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Abstract

Sub-cellular localisation of proteins is an essential post-translational regulatory
mechanism that can be assayed using high-throughput mass spectrometry (MS). These
MS-based spatial proteomics experiments enable to pinpoint the sub-cellular distribu-
tion of thousands of proteins in a specific system under controlled conditions. Recent
advances in high-throughput MS methods have yielded a plethora of experimental
spatial proteomics data for the cell biology community. Yet, there are many third-
party data sources, such as immunofluorescence microscopy or protein annotations
and sequences, which represent a rich and vast source of complementary information.
We present a unique transfer learning classification framework that utilises a nearest
neighbour or support vector machine system, to integrate heterogeneous data sources
to considerably improve on the quantity and quality of sub-cellular protein assignment.
We demonstrate the utility of our algorithms through evaluation of five experimental
datasets, from four different species in conjunction with three different auxiliary data
sources to classify proteins to tens of sub-cellular compartments with high generali-
sation accuracy. We further apply the method to a experiment on pluripotent mouse
embryonic stem cells to classify a set of previously unknown proteins, and validate our
findings against a recent high resolution map of the mouse stem cell proteome. The
methodology is distributed as part of the open-source Bioconductor pRoloc suite for
spatial proteomics data analysis.
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1 Introduction

Cell biology is currently undergoing a data-driven paradigm [1] shift. As highlighted by [2],
the experimental tools of molecular biology, imaging and biochemistry enable cell biologists
to track the complexity of many fundamental processes such as signal transduction, gene
regulation, protein interactions and sub-cellular localisation. They note that ”with the
culmination of ’omic technologies, the molecular and cellular parts lists of cells are known,
quantifiable, and increasingly readily available in electronic databases. This remarkable
success at the same time signifies that biology has irreversibly changed to a data rich science.”
Over the last decade, there has been a dramatic growth in data, both in terms of size and
heterogeneity. Coupled with this influx of experimental data, databases such as Uniprot [3]
and the Gene Ontology [4] have become more information rich, providing valuable resources
for the community. The time is ripe to take advantage of complementary data sources in a
systematic way to support hypothesis- and data-driven research. Indeed, one of the biggest
challenges in computational biology is how to meaningfully integrate heterogenous data;
transfer learning, a paradigm in machine learning, is ideally suited to this task.

Transfer learning has yet to be fully exploited in computational biology and is still a
growing field within the machine learning community. To date, various data mining and
machine learning tools, in particular classification algorithms have been widely applied in
many areas of biology [5]. A classifier is trained to learn a mapping between a set of observed
instances and associated external attributes (class labels) which is subsequently used to
predict the attributes on data with unknown class labels (unlabelled data). In transfer
learning, one has a primary task which one wishes to solve, and associated primary data
which is typically expensive, of high quality and targeted to a address a specific question
about a specific biological system/condition of interest. While standard supervised learning
algorithms seek to learn a classifier on this data alone, the general idea in transfer learning
is to complement the primary data by drawing upon a auxiliary data source, from which one
can extract complementary information to help solve the primary task. The secondary data
typically contains information that is related to the primary learning objective, but was not
primarily collected to tackle the specific primary research question at hand. These data can
be heterogenous to the primary data and are often, but not necessarily, cheaper to obtain
and more plentiful but with lower signal-to-noise ratio.

There are several challenges associated with the integration of information from auxiliary
sources. If the primary and auxiliary sources are combined via straightforward concatenation
the signal in the primary can be lost through dilution with the auxiliary due to the plentiful
and often lower signal-to-noise ratio found in the auxiliary for the primary task. Feature
selection can be used to extract the attributes with the most distinct signals, however the
challenge still remains in how to combine this data in a meaningful way. Data heterogeneity
is also a challenge; combining data that exist in different data spaces is often not straightfor-
ward and different data types can be sensitive to the classifier employed, in terms of classifier
accuracy.

In one of the first applications of transfer learning Wu and Dietterich [6] used a k-nearest
neighbours (k-NN) and support vector machine (SVM) framework for plant image classifi-
cation. Their primary data consisted of high-resolution images of isolated plant leaves and
the primary task was to determine the tree species given an isolated leaf. An auxiliary data
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source was available in the form of dried leaf samples from a Herbarium. Using a kernel
derived from the shapes of the leaves and using the auxiliary transfer learning framework de-
scribed in [6], Wu and Dietterich showed that when primary training data is small, training
with auxiliary data improves classification accuracy considerably. There were several limita-
tions in their methods: firstly, the data sources in the k-NN transfer learning (TL) classifier
could only be weighted by data source and not on a class-by-class basis, and secondly in the
SVM framework the primary and auxiliary data were expected to have the same cardinality
and lie in the same data space. Here, we present an adaption and significant improvement
of this framework and extend the usability of the method by (i) incorporating a multi-class
weighting schema in the k-NN TL classifier, and (ii) by allowing the integration of primary
and auxiliary data with different cardinality in the SVM schema to allow the integration
of heterogenous data types. We apply this framework to the task of protein sub-cellular
localisation prediction from high resolution mass spectrometry (MS)-based data. While we
demonstrate algorithmic usage for the spatial proteomics community the framework can be
applied in many areas of computational biology.

Spatial proteomics, the systematic large-scale analysis of a cell’s proteins and their assign-
ment to distinct sub-cellular compartments, is vital for deciphering a protein’s function(s)
and possible interaction partners. Eukaryotic cells are divided into sub-cellular niches, which
include organelles and macro-molecular complexes of proteins which represent specialised
compartments with unique and dedicated functions [7]. Knowledge of where a protein spa-
tially resides within the cell is covetable to biologists as it not only provides the physiological
context for their function but also plays an important role in furthering our understanding
of a protein’s complex molecular interactions e.g. signalling and transport mechanisms, by
matching certain molecular functions to specific organelles. It has been shown that there
is a significant correlation between aberrantly localised proteins and many human diseases
as diverse as Alzheimer’s disease, kidney stones and cancer [8], further highlighting the im-
portance of protein localisation and the role that spatial proteomics may play in developing
new platforms for therapeutic intervention.

There exist a number of sources of information which can be utilised to assign a protein
to a sub-cellular niche. These range from high quality data produced from experimental
high-throughput quantitative MS-based methods and imaging data, to freely available data
from repositories and amino acid sequences. In the field of high-throughput quantitative
proteomics, many modern experimental designs and multivariate data analysis methods have
been developed which involve the creation of single or multiple fractions of a cell lysate to
quantify and identify the protein content of a population of potentially heterogeneous cells
to permit the assignment of proteins to tens of different sub-cellular niches at the whole
proteome level [9]. Other approaches consider more global distribution patterns of proteins
in sub-cellular niches using defined enrichment patterns, for example the Localisation of
Organelle Proteins by Isotope Tagging (LOPIT) pioneered by Dunkley et al [10] and Protein
Correlation Profiling (PCP) by Foster et al [11] in 2006.

These methods involve gentle cell lysis followed by several rounds of differential centrifu-
gation or gradient-based ultra-centrifugation to separate the cell content as a function of its
density. Several fractions across the gradient are then collected and their respective pro-
tein complements are identified and quantified by high resolution MS. Protein distributions
are then determined by measuring their relative abundance across the fractions employed.
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The resulting data from these methods is in the form of a matrix where the rows represent
proteins and the columns contain the relative abundance of each protein in each fraction
along the sub-cellular fractionation gradient. Proteins with similar organelle residency will
share similar distribution profiles characteristic of the sub-cellular compartment with which
they are associated [12]. These approaches have been heavily utilised to gain information
about the sub-cellular location of proteins in numerous species, for example Arabidopsis [10,
13, 14, 15, 16, 17], Drosophila [18], yeast [19], human cell lines [20, 21], mouse [11, 22] and
chicken [23]. Such analyses has resulted in large-scale data sets to enable the simultaneous
assignment of thousands of proteins to multiple sub-cellular locations.

