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Abstract

We present, implement, and evaluate an approach to
calculate the internode certainty and tree certainty
on a given reference tree from a collection of partial
gene trees. Previously, the calculation of these val-
ues was only possible from a collection of gene trees
with exactly the same taxon set as the reference tree.
An application to sets of partial gene trees requires
mathematical corrections in the internode certainty
and tree certainty calculations. We implement our
methods in RAxML and test them on empirical data
sets. These tests imply that the inclusion of par-
tial trees does matter. However, in order to provide
meaningful measurements, any data set should also
include trees containing the full species set.

1 Introduction

1.1 Motivation and related work

Recently Salichos and Rokas (2013) proposed a set
of novel measures for quantifying the con�dence for
bipartitions in a phylogenetic tree (i.e. a leaf-labeled
tree depicting the relationships between taxa). These
measures are the so-called Internode Certainty (IC)
and Tree Certainty (TC), which are calculated for a
speci�c reference tree given a collection of other trees
with the exact same taxon set.

The calculation of their scores was implemented
(Salichos et al., 2014) in the phylogenetic software
RAxML (Stamatakis, 2014).
The underlying idea of Internode Certainty is to as-
sess the degree of con�ict of each internal branch
(i.e. a branch connecting two internal nodes) of a
phylogenetic reference tree by calculating Shannon`s
Measure of Entropy (Shannon, 1948). This score is
evaluated for each bipartition in the reference tree
independently. The basis for the calculations are the
frequency of occurrence of this bipartition and the
frequencies of occurrences of a set of con�icting bi-
partitions from the collection of trees. In contrast
to classical scoring schemes for the branches, such as
simple bipartition support or posterior probabilities,
the IC score also re�ects to which degree the most
favored bipartition is contested.

The reference tree itself can, for example, be con-
structed from this tree set or can be a maximum
likelihood tree for a phylogenomic alignment. The
tree collection may, for example, come from running
multiple phylogenetic searches on the same data set,
multiple bootstrap runs (Efron et al., 1996; Felsen-
stein, 1985), or from running the analyses separately
on di�erent genes, or di�erent subsets of the genes (as
done for example in Hejnol et al. (2009)). While for
the �rst two cases the assumption of having the same
taxon set is reasonable, this is often not the case for
di�erent genes. For example, gene sequences may be
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available for di�erent subsets of taxa simply due to
sequence availability or the absence of some genes in
certain species.
In this paper, we show how to compute an appro-
priately corrected internode certainty (IC ) on collec-
tions of partial gene trees. When using partial bipar-
titions for the calculation of the IC and TC scores we
need to solve two problems. First, we need to calcu-
late their respective adjusted support (analogous to
the frequency of occurrence) (Section 2.1). Unlike in
the standard case, with full taxon sets, this informa-
tion cannot be directly obtained. Then, we also need
to identify all con�icting bipartitions (Section 2).
An alternative method for calculating these fre-

quencies has recently been independently developed
by Smith et al. (2015). The method developed by
Smith et al. is similar to what we denote as lossless
support (see Section 2.1).

1.2 Bipartitions, Internode Certainty

and Tree Certainty

We now brie�y de�ne the concepts and notations that
we will use throughout the paper. Additionally, we
formally de�ne internode certainty and tree certainty.

Bipartition Given a taxon set S, a bipartition B
of S is de�ned as a tuple of taxon subsets (X,Y ) with
X, Y ⊂ S, X 6= ∅ 6= Y and X ∪ Y = S, X ∩ Y = ∅.
We write, B = X|Y = Y |X.

In phylogenetic trees, a bipartition is obtained by re-
moving a single edge from the tree. Let b be an edge
connecting nodes n1 and n2 in some unrooted phy-
logenetic tree T . The bipartition that is obtained by
removing b is denoted by B(b), which we de�ne as:
B(b) = X(n1)|X(n2), where X(n1) and X(n2) are
all taxa that are still connected to nodes n1 and n2

respectively, if branch b is removed.

Trivial bipartition We call a bipartition B = X|Y
trivial if |X| = 1 or |Y | = 1.

Trivial bipartitions are uninformative, since having
only a single taxon in either X or Y means that this
taxon is connected to the rest of the tree. This is
trivially given for any tree containing this taxon.

Bipartitions with |X| ≥ 2 and |Y | ≥ 2 are called
non-trivial. In contrast to trivial bipartitions,
non-trivial bipartitions contain information about
the structure of the underlying topology.
Henceforth, the term bipartition will always refer to
a non-trivial bipartition.

Sub-bipartition, super-bipartition We denote
B1 = X1|Y1 as a sub-bipartition of B2 = X2|Y2 if
X1 ⊆ X2 and Y1 ⊆ Y2, or X1 ⊆ Y2 and Y1 ⊆ X2.
The bipartition B2 is then said to be a super-

bipartition of B1.

We also need a notion of compatibility and con�ict
between bipartitions.

Con�icting bipartitions Two bipartitions
B1 = X1|Y1 and B2 = X2|Y2 are con�ict-

ing/incompatible if there exists no single tree
topology that explains/contains both bipartitions.
Otherwise, if such a tree exists, they must be
compatible. More formally, the bipartitions B1 and
B2 are incompatible if and only if all of the following
properties hold (see for example Bryant (2003)):

X1 ∩X2 6= ∅
∧ X1 ∩ Y2 6= ∅
∧ Y1 ∩X2 6= ∅
∧ Y1 ∩ Y2 6= ∅.

This de�nition of con�ict and compatibility is valid
irrespective of whether the taxon sets of B1 and B2

are identical or not.

Relative frequency Let B(b) be the bipartition in-
duced by removing branch b, and let B? be the bi-
partition from the tree collection that has the high-
est frequency of occurrence and is incompatible with
B(b). Let the term X be the relative frequencies of
the involved bipartitions. More formally, we de�ne
XB(b) as,

XB(b) :=
f(B(b))

f(B(b)) + f(B?)
, XB? :=

f(B?)

f(B(b)) + f(B?)
,

(1)
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where f simply denotes the frequency of occurrence
of a bipartition in the tree set.

