et al. 2009). ‡Fraction of the population each generation that are new migrants. +Confidence intervals estimated using100 conventional 781 
bootstraps.782 
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