Based on the distribution of a set of known genuine organelle residents, termed marker
proteins, pattern recognition and machine learning (ML) methods can be used to match and
associate the distributions of unknown residents to that of one of the markers. Traditional
spatial proteomics relies extensively on reliable organelle markers and multivariate statistical
and supervised ML methods for high-throughput reliable proteome-wide localisation predic-
tion [24]. To date, classification had been tackled using a number of popular supervised
ML algorithms, for example, support vector machines (SVMs) [25], the k-nearest neighbours
(k-NN) algorithm [16], random forest [26], naive Bayes [15], neural networks [27], and other
classic multivariate statistical methods such as partial-least squares discriminant analysis
[10], [18], [23], and the χ2 metric [20, 11].

Computational development applied to MS-based protein-organelle association are a re-
cent development, but the computational determination of protein localisation using in silico
data is an established bioinformatics challenge (reviewed in [28, 29, 30]). Many methods have
been developed to predict protein localisation from amino acid sequence features e.g. amino-
acid composition information (e.g. [31, 32, 33, 34, 35, 36, 37]), localisation signals and motifs
relevant to protein sorting (e.g. [38, 39, 40, 41, 42, 43, 44, 45]). Annotation-based prediction
methods have also been widely used that use information about functional domains (e.g. [46,
47]), protein-protein interaction (e.g. [48, 49, 50]) and Gene Ontology (GO) [4] terms (e.g.
[51, 52, 53, 54]). Although not all proteins in GO are reliably annotated, for example, ac-
cording to the 2015 03 release of UniProtKB [3] the human, mouse, Drosophila melanogaster
and Arabidopsis thaliana proteomes have less than 14%, 14%, 6% and 13% experimentally-
verified GO CC sub-cellular annotations, in each proteome respectively, these data cover the
entire proteome of the organism.

Despite improvements in generalisation accuracy of sequence-based classifiers, a fun-
damental problem concerns the biological relevance and ultimate utility to cell biology of
sequence-based prediction. Annotated sequence does not change according to cellular con-
dition or cell type, whereas protein localisation does. Furthermore, this type of data does
not adequately describe the range of mechanisms via which a particular protein may reside
in a particular organelle. Not all protein sequences contain motifs or exhibit compositional
properties indicative of organelle residency. This considerable body of ML research into the
prediction of protein-organelle association from annotated protein sequence has yet to be
exploited within organelle proteomics experiments. Despite the inherent limitations of us-
ing in silico data to predict dynamic cell- and condition-specific protein properties, transfer
learning [6, 55] may allow the transfer of complementary information available from these
data to classify proteins in experimental proteomics datasets. Transfer learning has been
used to predict sub-cellular localisation from in silico data sources such as GO terms and
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Chou’s pseudo amino-acid composition [52, 53, 54], but no framework has yet been developed
to allow the integration of experimental data and third-party sources. It is well documented
that training ML models on multiple related data sources can lead to higher generalisation
accuracies than those obtained on each data set individually [25, 56, 57, 58]. Other data
sources include protein-protein interaction partners (which must share sub-cellular localisa-
tion in order to interact), wider annotation, and imaging data, for example data available
from such projects as the Human Protein Atlas [59].

Here, we present a new transfer learning framework, inspired by Wu and Dietterich’s
classic inductive transfer learning framework [6]. The primary task is protein localisation
prediction from MS-based quantitative proteomics datasets, and we exploit a secondary aux-
iliary data source to improve classification. We use, among others, Gene Ontology Cellular
Compartment (GO CC) terms as an auxiliary data source, to improve upon the classification
of experimental and condition-specific sub-cellular localisation predictions from MS-based
quantitative proteomics data in an organelle specific manner. Using the k-Nearest Neigh-
bour (k-NN) and support vector machine (SVM) algorithms in a transfer learning framework
we find that when given data from a high quality MS experiment, integrating data from a
second less information rich but more plentiful auxiliary data source directly in to classifier
training and classifier creation results in the assignment of proteins to organelles with high
generalisation accuracy. Five experimental MS LOPIT datasets, from four different species,
were employed in testing the classifiers. We further show the flexible of the pipeline through
testing two other auxiliary data sources; (1) tagging-based sub-cellular imaging data [59], and
(2) sequence and annotation features (see table 1) obtained from a correlation-based feature
selection [60] on the input features used for the classifier YLoc [61, 62]. The results obtained
demonstrate that this transfer learning method outperforms a single classifier trained on each
single data source alone and on an class-by-class basis, highlighting that the primary data
is not diluted by the auxiliary data. A new transfer learning framework for the integration
of heterogeneous data sources in proposed. This methodology forms part the open-source
open-development Bioconductor [63] pRoloc [64] suite of computational methods available
for organelle proteomics data analysis.

2 Materials and methods

2.1 Data sources

2.1.1 Primary data

Five datasets, from studies on Arabidopsis thaliana [10, 16], Drosophila embryos [18], human
embryonic kidney fibroblast (HEK293T) [21], and mouse pluripotent embryonic stem cells
(E14TG2a) (unpublished) were collected using the standard LOPIT approach as described
by Sadowski et al. [13]. In the LOPIT protocol, organelles and large protein complexes are
separated by iodixanol density gradient ultracentrifugation. Proteins from a set of enriched
sub-cellular fractions are then digested and labelled separately with iTRAQ or TMT reagents,
pooled, and the relative abundance of the peptides in the different fractions is measured by
tandem MS. The number of measurements obtained per gradient occupancy profile (which
comprises of a set of isotope abundance measurements) is thus dependent on the reagents
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and LOPIT methodology used.
The first Arabidopsis thaliana dataset [10] on callus cultures employed dual use of four

isotopes across eight fractions and thus yielding 8 values per protein profiles. The aim of this
experiment was to resolve Golgi membrane proteins from other organelles. Gradient-based
separation was used to facilitate this, including separating and discarding as much nuclear
material as possible during a pre-centrifugation step, and carbonate washing of membrane
fractions to remove peripherally associated proteins, thereby maximising the likelihood of
assaying less abundant integral membrane proteins from organelles involved in the secretory
pathway.

The second Arabidopsis thaliana dataset on whole roots is one of the replicates published
by Groen et al. [16], which was set up to identify new markers of the trans-Golgi network
(TGN). The TGN is an important protein trafficking hub where proteins from the Golgi
are transported to and from the plasma membrane and the vacuole. The dynamics of this
organelle are therefore complex which makes it a challenge to identify true residents of this
organelle. For each replicate, sucrose gradient fractions were subjected to a carbonate wash
to enrich for membrane proteins and four fractions were iTRAQ labelled. Following MS
the resultant iTRAQ reporter ion intensities for the four fractions were normalised to six
ratios and then each proteins abundance was further normalised across its six ratios by sum.
In Groen’s original experiment the iTRAQ quantitation information for common proteins
between the three different gradient were concatenated to increase the resolution of the TGN
[25].