For the standard case of IC calculations (without
partial gene trees), the frequency of occurrence f is
simply the number of observed bipartitions in the
tree set. In Section 2.1 we will show how to calculate
the support (adjusted frequencies) for bipartitions
from partial gene trees. We compute this support
using the observed frequencies of occurrence. The
support for partial bipartitions can then be used
analogously to the frequency of occurrence in Equa-
tion 1 for calculating the relative frequencies.

Internode certainty The Internode certainty

(IC) score (as de�ned in Salichos and Rokas (2013))
is calculated using Shannon`s measure of entropy
(Shannon, 1948). For a branch b we de�ne IC(b)
as follows:

IC(b) = 1 +XB(b) · log2(XB(b)) +XB? · log2(XB?).
(2)

Similarly to the IC score, Salichos et al. (2014)
also introduced the ICA (internode certainty all)
value for each branch. However, before we formally
de�ne the ICA value, we need to provide some addi-
tional de�nitions and make some observations.

Con�icting set Let the set C?(b), as de�ned in
Salichos et al. (2014), be B(b) union the set of bipar-
titions that con�ict with B(b) and with each other,
while the sum of support for elements in C?(b) is
maximized.

In practice, the set C?(b) is not easy to obtain. In
fact, as we show in the following observation, max-
imizing the sum of supports for elements in C?(b)
renders the search for an optimal choice of C?(b)
NP − hard.

Observation: Finding the optimal set C?(b) is
NP − hard.

This can easily be seen by considering the related,
known to be NP-hard, maximum weight independent
set problem (Garey and Johnson, 1990). Alterna-
tively, the similarity to the problem of constructing

the asymmetric median tree, which is also known to
be NP − hard (Phillips and Warnow, 1996), can be
observed.
For the maximum weight independent set problem,
we are confronted with an undirected graph whose
nodes have weights. The task is then to �nd a set
of nodes that maximize the sum of weights, such
that no two nodes in this set are connected via an
edge. A reduction from this problem to �nding C?(b)
is straight-forward. Let (W,E) be an undirected
graph with weighted nodes W and edges E. Let
B(b) = xy|vz. First, we introduce one bipartition
xz|vy for every node in W , with support equal to
the node weight. Then, for every pair of bipartitions
where the corresponding nodes in W do not share an
edge in E, we add four taxa that are unique to those
bipartitions in such a way that they can never be
compatible (consider . . . ab|cd . . . and . . . ac|bd . . .). If
we �nd C?(b) for the newly introduced bipartitions,
the corresponding nodes yield a maximum weight in-
dependent set.
For this reason, the de�nition of the ICA, used and

implemented in Salichos et al. (2014), which we also
use here, does not actually use C?(b) itself, but an
approximation thereof. The set C(b) is constructed
via a greedy addition strategy to approximate C?(b).
Note that C(b) has a slightly di�erent de�nition in
Salichos and Rokas (2013).
Additionally, Salichos and Rokas (2013) advocate

to use a threshold of 5% support frequency for con-
�icting bipartitions in C(b). Speci�cally, C(b) may
only take elements B̂ that have support

f(B̂) ≥ 0.05. (3)

This is done to speed up the calculation. Under this
restriction, the problem of maximizing the support
for C(b) is no longer NP−hard. However, the search
space is still large enough to warrant a greedy addi-
tion strategy instead of searching for the best solution
exhaustively.
Again, let X denote the relative support of the

bipartitions in C(b). That is,

XB̂ =
f(B̂)∑

Bc∈C(b)

f(Bc)
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for all involved bipartitions B̂ ∈ C(b).

Internode certainty all We can now de�ne the
ICA for some branch b as

ICA(b) = 1 +
∑

Bc∈C(b)

XBc · log|C(b)|(XBc). (4)

Note that ICA(b) depends on C(b). Thus, the de�-
nition for ICA presented here is also only an approx-
imation. Di�erent heuristics for constructing C(b)
will yield di�erent values for ICA(b).
Further note that i� B(b) does not have the largest

frequency among all bipartitions in C(b), the IC(B)
and ICA(b) scores are multiplied with −1 to indicate
this. This distinction is necessary since we may have
|ICA(b̂)| = |ICA(b)| for some b̂ ∈ C(b). So an arti�-
cial negative value denotes that the bipartition in the
reference tree is not only strongly contested, but not
even the bipartition with the highest support. This
can for example occur when the reference tree is the
maximum-likelihood tree and the tree set contains
bootstrap replicates.
From the IC scores and ICA scores the respec-

tive Tree Certainties TC and TCA can be computed.
These are de�ned as follows:

Tree certainty The TC (tree certainty) and
TCA (tree certainty all) scores are simply the sum
over all respective IC or ICA scores, as de�ned in
the following:

TC =
∑

b internal branch

in reference tree

IC(b) (5)

TCA =
∑

b internal branch

in reference tree

ICA(b). (6)

Furthermore, the relative TC and TCA scores are
de�ned as the respective values normalized by the
number of branches b for which B(b) is a non-trivial
bipartition.
As we can see, all we need to calculate the IC,

TC, ICA, and TCA scores is to calculate f(B̂)
(Section 2.1) and C(b) (Section 2.2).