The aim of the Drosophila experiment [18] was to apply LOPIT to an organism with het-
erogeneous cell types. Tan et al. were particularly interested in capturing the plasma mem-
brane proteome (personal communication). There was a pre-centrifugation step to deplete
nuclei, but no carbonate washing, thus peripheral and luminal proteins were not removed.
In this experiment four isotopes across four distinct fractions were implemented and thus
yield four measurements (features) per protein profile.

The human dataset [65, 21] was a proof-of-concept for the use of LOPIT with adherent
mammalian cell culture. Human embryonic kidney fibroblast cells were used and LOPIT was
employed with 8-plex iTRAQ reagents, thus returning eight values per protein profile within
a single labelling experiment. As in the LOPIT experiments in Arabidopsis and Drosophila,
the aim was to resolve the multiple sub-cellular niches of post-nuclear membranes, and also
the soluble cytosolic protein pool. Nuclei were discarded at an early stage in fractionation
scheme as previously described, and membranes were not carbonate washed in order to retain
peripheral membrane and lumenal proteins for analysis.

The E14TG2a embryonic mouse dataset (unpublished) also employed iTRAQ 8-plex la-
belling, with the aim of cataloguing protein localisation in pluripotent stem cells cultured
under conditions favouring self-renewal. In order to achieve maximal coverage of sub-cellular
compartments, fractions enriched in nuclei and cytosol were included in the iTRAQ labelling
scheme, along with other organelles and large protein complexes as for the previously de-
scribed datasets. No carbonate wash was performed.

All datasets are freely distributed as part of the Bioconductor [63] pRolocdata data
package [64].
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2.1.2 Auxiliary data

The Gene Ontology (GO) project provides controlled structured vocabulary for the descrip-
tion of biological processes, cellular compartments and molecular functions of gene and gene
products across species [4]. For each protein seen in every LOPIT experiment the protein’s
associated Gene Ontology (GO) cellular component (CC) namespace terms were retrieved
using the pRoloc package [64]. Given all possible GO CC terms associated to the proteins
in the experiment we constructed a binary matrix representing the presence/absence of a
given term for each protein, for each experiment.

YLoc [61, 62] is an interpretable web sever developed by Briesemeister and co-workers for
the prediction of protein sub-cellular localisation. The YLoc classifier uses features derived
from numerous data sources from both sequence and annotation. A summary of the features
included in the YLoc classifier are shown in Table 1. These features provide a source of
complementary auxiliary data for the high quality MS based datasets described in 2.1.1.
To use these features as an auxiliary source of information, a large-scale correlation-based
feature selection (CFS) approach [60], as described in [61, 62], was used with the markers
from the E14TG2a mouse dataset to find the set of the most important features.

Sequence derived Annotation based
Amino acid sequence PROSITE patterns [66]

e.g. amino-acid composition (AAC), Gene Ontology Terms
pseudo- and normalised- AAC [32] e.g. cellular compartment namespace

Physiochemical properties terms from close homologues
e.g. hydrophobic, positively/negatively
charged, aromatic, small etc.

Autocorrelation features
e.g. autocorrelation of properties such
as charge, volume etc.

Sorting signals
e.g. mono nuclear localisation signal,
nuclear export signal, secretory
pathways etc.

Table 1: A summary of the types of features considered in training and building Briesemeister et al’s YLoc
classifier.

The Human Protein Atlas [67] (version 13, released on 11/06/2014) was used as an auxil-
iary source of information to complement the LOPIT human HEK293 data. The sub-cellular
atlas provides protein expression patterns on a sub-cellular level using immunofluorescently
staining for human U-2 OS cells. We used the hpar Bioconductor package [68] to query the
atlas. The data was encoded as a binary matrix describing the localisation of 670 proteins
in 18 sub-cellular localisations that have been supportively identified.

The definition of primary and auxiliary is not set algorithmically, by the quality or the
size of the data but rather by the data and question at had. For example, here LOPIT was
considered the primary data because it represented the experiment of interest that was to
be complemented by the imaging data. In fact, from an algorithm point of view, primary
and auxiliary are reciprocal.
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2.1.3 Markers

Spatial proteomics relies extensively on reliable sub-cellular protein markers to infer proteome
wide localisation. Markers are proteins that are defined as reliable residents and can be used
as reference points to identify new members of that sub-cellular niche. Here, marker proteins
are selected by domain experts through careful mining of the literature. Markers for each
LOPIT experiment were specific to the system under study and conditions of interest and
are distributed as part of the Bioconductor [63] pRoloc package [64].

2.2 Incorporating auxiliary data

2.2.1 Notation

The primary MS-based experimental datasets P consist of multivariate protein profiles. The
auxiliary data A is a presence/absence binary matrix of Gene Ontology Cellular Compart-
ment (GO CC) terms. Data are annotated to either (i) a single known organelle (labelled
data), or (ii) have unknown localisation (unlabelled data). Thus we split P and A into
labelled (L) and unlabelled (U) sections such that P = (LP , UP ) and A = (LA, UA).

The labelled examples for P and A are represented by LP = {(xl, yl)|l = 1, ..., |LP |}
where xl ∈ RS, and LA = {(vl, yl)|l = 1, ..., |LA|} where vl ∈ RT . Thus each lth protein
is described by vectors of S and T features (generally, S << T ), for P and A respectively.
Each dataset shares a common set of proteins that is annotated to one of the same yl ∈ C =
{1, ..., |C|} sub-cellular classes, where |C| ∈ N is the total number of sub-cellular classes.
Unlabelled data, UP and UA are represented by UP = {xu|u = 1, ..., |UP |} where xu ∈ RS

and UA = {vu|u = 1, ..., |UA|} where vu ∈ RT , respectively.
The labelled data for the ith organelle class, with Ni indicating the number of proteins

for the ith organelle class, is given for P by gPi = {(x, y) ∈ LP |y = i} and for A by
gAi = {(v, y) ∈ LA|y = i}. The labelled dataset of all available proteins over the |C| different

sub-cellular classes is given for P by LP =
⋃|C|

i=1 g
P
i and for A by LA =

⋃|C|
i=1 g

A
i .

2.2.2 Transfer learning using a k-nearest neighbours framework

We adapt Wu and Dietterich’s [6] classic application of inductive transfer using experimental
quantitative proteomics data as the primary source (P ) and GO CC terms as the auxiliary
source (A). We aim to exploit auxiliary data to improve upon the sub-cellular classification
of proteins found in MS-based LOPIT experiments in an organelle specific way, using the
baseline k-nearest neighbours (k-NN) algorithm in a transfer learning framework.

In k-NN classification, an unknown example is classified by a majority vote of its labelled
neighbours, with the example being assigned to the class most common among its k nearest
neighbours. Independent of the transfer learning classifier we compute the best k for each
data source for values k ∈ {3, 5, 7, 9, 11, 13, 15} through an initial 100 rounds of 5-fold cross-
validation using each set of labelled training data for P and then independently for A (as
implemented in pRoloc). We denote by kP the best k for P , and by kA the best k for A.

Having obtained the best k for each data source, the transfer learning algorithm works
as follows. For the uth protein (xu,vu) we wish to classify in U , we start by finding the kP
and kA labelled nearest neighbours for xu and vu in LP and LA, respectively. Denote these
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sets NP
u and NA

u . We then define the vectors pT
u = (pu1 , . . . , p

u
|C|) and qT

u = (qu1 , . . . , q
u
|C|) to

contain counts for each class in the sets of nearest neighbours; that is,

pui = |{(x, y) ∈ NP
u |y = i}|

qui = |{(v, y) ∈ NA
u |y = i}|.