2 New Approaches: Adjusting

the Internode Certainty

Now we must consider how to obtain the relevant in-
formation, namely the sets C and corrected support
f , from partial bipartitions.
First, we formally de�ne the input. We are given a
so-called reference tree T with taxon set S(T ) node
set V (T ) ⊇ S(T ) and a set of branches E(T ) ⊂
V (T ) × V (T ) connecting the nodes of V (T ). Let
Ê(T ) ⊂ E(T ) be the set of internal branches b for
which the bipartition B(b) is non-trivial.
Additionally, we are given a collection of trees T̂ .
From this collection we can easily extract the set of all
non-trivial bipartitions Bip. The bipartitions in Bip
are used to adjust the frequency of other bipartitions.
The taxon sets of the bipartitions in Bip are subsets
of, or equal to, S(T ). We call a bipartition with fewer
than |S(T )| taxa a partial bipartition. A bipartition
that includes all taxa from S(T ) is called comprehen-
sive or full bipartition. Similarly, a tree containing
only full bipartitions is called comprehensive. From
Bip and the bipartitions in the reference tree we can
construct a set of maximal bipartitions P for which
we will adjust the score. Bipartitions in P are all
those bipartitions in Bip and the reference tree that
are not sub-bipartitions of any other bipartition. We
do this step, since any information contained in a sub-
bipartition is also contained in the super-bipartition.
Speci�cally, the implied gene tree (or species tree) for
the super-bipartition can also explain the gene tree
for all taxa in the sub-bipartition. How the frequency
of occurrence of the sub-bipartition a�ects the fre-
quency of occurrence of the super-bipartition is the
focus of Section 2.1.

We implicitly assume that each bipartition in P
should actually contain all taxa from S(T ). To
achieve this, we keep the placement of the missing
taxa ambiguous. For this, we assume that each miss-
ing taxon has a uniform probability to fall into either
side of the bipartition. Figure 1 gives an overview of
the steps explained in the following sections.
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Figure 1: Overview of the proposed methods.

2.1 Correcting the Support

We aim to measure the support the given set of par-
tial trees T̂ (or bipartition set Bip) induces for any of
the bipartitions in P . We call this the adjusted fre-

quency or adjusted support. If Bip and P only
contain comprehensive bipartitions, the support for
any given bipartition is simply equal to its frequency
of occurrence.
In case of partial bipartitions, some thought must be
given to the process. Imagine a comprehensive bi-
partition B = X|Y in P and a sub-bipartition D of
B in Bip. Even though D does not exactly match
B, it also does not contradict it. More so, it sup-
ports the super-bipartition by agreeing on a common
sub-topology.

We distinguish whether the observed sub-
bipartition D from Bip is allowed to support any
possible bipartition, even those not observed in Bip
and P , or just those we observe in P . There seems to
be no clear answer as to which of these assumptions
is more realistic. The choice is thus merely a matter
of de�nition.

Support of all possible bipartitions: Proba-

bilistic Support

If we assume that an observed sub-bipartition from
Bip supports all possible super-bipartitions, not just
those in P , with equal probability, the impact on the

adjusted support of each such super-bipartition from
P (C(b)) quickly becomes negligible. Consider the
following example:
Let B = X|Y ∈ P be a super-bipartition of D =
x|y ∈ Bip with |X \x|+ |Y \y| = k. This means that
B contains k taxa that D does not contain. There
are 2k distinct bipartitions with taxon set X∪Y that
also contain the constraints set by D. For k = 10 we
already obtain 210 = 1024 such bipartitions. Thus,
the support of D will only increase (adjust) the sup-
port of B by less than one permille. More formally,
let RB be the set of sub-partitions in Bip of the com-
prehensive bipartition B in P and fD the support for
a partial bipartition D in Bip. Then the adjusted
support for B, fB is

fB =
∑

D∈RB

fD
2(|S(T )|−nD)

,

where nD is the number of taxa in D, and |S(T )| the
number of taxa in the reference tree. We use |S(T )| in
this formula, since any bipartition in P is implicitly
a comprehensive bipartition. By this we mean that
even though we do not explicitly assign the remaining
taxa from a partial bipartition B = X|Y in P to X
or Y , they must belong to one of these sets. Thus,
the missing taxa in D have 1

2 probability to belong
to the same set (X or Y ) each.
The e�ect of such an adjustment scheme is that

partial bipartitions in Bip with fewer taxa a�ect the
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TC and IC scores substantially less than bipartitions
with more taxa. This can also be observed in our
computational results in Section 3. Since fB is the
sum over the observed frequency times the probabil-
ity of constructing the actual bipartition implied by
B, we call this the probabilistic adjustment scheme.

The motivation behind the probabilistic adjust-
ment scheme is that a partial bipartition can stem
from any full bipartition that complies with the con-
straints induced by this partial bipartition. Further-
more, a frequency f > 1 for a partial bipartition can
emerge due to the existence of several di�erent, im-
plied full bipartitions. Consider the following exam-
ple: let B1 = ABY |XCD and B2 = ABX|Y CD
be two bipartitions from two distinct gene trees.
Now, assume that taxa X and Y are not present in
these gene trees (e.g., due to incomplete species sam-
pling). In this case, the respective trees of these two
gene trees only contain the same partial bipartition
Bp = AB|CD.
By re-distributing the frequency of Bp via the

probabilistic adjustment scheme to all possible bi-
partitions, we distribute the corresponding support
among B1 and B2, as well as B3 = ABXY |CD and
B4 = AB|XY CD.

Support of observed bipartitions: Observed

Support

Now suppose that B1 and B2 are in P since they are
present in some comprehensive or partial gene trees.
Further, suppose that the bipartitions B3 and B4 (as
de�ned above) are not in P since they were never
observed in the tree set. Due to missing data, other
partial gene trees may produce bipartition Bp. In
the above example for the probabilistic support, the
support of Bp is not only distributed solely among
B1 and B2, but also among B3 and B4, even though
B3 and B4 were not observed in the tree set.
Thus, if we do not want to discard some of the fre-

quency of occurrence when calculating the adjusted
support from partial bipartitions, we can distribute
their frequency of occurrence uniformly among com-
prehensive bipartitions in P . When we assume the
prior distribution of bipartitions in P to be uniform,

this process is simple. For a given partial bipartition
D in Bip, with support fD, let SD be the set of bipar-
titions in P that are super-bipartitions of D. Then,
D contributes fD

|SD| support to any B ∈ SD. In other

words, the adjusted support for each full bipartition
B is

fB =
∑

D s.t. B∈SD

fD
|SD|

. (7)

Since this distribution scheme distributes the sup-
port for each sub-bipartition among bipartitions that
we observed in the tree set only, we call this the ob-
served support distribution scheme.

Support of con�icting bipartitions: Lossless

Support

One problem with the adjustment strategy explained
above is that trees with more taxa typically have
more bipartitions in P than trees with fewer taxa.
For an intuitive understanding of why this can be
problematic, consider the following example (also il-
lustrated in Figure 2). Let reference bipartitions
be B̂1 = AB|XCD and B̂2 = ABX|CD. Fur-
ther, let Bip = {B̂3, B̂4} with B̂3 = AB|CD and
B̂4 = AC|DB. We see that B̂3 is the only, and ex-
clusive, sub-bipartition of B̂1 and B̂2 in Bip. Further,
bipartition B̂4 con�icts with both reference biparti-
tions, and no other bipartition is a super-bipartition
of it. Let the bipartitions B̂3 and B̂4 both have a fre-
quency of occurrence of f . If we apply the above
distribution scheme, bipartitions B̂1 and B̂2 have
an adjusted frequency of f/2, while B̂4 has an ad-
justed frequency of f . However, penalizing biparti-
tions from trees with larger taxon sets seems unwar-
ranted. Thus, we propose a correction method that
takes this into account. In order to circumvent this
behavior, we choose to distribute the frequency of
any sub-bipartition only to a set of con�icting super-
bipartitions (namely bipartitions in C(b)). We get
the following formula for the adjusted frequencies:

f b
B =

∑
D s.t. B∈SD

fD
|SD ∩ C(b)|

. (8)
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Figure 2: Distribution of adjusted support for observed and lossless adjustment scheme.

Where SD is de�ned as before. Note that the ad-
justed support now depends on the set of con�ict-
ing bipartitions C(b), which is de�ned by a branch
b. This means that the adjusted support for a
given (con�icting) bipartition must be calculated sep-
arately for each reference bipartition B(b).

This distribution scheme allocates the entire fre-
quency of sub-bipartitions exclusively to these con-
�icting bipartitions. Thus, the sum of adjusted
frequencies for all con�icting bipartitions is exactly
equal to the sum of frequencies of occurrence of the
found sub-bipartitions. For this reason, we call this
the lossless adjustment scheme.

Note that C(b) is obtained via a greedy addition
strategy depending on the adjusted support of bi-
partitions. Since the adjusted support according to
the lossless adjustment scheme depends on C(b), we
obtain a recursive de�nition. To alleviate this, we
simply precompute the above explained probabilistic
adjustment scheme to obtain an adjusted support for
each bipartition. The set of con�icting bipartitions
C(b) is then found with respect to the probabilisti-
cally adjusted support values. Then, using C(b), the
actual lossless support adjustment is calculated and
replaces the probabilistic support in the calculation
of IC and ICA values.

For the above example we get the following. Let

{B̂1, B̂4} be the set of con�icting bipartitions. Then,
the support for B̂1 and B̂4 after applying the lossless
distribution scheme is f for both bipartitions, which
is the desired behavior for this distribution scheme.

2.2 Finding Con�icting Bipartitions

To construct C(b) greedily, as proposed above, the
support of the bipartitions must be known. However,
the lossless support adjustment scheme explained
above is only reasonable on a set of con�icting bi-
partitions (for example, C(b) itself). To avoid this
recursive dependency, we �rst compute an adjusted
support that does not depend on C(b) for this case.
(Here we use the probabilistic adjusted support, as
explained in Section 2.1, to obtain an initial adjusted
support.) Then, a greedy algorithm is used to ap-
proximate the set C(b) with the highest sum of ad-
justed support with respect to the initial adjustment.
Once C(b) is obtained, the support for all bipartitions
in C(b) is adjusted using the new method, which de-
pends on a set of con�icting bipartitions. These new
values then replace the initial estimate via the �rst
adjustment scheme.

Keeping the above in mind, we can easily construct
C(b) from P for every branch b in Ê(T ). Note that
we also de�ned the reference bipartition B(b) to be
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in C(b). Thus, we simply start with B(b) and iter-
ate through the elements of P in decreasing order of
adjusted support (if we are to apply the probabilis-
tic or lossless distribution scheme, the probabilistic
adjusted support is used in this step. Similarly, the
observed adjusted support is used, if this distribution
is desired) and add every bipartition that con�icts
with all other bipartitions added to C(b) so far. Dur-
ing this process the threshold given in Equation 3 is
applied.
Given B(b), C(b), and Bip we can calculate the IC

and ICA values as de�ned in Equations 2 and 4 under
the probabilistic or observed adjustment schemes. For
the lossless adjustment scheme, the actual adjusted
frequencies have to be calculated separately for each
bipartition in C(b) for all reference bipartitions b in
this step.

2.3 Example

We now present a simple example for calculating the
IC score under the di�erent adjustment schemes. To
this end, we analyze the tree set shown in Figure
3. From these trees we initially extract the following
bipartition lists:

Bip = {AB|CDEF, ABE|CDF, ABED|CF,

AB|CD, AC|BEF, ACB|EF, AC|BEF,

ACF |BE}

P ={AB|CDEF, ABCD|EF, ABEF |CD,

ABE|CDF, ABED|CF, AC|BEF,

ACF |BE}
=:{R1, R2, R3, B2, B3, B5, B8}.

We can now immediately calculate the probabilistic
and observed support for bipartitions in P . As men-
tioned before, the lossless adjustment can only be
calculated on sets of con�icting bipartitions. Let fp

B

and fo
B be the probabilistic and observed support of

a bipartition B. Further, let fB := (fp
B , f

o
B).