For each protein, let p̂u = pu/kP and q̂u = qu/kA be normalized vectors with elements sum-
ming to 1 and representing the distribution of classes among the sets of nearest neighbours
for each protein. Finally, let NNP = {p̂u|u = 1, ..., |UP |} and NNA = {q̂u|u = 1, ..., |UP |}.

To include both the primary and auxiliary data in the set of potential neighbours we
took a weighted combination of the votes in NNP and NNA for each sub-cellular class. Class
weights are defined by the parameter vector θT = (θ1, . . . , θ|C|) with values θi ∈ {0, 13 ,

2
3
, 1}

chosen by optimisation through a prior 100 independent rounds of 5-fold cross-validation on
a separate training partition of the labelled data. For the uth unknown protein (xu,vu) in
U , the voting scores for each class i ∈ C are calculated as

V (i) = θip̂
u
i + (1− θi)q̂ui (1)

and the protein is assigned to the class c ∈ C maximizing V (i)

c = arg max
i

V (i).

The class weights θi in equation 1 control the relative importance of the two types of neigh-
bours for each class i ∈ C. This differs from Wu and Dietterich’s [6] original approach as
they only weight the data sources and not the classes and the data sources. In this paper
we select each class weight θi from the set {0, 1

3
, 2
3
, 1}; however, the algorithm allows us to

use any real-valued θi ∈ [0, 1]. If θi = 1, then all weight is given to the primary data in class
i and only primary nearest neighbours in class i are considered. Similarly, if θi = 0, then
all weight is given to the auxiliary data in class i and only auxiliary nearest neighbours in
class i are considered. If 0 < θi < 1 then a combination of neighbours in the primary and
auxiliary data sources is considered.

2.2.3 Transfer learning using a SVM framework

Linear programming SVMs
The method is based on the use of the linear programming formulation of the SVM (lpSVM).
This formulation promotes classifiers that are sparse, in the sense that where possible only
a few parameters obtained through training are non-zero; for a detailed introduction see
Mangasarian [69].

We begin by describing the standard lpSVM used for classical two-class classification
problems with a single labelled training set. We use the multiple-class version of this ap-
proach with the individual primary and auxiliary sets P and A as a comparison later in
the paper; we present the method here assuming that the primary set P is being used
and can be set up as a binary classification problem; for example, we might wish to pre-
dict whether or not a protein should be assigned to a single specified sub-cellular class.
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Transfer learning for spatial proteomics

For binary classification problems with class labels y ∈ {+1,−1}, and given labelled data
LP = {(xl, yl)|l = 1, . . . ,m} where m = |LP | the classifier takes the form

h(x) =

{
+1 if f(x;αP , b) ≥ 0
−1 otherwise

(2)

where f is the latent function

f(x;αP , b) =
m∑
l=1

ylα
P
l K

P (xl,x) + b.

Here, KP is a kernel (Shawe-Taylor and Cristianini [70]) associated with the primary data
and αT

P = (αP
1 , . . . , α

P
m) and b are parameters determined by training.

For any vector xT = (x1, . . . , xn) let |.|1 denote the 1-norm

|x|1 =
n∑

i=1

|xi|.

The training algorithm requires that we solve the linear programme

min
αP ,ξ,b

|αP |1 + C|ξ|1 (3)

such that for each i = 1, . . . ,m

yif(xi;αP , b) + ξi ≥ 1

and αP , ξ ≥ 0.1 The parameters ξ and C act in the same way as the corresponding pa-
rameters in the standard SVM: ξ contains the slack variables allowing some examples to be
misclassified, and C controls the extent to which such misclassifications are penalized during
training.

Transfer learning for binary classification
Once again we adapt the method of Wu and Dietterich [6] to our problem. The original
method requires adaptation as it is designed for data having two important differences com-
pared with ours. First, it does not require examples in the labelled data sets LP and LA to be
in correspondence and for corresponding training examples to share the same label. Second it
assumes that P and A share the same number of features. While the first of these differences
is easily dealt with as our data is a special case that is already covered, the second is more
problematic. If we now introduce the labelled auxilliary data LA = {(vl, yl)|l = 1, . . . ,m} a
direct application of the approach in [6] requires us to evaluate kernels of the form K(x,v).
As P and A contain data with different numbers of features this presents a problem for any
SVM-type method, as kernels are usually required to satisfy the Mercer conditions (Mer-
cer [71]), one of which is that they are symmetric, such that K(x,x′) = K(x′,x). While

1Note that it is possible for the linear programme to have no solution, although we found this to be
extremely rare. When this was the case the classifier reverted to predicting the most common class in the
labelled data.
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Transfer learning for spatial proteomics

research on the use of asymmetric kernels has appeared—see for example [72]—even if we
relax this requirement a kernel is essentially a measure of the similarity of its arguments,
and the question arises of how one might sensibly measure the similarity of a protein profile
with a presence/absence vector of GO CC terms. This problem does not arise with Wu and
Dietterich’s data as the two sets they use have the same dimension and are derived in a way
that makes measuring similarity straightforward.

We therefore simplify the original method as follows. We maintain the machinary em-
ployed above for the primary data, and introduce a separate kernel KA and parameter vector
αA for the auxilliary data. A vector to be classified now contains both a protein profile x
and a GO vector v. The latent function becomes

f(x,v;αP ,αA, b) =
m∑
l=1

yl
[
αP
l K

P (xl,x) + αA
l K

A(vl,v)
]

+ b

and training requires us to solve the linear program

min
αP ,αA,ξ,b

|αP |1 + |αA|1 + C|ξ|1 (4)

such that for each i = 1, . . . ,m

yif(xi,vi;αP ,αA, b) + ξi ≥ 1

and αP ,αA, ξ ≥ 0.
Note that this differs from the method of Multiple Kernel Learning (MKL) (Lanckriet

et al. [73], Gönen and Alpaydin [74]) in that in MKL the single kernel K is replaced in the
usual SVM formulation by a weighted sum of kernels

K(x1,x2) =
D∑
i=1

diKi(x1,x2)

where di ≥ 0 and
∑D

i=1 di = 1. The di are then included with α and b in a more in-
volved constrained optimisation problem. Our approach has the advantages that it remains
a straightforward linear program and in fact introduces fewer constraints on the form of the
latent function f .

Throughout our experiments we used for KP and KA the Gaussian kernel

K(x1,x2) = exp(−γ||x1 − x2||2)

where ||.|| denotes the 2-norm ||x|| = (
∑

i x
2
i )

1/2
. We optimized over the value of C, and

also separate values γP and γA for the two kernels as described below, with C in the range
{0.125, 0.25, 0.5, 1, 2, 4, 8, 16} and γP , γA in the range {0.01, 0.1, 1, 10, 100, 1000}.

Multiple classes, class imbalance and probabilistic outputs
As a baseline comparison in our experiments we used a standard SVM as implemented in
the package LIBSVM (Chang and Lin [75]). In extending our transfer learning technique
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Transfer learning for spatial proteomics

to deal with multiple classes and probabilistic outputs we therefore maintained as close a
similarity as possible to the methods used by that library.