Then, as B1 in the Figure is exactly identical to
R1, and B4 is a sub-bipartition of R1 with 2 missing
taxa, fp

R1
= f1 +

1
4f2. At the same time, R1 is the

A

B

C D

E

F

A

B

F

C

E D

A F

C E

B

A

B
C

D

A

C
F

B

E

Reference tree:

Tree 1: Frequency f1

Tree 2: Frequency f2

Tree 3: Frequency f3

Tree 4: Frequency f4

B7 = AC|BEF

B8 = ACF |BE

B5 = AC|BEF

B6 = ACB|EF

B4 = AB|CD

B1 = AB|CDEF

B2 = ABE|CDF

R1 = AB|CDEF

R2 = ABCD|EF

R3 = ABEF |CD

B3 = ABED|CF

Figure 3: Example tree set for IC calculations.

only super-bipartition of B1. However, two other bi-
partitions, namely R3 and B2, are super-bipartitions
of B4. Thus, we obtain fo

R1
= f1 + 1

3f2. All other
bipartitions in P can be scored analogously to ob-
tain the following probabilistic and observed support
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value pairs:

fR1 =(f1 +
1

4
f2, f1 +

1

3
f2)

fR2
=(

1

2
f3, f3)

fR3
=(

1

4
f2,

1

3
f2)

fB2
=(f1 +

1

4
f2, f1 +

1

3
f2)

fB3 =(f1, f1)

fB5
=(

1

2
f3 +

1

2
f4, f3 + f4)

fB8 =(
1

2
f4, f4).

Given the above, we can now calculate the IC scores
for bipartitions R1, R2, and R3. Assume that we
have the following frequencies, f1 = 3, f2 = 4, f3 = 6,
and f4 = 6. Bipartition R1 = AB|CDEF con�icts
with both, B5 = AC|BEF , and B8 = ACF |BE.
However, since B5 and B8 do not con�ict with
each other, only one of them is included in the list
of con�icting bipartitions. Since B5 has a higher
adjusted support than B8, we include B5. If b
is the branch that gives rise to bipartition R1 in
the reference tree, then C(b) = {R1, B5}. Under
the probabilistic adjustment scheme we obtain:

−IC(b) = 1+
f1 +

1
4f2

(f1 +
1
4f2) + ( 12f3 +

1
2f4)

log2(
f1 +

1
4f2

(f1 +
1
4f2) + ( 12f3 +

1
2f4)

)

+
1
2f3 +

1
2f4

(f1 +
1
4f2) + ( 12f3 +

1
2f4)

log2(
1
2f3 +

1
2f4

(f1 +
1
4f2) + ( 12f3 +

1
2f4)

)

= 1+
3 + 1

44

(3 + 1
44) + 3 + 3

log2(
3 + 1

44

(3 + 1
44) + 3 + 3

)

+
6

(3 + 1
44) + 6

+ log2(
6

(3 + 1
44) + 6

)

≈ 0.0290

The negative value of IC(b) is due to the fact
that, under the observed adjustment scheme, B5

has a higher adjusted support than R1. Similarly,
under the observed adjustment scheme we obtain:

−IC(b) = 1+
f1 +

1
3f2

(f1 +
1
3f2) + (f3 + f4)

log2(
f1 +

1
3f2

(f1 +
1
3f2) + (f3 + f4)

)

+
(f3 + f4)

(f1 +
1
3f2) + (f3 + f4)

log2(
(f3 + f4)

(f1 +
1
3f2) + (f3 + f4)

)

= 1+
3 + 1

34

(3 + 1
34) + 6 + 6

log2(
3 + 1

34

(3 + 1
34) + 6 + 6

)

+
6 + 6

(3 + 1
34) + 6 + 6

+ log2(
6 + 6

(3 + 1
34) + 6 + 6

)

≈ 0.1653 .

Given C(b), we can now also compute the loss-
less adjusted support. We obtain a support of
f1 + f2 = 7 for R1, and a support of f3 + f4 = 6 + 6
for B5. With these numbers at hand, we can
calculate the IC score under lossless adjustment as:

−IC(b) =1 +
7

7 + 12
log2(

7

7 + 12
) +

12

7 + 12
log2(

12

7 + 12
)

≈0.0505.
This can be done analogously for bipartitions R2

and R3. For R2 = ABCD|EF we observe
three con�icting bipartitions: B2 = ABE|DCF ,
B3 = ABED|CF , and B8 = ACF |BE. The
corresponding frequencies for the above bipartitions
are:

fR2 =(
1

2
f3, f3) = (3, 6)

fB2
=(f1 +

1

4
f2, f1 +

1

3
f2) = (4, 4 +

1

3
)

fB3
=(f1, f1) = (3, 3)

fB8
=(

1

4
f4, f4) = (1 +

1

2
, 6).

Under the probabilistic support, we thus obtain
C(b) = {R2, B2}, where b is the branch that corre-
sponds to the reference bipartition with R2 = B(b).
However, the set of con�icting bipartitions is dif-
ferent for the observed adjustment scheme. Here,
C(b) = {R2, B8}. As a consequence we obtain the
following IC scores:

−IC(b) =1 +
3

3 + 4
log2(

3

3 + 4
) +

4

3 + 4
log2(

4

3 + 4
)

≈0.0148
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under the probabilistic scheme, and

IC(b) =1 +
6

6 + 6
log2(

6

6 + 6
) +

6

6 + 6
log2(

6

6 + 6
)

=0

under the observed adjustment scheme. The adjusted
frequencies for bipartitionsR2 andB2, under the loss-
less adjustment scheme, are f3 = 6 and f1 + f2 = 7,
respectively. Thus, the IC score is

−IC(b) =1 +
6

6 + 7
log2(

6

6 + 7
) +

7

6 + 7
log2(

7

6 + 7
)

≈0.0043.

For reference bipartition R3 = ABEF |CD, there
is only one con�icting bipartition in P , namely
B3 = ABED|CF . Thus, the calculation of IC(b) is
straight-forward (as before b is the branch inducing
the reference bipartition: R3). Under the probabilis-
tic scheme we obtain:

−IC(b) =1 +
1

1 + 3
log2(

1

1 + 3
) +

3

1 + 3
log2(

3

1 + 3
)

≈0.1887.

Under the observed adjustment we get:

−IC(b) =1 +
4
3

4
3 + 3

log2(
4
3

4
3 + 3

) +
3

4
3 + 3

log2(
3

4
3 + 3

)

≈0.1095.

Finally, under the lossless adjustment scheme we ob-
tain:

IC(b) =1 +
4

4 + 3
log2(

4

4 + 3
) +

3

4 + 3
log2(

3

4 + 3
)

≈0.0148.

3 Results and Discussion

For implementing the methods described in Section 2,
we used the framework of the RAxML (Stamatakis,
2014) software (version 8.1.20).
The resulting proof of concept implemen-

tations and all data sets used for our experi-
ments in Sections 3.1 and 3.2 (as well as the

above example of Section 2.3) are available at
https://github.com/Kobert/ICTC. Usage of the
software is explained there as well. The probabilistic
and lossless distribution schemes are also included
in the latest production level version of RAxML
(https://github.com/stamatak/standard-RAxML,
version 8.2.4).
We chose to omit the implementation for the ob-
served support adjustment from the o�cial RAxML
release, as it does not seem to o�er any advantages
over the other two methods.

3.1 Accuracy of the Methods

In this section we asses the accuracy of the proposed
adjustment schemes. For this reason, we re-analyze
the yeast data set originally presented in Salichos and
Rokas (2013). The comprehensive trees in the data
set contain 23 taxa. After applying some �ltering
techniques to the genes, we obtained a set of 1275
gene trees. In the �ltering step, genes are discarded
if (i) the average sequence length is less than 150
characters, or (ii) more than half the sites contain
indels after alignment. In Salichos and Rokas (2013),
a slightly smaller subset of 1070 trees is used.

To understand which adjustment scheme better re-
covers the underlying truth, we randomly prune taxa
from this comprehensive tree set and compare the
results between adjustment schemes. Evidently, a
�good� adjustment scheme will yield IC and ICA
values that are as similar as possible to the IC/ICA
values of the comprehensive tree set. Thus we con-
sider the IC/ICA on the comprehensive tree set as
the correct values.

For each of the 1275 trees, we select and prune a
random number of taxa. We draw the numbers of
taxa to prune per tree from a geometric distribution
with parameter p. We use a geometric distribution
because the expectation is that thereby we will retain
p · 1275 comprehensive trees, for which 0 taxa have
been pruned. An additional restriction is that each
pruned tree must comprise at least 4 taxa to comprise
at least one non-trivial bipartition. Given the number
of taxa we wish to prune, we select taxa to prune
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uniformly at random using the newick-tools toolkit1.
Using di�erent values for p we generate four partial

tree sets. For each of these tree sets, we conduct anal-
yses including all 1275 trees (comprehensive and par-
tial). We compare the results to the IC/ICA scores
for 1275 comprehensive trees.
Similarly, in a second round of experiments we

compare the results obtained by removing all com-
prehensive trees from the tree sets to the reference
IC and ICA scores for the comprehensive tree set.

To quantify which correction method yields
more accurate results, we de�ne the following dis-
tance/accuracy measure. Let IC(b) be the inter node
certainty for branch b if no taxa are pruned. Sim-
ilarly, let ICA(b) be the internode certainty for the
same branch b under an adjustment scheme for a data
set with partial gene trees. The accuracy D of an ad-
justment scheme is then de�ned as:

D =
1

N

∑
b internal branch

in reference tree

||IC(b)| − |ICA(b)||
max{|IC(b)|, |ICA(b)|}

, (9)

where N is the number of internal branches in the
reference tree (N = 20 for our test data set). The
measure D is the average, weighted, component-wise
di�erence between the two results. A low value of
D indicates high similarity between the results. Fur-
thermore, by de�nition, D ranges between 0 and 1.
Table 1 depicts this distance D for the di�erent

tree sets and adjustment schemes we tested. As we
can see, the probabilistic and observed adjustment
methods are more accurate than the lossless method.
In Table 2 we observe that the probabilistic and

observed adjustment schemes are not more accurate
than the lossless method for tree sets that only con-
tain partial gene trees. From Table 3 it also becomes
evident that the lossless adjustment scheme tends to
overestimate the IC and ICA values less frequently
than the two alternative methods.
Another important observation is that, in most

cases, accuracy decreases for any adjustment scheme
when analyzing tree sets that exclusively contain par-
tial gene trees. Intuitively, this can be explained by

1https://github.com/x�ouris/newick-tools

the fact that (i) we have less trees to base our anal-
ysis on, and (ii) only the reference bipartitions now
contain all 23 taxa. Since a partial bipartition dis-
tributes its frequency among all its super-bipartitions
in P , it is intuitively clear that bipartitions with more
taxa are more likely to accumulate distributed fre-
quencies from more sub-bipartitions than bipartitions
with fewer taxa. Con�icting bipartitions (with less
than 23 taxa) are thus not assigned su�cient support
to compete with the reference bipartitions. This be-
havior can be observed in Table 3. There, we display
the numbers of times the certainty in a branch under
the di�erent adjustment schemes was higher than the
certainty obtained from the comprehensive trees.

3.2 Empirical Data Analyses

In this section we present an additional, yet di�er-
ent, analysis of the above yeast data set. We do not
only use the 1275 comprehensive trees, but now also
include additional partial gene trees. After applying
the aforementioned �lters again (3.1), the tree set
comprises 2494 trees. The comprehensive trees are
the same 1275 trees as in Section 3.1. The remaining
1219 trees are partial trees. The number of taxa in
these partial trees ranges from 4 to 22 (see Figure 4
for the exact distribution of taxon numbers over par-
tial gene trees). Unlike in Section 3.1, these partial
trees are not simulated, but the result of phylogenetic
analyses on the corresponding gene alignments.
In addition, we also analyze a gene tree set from

avian genomes. The data was previously published
in Jarvis et al. (2015). Here, we analyze a subset of
2000 gene trees with up to 48 taxa. Of these trees,
500 contain the full 48 taxa while the remaining trees
contain either 47 taxa (500 trees) or 41-43 taxa (1000
trees). The taxon number distribution over trees is
provided in Figure 5.
First, we report the results for the yeast data set.