SVMs and lpSVMs are in their basic form inherently binary classifiers. In order to
address multiple-class problems using non-probabilistic outputs such as the one presented
here we use the method of Knerr et al. [76]. We train a binary classifier to separate each
pair of classes. In order to classify a new example we then take a vote among these binary
classifiers, assigning the example to the class with the most votes.

As we typically have several sub-cellular classes the binary classification problems used
in constructing the multiple-class classifier are inherently unbalanced. We adjust for this
using the method of Morik et al. [77]. In each binary problem let n+ denote the number
of positive examples and n− the number of negative examples. In the linear programme
objective functions (equations 3 and 4) we replace the single value for C with the adjusted
values

C+ = C
√
n−/n+

C− = C
√
n+/n−

for the positive and negative examples respectively. Let S+ denote the set of indices of the
positive examples and S− the set of indices for the negative examples. The term C|ξ|1 in
equations 3 and 4 becomes

C+
∑
i∈S+

|ξi|+ C−
∑
i∈S−

|ξi|.

Finally, we prefer to employ probabilistic outputs rather than simply thresholding as in
equation 2. Once again we employ the same techniques as LIBSVM. The method for binary
classifiers is presented by Platt [78] and Lin et al. [79], and for multiple-class classifiers by
Wu et al. [6].

2.2.4 Assessing classifier generalisation accuracy

In order to evaluate the generalisation accuracy of each transfer learning classifier we em-
ployed the following schema in all experiments. A set of LOPIT profiles labelled with known
markers, and their counterpart auxiliary GO CC profiles, were separated at random into
training (80%) and test (20%) partitions. The split was stratified, such that the relative
proportions of each class in each of the two sets matched that of the complete set of data.
The test profiles were withheld from classifier training and employed to test the generali-
sation accuracy of the trained classifiers. On each 80% training partition 5-fold stratified
cross-validation was conducted to test all free parameters via a grid search and select the
best set of parameters for each classifier. In each experiment, for each dataset, this process
of 80/20% stratified splitting, training with 5-fold stratified cross-validation on the 80% and
testing on the 20% was repeated 100 times in order to produce 100 sets of macro F1 scores
and class-specific F1 scores. The F1 score (He [80]) is a well-known common measure used
to assess classifier performance. It is the harmonic mean of precision and recall, where

precision =
tp

tp + fp
, recall =

tp

tp + fn
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Transfer learning for spatial proteomics

and tp denotes the number of true positives, fp the number of false positives, and fn the
number of false negatives. Thus

F1 = 2× precision× recall

precision + recall
.

A high macro F1 score indicates that the marker proteins in the test data set are consis-
tently correctly assigned by the algorithm.

To assess whether incorporating an auxiliary data source into classifier training and
classifier creation was better than using primary or auxiliary data alone, we conducted three
independent experiments for each data source and for each transfer learning method. We
used the above schema to assess the generalisation accuracy of using (1) the transfer learning
k-Nearest Neighbours (k-NN) classifier, (2) the primary LOPIT data alone, using a baseline
k-NN, (3) the auxiliary GO CC data alone, using a baseline k-NN. We repeated this for the
lpSVM transfer learning classifier and used a standard SVM with an RBF kernel for single
data source experiments. Using these experiments we were able to compare using a simple
k-NN versus the transfer learning k-NN, and also the use of a standard SVM versus the
combined transfer learning lpSVM approach.

A two-sample two-tailed t-test, assuming unequal variance, was used to assess whether
over the 100 test partitions, the estimated generalisation performance using the optimised
class-specific fusion approach was better than using either primary data alone, or auxiliary
data alone. A threshold of 0.01 was used in all t-tests to determine significance.

3 Results and Discussion

Here, we have adapted Wu and Dietterich’s [6] classic application of inductive transfer learn-
ing using experimental quantitative proteomics data as the primary source and Gene Ontol-
ogy Cellular Compartment (GO CC) terms as the auxiliary source. In this framework, we
exploit auxiliary data to improve upon the protein localisation prediction from quantitative
MS-based spatial proteomics experiments using (1) a class-weighted k-nearest neighbours
(k-NN) classifier, and (2) a Support Vector Machine in a transfer learning framework. We
also show the flexibility of the framework by using data from the Human Protein Atlas [67]
and input sequence and annotation features from the YLoc [61, 62] web server as auxiliary
data sources.

3.1 Transfer learning with k-NN and SVMs

To assess classifier performance we employed the classic machine learning schema of parti-
tioning our labelled data in to training and testing sets, and used the testing sets to assess
the strength of our classifiers. In this setup the training partition is used to optimise the free
parameters of the classifier. Here, for the k-NN transfer learning algorithm these parame-
ters are the weights assigned to each class for each data source, and for the Support Vector
Machine (SVM) transfer learning algorithm these are C, γP and γA for the two kernels as
described in section 2.2.3. The testing set is then used to assess the generalisation accuracy
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of the classifier. By applying the best parameters found in the training phase on test data,
observed and expected classification results can be compared, and then used to assess how
well a given model works by getting an estimate of the classifiers ability to achieve a good
generalisation i.e. that is given an unknown example predict its class label with high ac-
curacy. We applied this schema to the five LOPIT datasets and calculated the the macro-
and class-F1 scores on the test partitions of each dataset. For simplicity, throughout this
manuscript we refer to the mouse pluripotent embryonic stem cell (E14TG2a) dataset as the
’mouse dataset’, the human embryonic kidney fibroblast (HEK293T) dataset as the ’human
dataset’, the Drosophila embryos dataset as the ’fly dataset’, the Arabidopsis thaliana callus
dataset as the ’callus dataset’ and finally the second Arabidopsis thaliana roots dataset, as
the ’roots dataset’.

3.1.1 The k-NN transfer learning classifier

The median macro-F1 scores for the mouse, human, callus, roots and fly datasets were 0.879,
0.853, 0.863, 0.979, 0.965, respectively, for the combined k-NN transfer learning approach.
A two sample t-test showed that over 100 test partitions, the mean estimated generalisation
performance for the k-NN transfer learning approach was significantly higher than on profiles
trained solely from only primary or auxiliary alone for the mouse (p = 2.283e−21 for primary
alone and p = 6.926e−78 for auxiliary alone), human (p = 1.119e−7 for primary alone and
p = 8.104e−32 for auxiliary alone), callus roots (p = 3.761e−17 and p = 3.807e−22), and fly
(p = 2.618e−5 for primary alone, p = 1.379e−112 for auxiliary alone) data (Figure 1).

We found that the callus datatset on the full Arabidopsis thaliana proteome did not
significantly benefit (neither fall detriment) to the incorporation of auxiliary data. This was
unsurprising as this dataset is extremely well-resolved in LOPIT (Supporting Figure 1, top
right) and the median macro F1-score over 100 rounds of training and testing with a baseline
k-NN classifier resulted in a median macro F1-score of 0.985 (the combined approach yielded
a macro F1-score of 0.973).
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Figure 1: Boxplots, displaying the estimated generalisation performance over 100 test partitions for the k-NN
transfer learning algorithm applied with (i) optimised class-specific weights (combined), (ii) only primary
data and (iii) only auxiliary data, for each dataset.

The k-NN transfer learning classifier uses optimised class weights to control the pro-
portion of primary to auxiliary neighbours to use in classification. One advantage of this
approach is the ability for the user to set class weights manually, allowing complete control
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over the amount of auxiliary data to incorporate. As previously described, the class weights
can be set through prior optimisation on the labelled training data. Figure 2 shows the de-
tailed results for the mouse dataset and the distribution of the 100 best weights selected over
100 rounds of optimisation are shown on the top left. We found the distribution of weights
in each dataset reflected closely the sub-cellular resolution in each experiment. For example,
in the E14TG2a mouse experiments the distribution of best weights identified for the endo-
plasmic reticulum (ER), mitochondria and chromatin niches are heavily skewed towards 1
indicating that the proportion of neighbours to use in classification should be predominantly
primary. Note, as described in section 2.2.2 if the class weight is assigned to 1, then strictly
only neighbours in primary data are used in classification and similarly, if the class weight is
0 then all weight is given to the auxiliary data. If the weight falls between these two limits
the neighbours in both the primary and auxiliary data sources is considered. From examin-
ing the principal components analysis plot (PCA) (Figure 2, top right) we indeed found that
these organelles are well separated in the LOPIT experiment. Conversely, we found the that
the 40S ribosome overlaps somewhat with the nucleolus cluster (Figure 2, top right) which
is reflected in the best choice of class weights for these two niches; they are both assigned
best weights of 1/3 and their distribution of best weights is skewed towards 0 indicating
that more auxiliary data should be used to classify these sub-cellular classes. If we further
examine the class-F1 scores for these two sub-cellular niches (Figure 2, bottom) we indeed
find that including the auxiliary data in classification yields a significant improvement in
generalisation accuracy (p = 1.122e−16 for 40S ribosome (red) and p = 1.258e−10, nucleolus
(pink)). We also found this to be the case for the proteasome, which is overlapping with
the cytosol. Biologically, this is expected as the proteasome is known to be localised in the
cytosol in this cell line. We found LOPIT alone did not distinguish between these two sub-
cellular niches in this particular experiment, however, the addition of auxiliary data from
the Gene Ontology resulted in a significant increase in classifier prediction (p = 2.108e−16)
as shown by the class-specific box plot in Figure 2, bottom (black). In this framework we are
able to resolve different niches in the data according to different data sources, as highlighted
in the class-specific box-plots in Supporting Figures 1 to 4.

Many experiments are specifically targeted towards resolving a particular organelle of
interest (e.g. the TGN in the roots dataset) which requires careful optimisation of the
LOPIT gradient. In such a setup sub-cellular niches other than the one of interest may not
be well-resolved which may simply be due to the fact that the gradient was not optimised
for maximal separation of all sub-cellular niches, but only one or a few particular organelles.
Such experiments in particular may benefit from the incorporation of auxiliary data. We
found that for the roots dataset all sub-cellular classes, except the TGN sub-compartment,
benefitted from including auxiliary data (Supporting Figure 3, bottom), highlighting the
advantage of using more than one source of information for sub-cellular protein classification.
The best weight for the TGN was found to be 1 (Supporting Figure 3, top left), as expected
and indicating high resolution in LOPIT for this class.

3.1.2 The SVM transfer learning classifier

Adapting Wu and Dietterich’s classic application of transfer learning [6] we have implemented
a SVM transfer learning classifier that allows the incorporation of a second auxiliary data
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Figure 2: Top left: Bubble plot, displaying the distribution of the optimised class weights over the 100 test
partitions for the transfer learning algorithm applied to the E14TG2a mouse dataset. Top right: Principal
components analysis plot (first and second components, of the possible eight) of the E14TG2a mouse dataset,
showing the clustering of proteins according to their density gradient distributions. Bottom: Sub-cellular
class-specific box plots, displaying the estimated generalisation performance over 100 test partitions for the
transfer learning algorithm applied with (i) optimised class-specific weights (combined), (ii) only primary
data and (iii) only auxiliary data, for each sub-cellular class.

source to improve upon the the classification of experimental and condition-specific sub-
cellular localisation predictions. The method employs the use of two separate kernels, one
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for each data source. As described in section 2.2.4 to assess generalisation accuracy of our
classifier we employed the classic machine learning schema of partitioning our labelled data in
to training and testing sets, and used the testing sets to assess the strength of our classifiers.
This was repeated on 100 independent partitions for the the (i) SVM TL method, (ii) a
standard SVM trained on LOPIT alone, and (iii) a standard SVM trained on GO CC alone.

For the SVM TL experiments the resultant median macro-F1 scores for the mouse, hu-
man, callus, roots and fly datasets were 0.902, 0.868, 0.956, 0.875, 0.961, respectively, over
the 100 partitions. As per the k-NN TL, we found the macro-F1 scores for the SVM TL (Fig-
ure 3) was significantly higher than on profiles trained solely from only primary or auxiliary
alone; mouse (p = 4.474e−56 for primary alone and p = 6.313e−37 for auxiliary alone), human
(p = 7.325e−3 for primary alone and p = 1.071e−21 for auxiliary alone), callus (p = 0.004 and
p = 1.297e−92), roots (p = 1.725e−45 and p = 7.846e−25), and fly (p = 2.775e−3 for primary
alone, p = 4.325e−105 for auxiliary alone) data. This was also evident on the organellar level
as seen in Figure 4 and Supporting Figures 5 - 8.
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Figure 3: Boxplots, displaying the estimated generalisation performance over 100 test partitions for the SVM
transfer learning algorithm applied with (i) optimised class-specific weights (combined), (ii) only primary
data and (iii) only auxiliary data, for each dataset.
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Figure 4: Boxplots, displaying the estimated generalisation performance over 100 test partitions for the SVM
transfer learning algorithm applied with (i) optimised class-specific weights (combined), (ii) only primary
data and (iii) only auxiliary data, for the E14TG2a mouse dataset.
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3.2 Other auxiliary data sources

One of the advantages of the transfer learning framework is the flexibility to use different
types of information for both the primary and auxiliary data source. We demonstrate the
flexibility of this framework by testing other complementary sources of information as an
auxiliary data source.

3.2.1 The Human Protein Atlas

The sub-cellular Human Protein Atlas [67] provides protein expression patterns on a sub-
cellular level using immunofluorescently staining for human U-2 OS cells. As described in
2.1.2 we used the hpar Bioconductor package [68] to query the sub-cellular Human Protein
Atlas [67] (version 13, released on 11/06/2014). This auxiliary data, to be integrated with
our human LOPIT HEK293 experiment, was encoded as a binary matrix describing the
localisation of 670 proteins in 18 sub-cellular localisations supportively identified. Informa-
tion for 192 of the 381 labelled marker proteins were available. These 192 proteins covered
8 of the 10 known localisations in the LOPIT HEK293 experiment and were used in esti-
mated the classifier generalisation accuracy of the (i) the transfer learning approach, (ii) the
HEK293 primary LOPIT data and (iii) the HPA data, as described previously. As detailed
in the supplementary information (Supporting Figure 9), we observed a statistically signif-
icant improvement of our overall classification accuracy as well as several organelle-specific
results.

3.2.2 YLoc sequence and annotation features

Sequence and annotation features, as described in Table 1, that were used as input from the
computational classifier YLoc [61, 62] were selected as an auxiliary data source to comple-
ment the LOPIT E14TG2a mouse stem cell dataset. 34 sequence and annotation features
were selected using a correlation feature selection, as described in section 2.1.2. Using the
LOPIT mouse dataset as our primary data, and the 34 YLoc features as our auxiliary we
employed the standard protocol for testing classifier performance (1) using the k-NN trans-
fer learning with both data sources, (2) the primary data alone and (3) the auxiliary data
alone, as detailed in section 2.2.4. Although we did not observe a statistically significant
improvement using the auxiliary data in the transfer learning framework, we did not see any
statistically significant disadvantage in combining information (Supporting Figure 10). Thus
we found that incorporating data from auxiliary sources in this framework does not dilute
any strong signals in the original experiment, demonstrating the flexibility of the classifier.