We present the IC and ICA scores for all internal
branches under the three adjustment schemes and
compare them to the scores obtained for the subset
of comprehensive trees. Figure 6 shows the topology
of the reference tree. Tables 4 and Table 5 show the
respective IC and ICA values.
The values for the individual IC and ICA scores
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IC ICA
p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7

Probabilistic 0.31 0.20 0.18 0.08 0.26 0.18 0.18 0.12
Observed 0.42 0.27 0.15 0.07 0.39 0.25 0.19 0.08
Lossless 0.65 0.44 0.24 0.17 0.60 0.44 0.28 0.15

Table 1: Di�erences D in IC/ICA scores, between the scores calculated by the adjustment schemes and the
reference scores for the comprehensive tree set.

IC ICA
p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7

Probabilistic 0.50 0.52 0.53 0.53 0.47 0.48 0.50 0.50
Observed 0.50 0.51 0.53 0.53 0.45 0.48 0.50 0.49
Lossless 0.61 0.48 0.50 0.52 0.46 0.43 0.47 0.49

Table 2: Di�erences D in IC/ICA scores, between the pruned tree sets only containing partial gene trees
and the reference values.

IC ICA
All trees p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.4 0.35 0.35 0.15 0.25 0.25 0.2 0.15
Observed 0.15 0.3 0.4 0.2 0.2 0.2 0.2 0.1
Lossless 0.1 0.25 0.15 0.25 0.2 0.2 0.25 0.1

Partial trees p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.8 0.8 0.85 0.85 0.8 0.8 0.85 0.85
Observed 0.65 0.75 0.8 0.85 0.65 0.75 0.8 0.85
Lossless 0.3 0.65 0.75 0.8 0.25 0.65 0.75 0.8

Table 3: Fraction of branches for which the adjusted IC/ICA scores are higher than the IC/ICA reference
scores. The top table contains values for all three adjustment schemes if all trees (comprehensive and
simulated partial) are included in the analysis. The bottom table shows the values for all three methods if
only partial trees are analyzed.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4-23 Taxa Probabilistic 89 28 8 3 46 28 6 91 2 15 1 52 92 72 65 70 7 2 <1 92
4-23 Taxa Observed 89 12 12 3 52 24 4 58 1 14 2 36 91 69 64 69 7 2 1 57
4-23 Taxa Lossless 82 2 15 2 39 26 5 41 <1 10 3 15 89 61 56 65 7 1 <1 68

Table 4: IC scores for all non-trivial bipartitions multiplied by 100 and rounded down. The bipartition labels
are shown in Figure 6. The data set can either consist of only full trees (23 taxa), or partial and full trees
(4-23 taxa).
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Figure 6: Bipartition numbers corresponding to the presented tables, for the yeast data set.
Taxon key: Kwal: Kluyveromyces waltii, Kthe: Kluyveromyces thermotolerans, Sklu: Saccharomyces

kluyveri, Klac: Kluyveromyces lactis, Egos: Eremothecium gossypii, Zrou: Zygosacharomyces rouxii, Kpol:
Kluyveromyces polysporus, Cgla: Candida glabrata, Scas: Saccharomyces castellii, Sbay: Saccharomyces

bayanus, Skud: Saccharomyces kudriavzevii, Smik: Saccharomyces mikatae, Spar: Saccharomyces paradoxus,
Scer: Saccharomyces cerevisiae, Clus: Candida lusitaniae, Cdub: Candida dubliniensis, Calb: Candida albi-

cans, Ctro: Candida tropicalis, Cpar: Candida parapsilosis, Lelo: Lodderomyces elongisporus, Psti: Pichia
stipitis, Cgui: Candida guilliermondii, Dhan: Debaryomyces hansenii

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4-23 Taxa Probabilistic 89 21 6 13 46 26 14 91 3 11 1 38 92 72 60 70 25 7 11 92
4-23 Taxa Observed 89 15 9 12 52 24 12 58 2 11 11 34 91 69 59 69 24 7 11 57
4-23 Taxa Lossless 82 13 10 7 39 27 13 46 3 9 8 29 89 61 49 65 7 5 5 68

Table 5: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded down. The bipartition
labels are shown in Figure 6. The data sets again either consist of only full trees (23 taxa), or partial and
full trees (4-23 taxa).

can be higher for the lossless adjustment scheme than
for the probabilistic adjustment scheme and the ob-
served adjustment scheme. However, the relative TC
and TCA values suggest that the lossless adjustment
attributes a lower certainty to individual bipartitions
as well as the entire tree. The actual values are 0.298

for the relative TC score and 0.322 for the relative
TCA score for the lossless adjustment; 0.389 and
0.399 for the probabilistic adjustment; and 0.339 and
0.364 for the observed adjustment scheme.

By comparing the 23-taxa yeast species tree val-
ues without adjustment against the three approaches

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2016. ; https://doi.org/10.1101/022053doi: bioRxiv preprint 

https://doi.org/10.1101/022053
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

200

400

600

800

1000

1200

1400

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u
m
b
er

o
f
tr
ee
s

Number of taxa

Figure 4: Distribution of taxon number over trees in
the yeast data.
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Figure 5: Distribution of taxon number over trees in
the avian data.

that contain both complete and missing data (proba-
bilistic, observed and lossless), we can conclude that,
overall, the values appear very similar and they tend
to provide additional support for the reference topol-
ogy. Among the adjustment strategies, the proba-
bilistic adjustment yields values that are closest to
those obtained by the analysis of only comprehensive
trees. This is expected, since for the probabilistic ad-
justment, smaller bipartitions contribute less to the
overall scores than larger bipartitions. Full biparti-
tions/trees are thus a�ecting the outcome most under
this adjustment scheme.
Previous ambiguous bipartitions, concerning for

example the placement of species like S. castelii (conf.
bipartitions 9 and 8), C. lusitaniae (conf. biparti-
tions 20 and 19), D. hansenii (bipartition 18), and