3.3 Biological application

We applied the two transfer learning classifiers to a real life scenario to (i) demonstrate
algorithm usage, and (ii) highlight the applicability of the method for predicting protein
localisation in MS-based spatial proteomics data over other single source classifiers. We
used the E14TG2a mouse dataset as our use case. The dataset contained density gradient
profiles for 1109 proteins, across 8 fractions, of which 387 proteins were labelled (i.e. identified
as known protein markers) distributed among 10 sub-cellular niches (the plasma membrane,
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endoplasmic reticulum, mitochondria, nucleolus, chromatin, 40S and 60S ribosomal subunits,
proteasome, lysosome and cytosol, see supporting table 1), the remaining 722 proteins were
unlabelled. We extracted the GO CC auxiliary data matrix for all proteins in the dataset
(as described in 2.1.2) and then applied the following four classifiers (1) k-NN (with LOPIT
data only), (2) k-NN TL (with LOPIT and GO CC data), (3) SVM (with LOPIT data
only) and (4) SVM TL (with LOPIT and GO CC data) for the prediction of the sub-cellular
localisation of the unlabelled proteins in the dataset.

As previously discussed, before applying any machine learning classifier one is required
to optimise any free algorithmic parameters on the training data as it is widely known that
wrongly set parameters can have adverse effects on the classification performance and suc-
cess of the learner. Following the standard protocol (as described in section 2.2.4) parameter
optimisation was conducted on the labelled training data using 100 rounds of stratified 80/20
partitioning, in conjunction with 5-fold cross-validation in order to estimate the free param-
eters via a grid search, as implemented in the pRoloc package [64]. The best parameters
were found to be k = 5 for the k-NN classifier and for the k-NN TL classifier kP = 5, kA = 5
and the best class weights were found θ = (1

3
, 2
3
, 2
3
, 1, 1

3
, 1, 1, 1

3
, 2
3
, 0) for the 40S ribosome,

60S ribosome, cytosol, endoplasmic reticulum, lysosome, mitochondria, nucleus - chromatin,
nucleolus, plasma membrane and proteasome, respectively. For the SVM classifier we found
the best cost to be C = 16 and γ = 10. For the SVM TL classifier we found C = 16, γP = 1,
γA = 0.1. Using these parameters with their associated algorithms we classified the 722
unlabelled proteins in the dataset and obtained a classifier score for each protein.

In supervised machine learning the instances which one wishes to classify can only be
associated to the classes that were used in training. Thus, it is common when applying a
supervised classification algorithm, wherein the whole class diversity is not present in the
training data, to set a specific score cutoff on which to define new assignments, below which
classifications are set to unknown/unassigned. The pRoloc tutorial, which is found in the
set of accompanying vignettes in the pRoloc package [64], describes this procedure and how
to implement this in real practice. Deciding on a threshold in not trivial as classifier scores
are heavily dependent upon the classifier used and different sub-cellular niches can exhibit
different score distributions.

To validate our results and calculate classification thresholds based on a 5% false dis-
covery rate (FDR) for each of the four classifiers (i.e. k-NN, k-NN TL, SVM, SVM TL) we
compared the predicted localisations with the localisation of the same proteins found in the
highest resolution spatial map of mouse pluripotent embryonic stem cells to date2 [81]. This
high resolution map was generated using hyperplexed LOPIT, a novel technique for robust
classification of protein localisation across the whole cell. The method uses an elaborate sub-
cellular fractionation scheme, enabled by the use of TMT 10-plex and application of a novel
MS data acquisition technique termed synchronous precursor selection MS3 (SPS)-MS3 [82],
for high accuracy and precision of TMT quantification. The study used state-of-the-art data
analysis techniques [65, 64] combined with stringent manual curation of the data to provide
a robust map of the mouse pluripotent embryonic stem cell proteome. The authors also
provide a web interface to the data for exploration by the community through a dedicated

2Currently under review
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online R shiny [83] application3. From examining the overlap between our new classifications
and the localisations in the high resolution mouse map we found 183 of our 722 unlabelled
proteins matched a high confidence localisation in the new dataset. Of the remaining, 347 of
our proteins were labelled as unknown in the mouse map (i.e. were assigned a low confidence
localisation in the experiment), and 192 proteins did not appear in the map. We used the
localisation of these 183 high confidence proteins as our gold standard on which to validate
our findings and set a false discovery rate for our predictions.

Figure 5 shows the score distributions for correct and incorrect assignments of the unas-
signed proteins in the dataset (as validated through the high resolution mouse pluripotent
embryonic stem cell map) and the distribution of the scores per classifier. Note, the scores
in Figure 5 are not a reflection of the classification power and the score distributions be-
tween the four different methods are not comparable to one another as they are calculated
using different techniques, as detailed in section 2.2. For both of the single source k-NN and
SVM classifiers there is a large overlap in the distribution of scores for correct and incorrect
assignments (Figure 5). It is desirable to have a distribution of scores that enables one to
choose a cutoff that minimises the false discovery rate. What is evident from examining the
score distributions of incorrect and correct assignments in Figure 5 is that by using transfer
learning we have increased the discrimination power of the classifier and thus lowered our
FDR.
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Figure 5: Boxplots displaying the distribution of scores assigned to the unknown proteins in the mouse
dataset for the k-NN, k-NN transfer learning (TL) algorithm, a Support Vector Machine (SVM) and the
SVM TL classifiers. For each classifier the proteins have been split between those that have been classified
as incorrect or correct according the known protein localisations as found by a recent high resolution map
of the mouse proteome.

Using our knowledge of the correct/incorrect outcomes of these 183 previously unlabelled
proteins we calculated an appropriate threshold on which to classify all unlabelled proteins.
Using a FDR of 5% we found assignment thresholds for the SVM (0.85), SVM TL (0.785)

3https://lgatto.shinyapps.io/christoforou2014
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and k-NN TL (0.805) to classify the remaining unlabelled proteins. A FDR of 5% was not
possible with the k-NN classifier and the lowest achievable FDR was 15% which occurred
using the strictest threshold of 1 i.e. only when all 5 nearest neighbours agreed. Comparing
the classifications made from the single source classifiers to those made with the transfer
learning methods, we found in both cases we get many more assignments using the combined
transfer learning approaches compared to the single source methods using a fixed FDR of
5%, as discussed below.
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Figure 6: Scatterplot displaying the scores for the SVM and SVM TL classifiers for the 183 proteins
validated by the hyperLOPIT mouse map (REF). Each point represents one protein and its associated
classifier scores. Filled circles highlight proteins that were assigned the same sub-cellular class with each
classifier, empty circles represent the instance when the two classifiers gave different results. The solid lines
show the classification boundaries for the two classifiers at a 5% FDR, above which proteins are classified to
the highlighted class, below these boundaries proteins are deemed low confidence and thus left unassigned.

Figure 6 shows the SVM and SVM TL scores assigned to each of the 183 validated
proteins. The sub-cellular class is highlighted by solid colours and an un-filled point on the
plot represents the case where the two classifiers disagreed on the sub-cellular localisation.
We found that the SVM TL classifier gave 70% more high confidence classifications with the
same 5% FDR threshold than the the single source SVM trained on primary data alone. All
proteins that were assigned to a sub-cellular niche with a high confidence score in both the
SVM and SVM TL (Figure 6, top right grid) were assigned to the same class. We also found
that many proteins outside of the high confidence threshold were assigned the same sub-
cellular class using both methods, as indicated by the abundance of solid points on the plot.
Of the total 722 previously unlabelled proteins we assigned high confidence localisations for
204 proteins using the SVM TL, and 176 proteins using the k-NN TL method, based on a
FDR of 5% (Supporting Tables 7 and 8).

By way of biological validation we investigated additional proteins gained using the SVM
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Figure 7: Principal components analysis plot (PCA) of the E14TG2a mouse stem cell dataset. Proteins
are clustered according to their density gradient distributions. Each point on the PCA plot represents one
protein. Filled circles are the original protein markers used in classification, hollow circles show new locations
as assigned by the SVM TL classifier. The 4 proteins GTR3 MOUSE, SNTB2 MOUSE, PAR6B MOUSE
and ADA17 MOUSE that were found in the SVM TL method and not in an SVM classification with LOPIT
only are highlighted.

TL method (Figure 6, bottom right grid) as novel assignments to one of these classes, the
plasma membrane, by searching through the literature for supporting empirical evidence.
For example, using the SVM TL method we found four proteins assigned only to the plasma
membrane with the SVM TL method (Figure 7) that were also assigned to the plasma
membrane in the recent high resolution mouse map (GTR3 MOUSE, SNTB2 MOUSE,
PAR6B MOUSE and ADA17 MOUSE). Dehydroascorbic acid transporter (GTR3 MOUSE)
is a multi-pass membrane protein which has been previously shown to be a plasma mem-
brane protein in studies isolating the cell surface glycoprotein in Jurkat cells [84]. Beta-2
syntrophin or syntrophin 3 (SNTB2 MOUSE) is a phosphoprotein with PDZ domain through
which it interacts with ion channels and receptors. There are confounding reports of the sub-
cellular location of this peripheral protein. It associates with dystrophins and has no signal
sequence. It is found mostly in muscle fibres and brain [85], but to date, its role has not
been studied in mouse embryonic stem cells. Given its association with ion channels and
receptors, it is perfectly feasible that the steady location of this protein in stem cells is
plasma membrane. Partitioning defective 6 homolog beta (PAR6B MOUSE) is a peripheral
membrane protein thought to be in complex with E-cadherin, aPKC, and Par3 at the plasma
membrane [86], where is functions to guide GTP-bound Rho small GTPases to atypical pro-
tein kinase C proteins [87]. Disintegrin and metalloproteinase domain-containing protein 17
(ADA17 MOUSE) is a single pass plasma membrane protein which functions to cleave the
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intracellular domain of various plasms membrane proteins including notch and TNF-alpha
[88]. It is therefore involved in the upstream events in several signalling pathways. It has a
17 amino acid N-terminal signal sequence suggestive of its function as a membrane protein.
The full list of localisation predictions for all proteins in the mouse E14TG2a dataset can
be found in the R data package pRolocdata.

3.4 A Comparison: KNN vs SVM

We compared the macro- and class-F1 scores from all experiments in 3.1 on the 5 datasets
used to assess the classifier performance of the k-NN TL and SVM TL methods. We found
that no single method systematically outperformed the other, as described further in section
5 of the supporting supplement.

When applying the SVM TL and k-NN TL classifiers to the unlabelled proteins in section
3.3 an analysis of the final assignments (as classified based on FDR of 5%) showed that there
was no contradiction in results. The predicted localisations were in high agreement and if not
assigned to the same class as the other classifier, proteins were found to labelled as unknown
i.e. were low confidence assignments (see Supporting Table 9).

4 Conclusion

In this study we have presented a flexible transfer learning framework for the integration of
heterogeneous data sources for robust supervised machine learning classification. We have
demonstrated the biological usage of the framework by applying these methods to the task of
protein localisation prediction from MS-based experiments. We further show the flexibility
of the framework by applying these methods to the five different spatial proteomics datasets,
from four different species, in conjunction with three different auxiliary data sources to
classify proteins to multiple sub-cellular compartments. We find the two different classifiers;
the k-NN TL and SVM TL, perform equally well and importantly both of these methods
outperform a single classifier trained on each single data source alone. We further applied
the algorithm to a real life use case, to classify a set of previously unknown proteins in a
spatial proteomics experiment on mouse embryonic stem cells, which was validated using
the most high resolution map of the mouse E14TG2a stem cell proteome to date [81]. We
find integrating data from a second data source directly in to classifier training and classifier
creation results in the assignment of proteins to organelles with high generalisation accuracy.
Finally, we find that using freely available data from repositories we can improve upon
the classification of experimental and condition-specific protein-organelle predictions in an
organelle specific manner.

To our knowledge, no other method has been developed to date that allows the incorpo-
ration of an auxiliary data source for the primary task of predicting sub-cellular localisation
in spatial proteomics experiments. In this study we have developed methods that not only
allow the inclusion of an auxiliary data source in localisation prediction, but we have created
a flexible framework allowing the use of many different types of auxiliary information, and
furthermore allows the user complete control over the weighting between data sources and
between specific classes. This is extremely important for the analysis of biological data in
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general, and spatial proteomics data in particular, as many experiments are targeted towards
resolving specific biologically relevant aspects (sub-cellular niches in spatial proteomics) and
thus users may wish to control the impact of auxiliary information for aspects that have
been specially targeted for analysis by the primary experimental method. In this context
the setting of weights manually in the k-NN transfer learning classifier allows users complete
power to explicitly choose whether to call upon an auxiliary data source or simply use data
from their own experiment, on an organelle-by-organelle basis.

The effectiveness of using databases as an auxiliary data source will depend greatly
on abundance and quality of annotation available for the species under investigation. For
example, human is a well-studied species and there is a large amount of information available
in the Gene Ontology and Human Protein Atlas. Furthermore, some organelles are easier to
enrich for and thus there exists much more information available to utilise as an auxiliary
source on a organelle by organelle basis. The transfer learning methods we present here allow
the inclusion of any type of auxiliary data, provided of course there is information available
for the proteins under investigation.

The integration of auxiliary data source is a double-edged sword. On the one hand,
it can shed light on (i) the primary classification task by reinforcing weak patterns or (ii)
complement the signal in the primary data. On the other hand however it is easy to di-
lute valuable signals in an expensive experiment by shadowing the uniqueness, and hence
biologically relevance of the experimental primary data when integration is not performed
with care. Thus one needs to be cautious with data integration in general and not overlook
the biological relevance of the primary data. Here, we provide a solution to this issue and
demonstrate that under this learning framework, one never can do worse than using primary
data alone: the k-NN transfer learning classifier uses optimised class-specific weights so as
not to penalise any strong signals in the primary, if no signal is found in the auxiliary, simi-
larly, the SVM transfer learning method uses optimised data-specific gamma parameters for
each data-specific kernel.

The transfer learning framework forms part of the open-source open-development Bio-
conductor pRoloc suite of computational methods available for organelle proteomics data
analysis. Moreover, as the pipeline utilises the formal Bioconductor classes different data
types, for example from gene expression technologies among others, can be easily used in this
framework. The integration of different data sources is one of major challenges in the data
intensive world of computational biology, and here we offer a flexible and powerful solution
to unify data obtained from different by complimentary techniques.
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