K. lactis (bipartition 3), remain equally uncertain,
showing very similar (close to 0) IC and ICA values.
The split between the Candida and Saccharomyces

clade (bipartition 20) is well documented in the liter-
ature (Fitzpatrick et al., 2006; Dujon, 2010; Salichos
and Rokas, 2013). The same holds for bipartition
8, the Saccharomyces `sensu stricto' clade (Rokas
et al., 2003; Kurtzman and Robnett, 2006; Salichos
and Rokas, 2013). Thus, a high certainty for these bi-
partitions is expected. As we can see in Table 4, the
analysis of only comprehensive trees supports these
two bipartitions with IC values of 0.99 for bipartition
20, and 0.95 for bipartition 8. However, the generally
conservative lossless distribution approach, as well as
the observed support adjustment scheme, provide re-
duced certainty for these two bipartitions; the diver-
gence of Candida from the Saccharomyces clade (bi-
partition 20) is, for the lossless distribution scheme,
depicted with an IC value of 0.68, and the Saccha-

romyces `sensu stricto' clade (bipartition 8) obtains
an IC score of 0.41; the observed adjusted support
for these bipartitions is reduced to 0.57 for biparti-
tion 20, and 0.58 for bipartition 8. The probabilistic
adjusted IC values for the branches inducing these
splits are 0.92 for bipartition 20, and 0.91 for bipar-
tition 8. A similar behavior can be seen for the ICA
values.
In addition, under the lossless adjustment, the pre-

viously resolved placement of Z. rouxii (a clade with
relatively low gene support frequency of 62% in (Sali-
chos and Rokas, 2013)) remains unresolved with IC
and ICA values of 0.15 and 0.29 respectively.
Next, we analyze the behavior of the adjustment

schemes if only partial trees are provided. See Tables
6 and 7.
The relative TC (and TCA) that result from these

calculations are 0.668 (0.651) for the probabilistic dis-
tribution, 0.499 (0.532) for the observed distribution,
and 0.394 (0.407) for the lossless distribution scheme.
The relative TC and TCA without correction (ob-
tained from the values shown in Tables 4 and 5),
for trees with full taxon sets, are 0.406 and 0.409.
The higher TC and TCA values obtained for the for-
mer two adjustment methods suggest that these ap-
proaches are not providing the con�icting bipartitions
with a su�ciently adjusted support to compare to the
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Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4-22 Taxa Probabilistic 93 64 61 58 72 66 59 85 39 46 43 64 95 77 83 78 56 49 47 93
4-22 Taxa Observed 89 23 58 36 80 75 70 80 1 1 <1 20 93 79 82 78 54 13 16 43
4-22 Taxa Lossless 80 24 58 12 66 57 32 68 24 12 12 2 88 54 42 49 43 12 38 7

Table 6: IC scores for all non-trivial bipartitions multiplied by 100 and rounded down. The bipartition labels
are shown in Figure 6. Here, the data set only contains trees with partial taxon sets.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4-22 Taxa Probabilistic 93 64 54 51 72 66 59 85 40 46 34 58 95 77 83 78 56 43 45 93
4-22 Taxa Observed 89 23 48 33 80 75 70 80 17 20 18 20 93 79 82 78 54 29 24 43
4-22 Taxa Lossless 80 27 58 24 66 57 29 68 24 11 12 2 88 54 42 49 43 12 38 22

Table 7: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded down. The bipartition
labels are shown in Figure 6. Again, the data set only contains trees with partial taxon sets.

reference bipartition. The reference bipartitions al-
ways contain 23 taxa for this data set. Now however,
no con�icting bipartition can have that many taxa,
as comprehensive trees are not included in the above
analysis of only partial trees.

Analyzing the second data set with a total of 2000
trees yields similar results. See Table 3.2 for the TC
and TCA values for this data set. Again, the values
of the analysis restricted to a comprehensive tree set
are compared to the results obtained when includ-
ing partial gene trees, and restricting the analysis to
partial gene trees. Speci�cally, we see that the prob-

Taxa adjustment TC TCA
48 taxa None -3.14 -3.17

41-48 Taxa Probabilistic -2.44 7.72
41-48 Taxa Lossless -5.05 -1.35

41-47 Taxa Probabilistic 9.34 15.75
41-47 Taxa Lossless 6.01 6.01

Table 8: IC and ICA scores for di�erent subsets of
the data set for the probabilistic and lossless distri-
bution schemes.

abilistic support for analyzing the full data set, of
2000 trees, again gives TC values more closely in ac-
cordance with the values obtained for the analysis
restricted to the 500 full trees than the lossless ad-

justment scheme.

Here, the tree set does not support the reference
tree well (as evident by the negative TC). At the
same time, the TCA under the probabilistic adjust-
ment scheme is actually positive.

For this data set, the discrepancy can be explained
by the fact that the most frequent con�icting biparti-
tions are not supported by much more than the sec-
ond most supported con�icting bipartition. If the
support for the reference bipartition is much smaller
than that of the most frequent con�icting biparti-
tion, the internode-certainty will approach −1. Let
the support for the most frequent con�icting biparti-
tion be f . As the support of the second most frequent
con�icting bipartition approaches f , the ICA value
tends towards 0.0. If the reference bipartition is the
bipartition with the highest adjusted support in C(b),
this e�ect is less pronounced.

For the analysis of partial bipartitions only, we
again see that the con�icting bipartitions are not as
well supported under any tested adjustment scheme.
Again, the lossless adjustment scheme yields de-
creased certainty. Thus, we advocate that this ad-
justment scheme is used if one wants to reduce the
risk of overestimating certainties.
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4 Conclusion

We have seen that the inclusion of partial trees into
any certainty estimation is bene�cial, as the partial
trees do contain information that is not necessarily
contained in the full/comprehensive trees. This is
evident by the di�erent TC and TCA scores we
obtained for the empirical data sets.

Further, the selection of the most appropriate
adjustment scheme depends on the data at hand.
The lossless adjustment scheme is most appropriate
for tree sets that do not contain any comprehensive
trees, since it yields more conservative certainty esti-
mates. For gene tree sets that contain comprehensive
as well as partial trees, the probabilistic and observed
adjustment schemes yield results that are more accu-
rate with respect to the reference IC and ICA values.

In general, we advocate the inclusion of (some)
comprehensive trees in any analysis that also includes
partial trees. This is motivated by the fact that the
pruned data sets that contained comprehensive trees
generally yielded more accurate results than tree sets
not containing comprehensive trees.
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