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Abstract

We present, implement, and evaluate an approach to calculate the
internode certainty and tree certainty on a given reference tree from a
collection of partial gene trees. Previously, the calculation of these values
was only possible from a collection of gene trees with exactly the same
taxon set as the reference tree. An application to sets of partial gene
trees requires mathematical corrections in the internode certainty and
tree certainty calculations. We implement our methods in RAxML and
test them on empirical data sets. These tests imply that the inclusion
of partial trees does matter. However, in order to provide meaningful
measurements, any data set should also contain comprehensive trees.

1 Introduction

1.1 Motivation and related work

Recently Salichos and Rokas [7, 8] proposed a set of novel measures for quan-
tifying the confidence for bipartitions in a phylogenetic tree. These measures
are the so-called Internode Certainty (IC) and Tree Certainty (7'C'), which are
calculated for a specific reference tree given a collection of other trees with the
exact same taxon set.

The calculation of their scores was implemented in the phylogenetic software
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RAxML [8, 10].

The underlying idea of Internode Certainty is to assess the degree of conflict of
each internal branch, connecting two internal nodes of a phylogenetic reference
tree, by calculating Shannon‘s Measure of Entropy [9]. This score is evaluated
for each bipartition in the reference tree independently. The basis for the cal-
culations are the frequency of occurrence of this bipartition and the frequencies
of occurrences of a set of conflicting bipartitions from the collection of trees.In
contrast to classical scoring schemes for the branches, such as simple bipartition
support or posterior probabilities, the IC score also reflects to which degree the
most favored bipartition is contested.

The reference tree itself can, for example, be constructed from this tree set, or
can be a maximum likelihood tree for a phylogenetic alignment. The tree collec-
tion may, for example, come from running multiple phylogenetic searches on the
same dataset, multiple bootstrap runs [2], or running the analyses separately
on different genes or different subsets of the genes (as done for example in [4]).
While for the first two cases the assumption of having the same taxon set is rea-
sonable, this does frequently not hold for different genes. Gene sequences may
be available for different subsets of taxa, simply due to sequence availability or
the absence of some genes in certain species.

In this paper, we show how to compute an appropriately corrected internode
certainty (IC) on collections of partial gene trees. When using partial biparti-
tions for the calculation of the IC and T'C' scores we need to solve two problems.
First, we need to calculate their respective adjusted support (analogous to the
frequency of occurrence) (Section 2.1). Unlike in the standard case, with full
taxon sets, this information cannot be directly obtained. Then, we also need to
identify all conflicting bipartitions (Section 2).

1.2 Bipartitions, Internode Certainty and Tree Certainty

We now briefly define the concepts and notation that we will use throughout the
paper. Additionally, we formally define internode certainty and tree certainty.

Bipartition Given a taxon set S, a bipartition B of S is defined as a tuple
of taxon subsets (X,Y) with X, Y Cc Sand XUY =5, X NY = 0. We write,
B=X|Y =Y|X.

In phylogenetic trees, a bipartition is obtained by removing a single edge from
the tree. Let b be an edge connecting nodes n; and no in some unrooted phy-
logenetic tree T. The bipartition that is obtained by removing b is denoted by
B(b), which we define as: B(b) = X(n1)|X(n2), where X(ny) and X (ng) are
all taxa that are still connected to nodes n; and ngy respectively, if branch b is
removed.
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Trivial bipartition We call a bipartition B = X|Y trivial if | X| = 1 or
Y] =1.

Trivial bipartitions are uninformative, since having only a single taxon in either
X or Y means that this taxon is connected to the rest of the tree. This is
trivially given for any tree containing this taxon.

Bipartitions with |X| > 2 and |Y| > 2 are called non-trivial. In contrast to
trivial bipartitions, non-trivial bipartitions contain information about the struc-
ture of the underlying topology.

Henceforth, the term bipartition will always refer to a non-trivial bipartition.

Sub-bipartition, super-bipartition We denote B; = X;|Y; as a sub-bipartition
of B2 = X2|Y2 if X1 Q X2 and Y1 Q YQ, or X1 g )/2 and Yl g XQ.
The bipartition By is then said to be a super-bipartition of Bj.

We also need a notion of compatibility and conflict between bipartitions.

Conflicting bipartitions Two bipartitions B; = X;|Y; and By = X5|Ys
are conflicting/incompatible if there exists no single tree topology that ex-
plains/contains both bipartitions. Otherwise, if such a tree exists, they must be
compatible. More formally, the bipartitions B; and By are incompatible if and
only if all of the following properties hold (see for example [1]):

X1 NX, #0
AXiNY, #0
AYIN X £ 0
AYINY, # 0.

This definition of conflict and compatibility is valid irrespective of whether the
taxon sets of B; and By are identical or not.

Internode certainty The Internode certainty (IC) score (as defined in [7])
is calculated using Shannon‘s measure of entropy [9]. For a branch b we define
IC(b) as follows:

IC(b) = 1+ Xp) - log2(Xpw)) + Xp+ - loga(Xp+), (1)

where B(b) is the bipartition induced by removing branch b, and B* is the bipar-
tition from the tree collection that has the highest frequency of occurrence and


https://doi.org/10.1101/022053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/022053; this version posted July 6, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

is incompatible with B(b). The terms denoted by X are the relative frequencies
of the involved bipartitions. That is,

o JBO) o fBY)
BO TR BE) + f(BY) T F(B®) + f(BY)

(2)

where f simply denotes the frequency of occurrence of a bipartition in the tree
set.

For the standard case of IC calculations (without partial gene trees), the fre-
quency of occurrence f is simply the number of observed bipartitions in the
tree set. In Section 2.1 we will show how to calculate the support (adjusted
frequencies) for bipartitions from partial gene trees. We compute this support
using the observed frequencies of occurrence. The support for partial biparti-
tions can then be used analogously to the frequency of occurrence in Equation
2 for calculating the IC' scores.

Similarly to the IC score, Salichos and Rokas [8] also introduced the IC'A (in-
ternode certainty all) value for each branch.

Internode certainty all

ICA(Mb) =1+ > Xpe-log(Xpe), (3)
BeeC(b)

where C'(b), as defined in [8], is B(b) union with a set of bipartitions that conflict
with B(b) and with each other, while the sum of support for elements in C(b)
is maximized and n is defined as n = |C(b)|. Note that C(b) has a slightly
different definition in [7].

Again, the terms denoted by X are the relative support of the bipartitions
involved in Equation 3. That is,

f(B)
> f(BY)

BeeC(b)

Xp=

for all involved bipartitions B € C(b).

The set C(b) however is not easy to obtain. In fact, as we show in the following
observation, maximizing the sum of supports for elements in C(b) renders the
search for an optimal choice of C'(b) NP — hard.

Observation 1 Finding the optimal set C(b) is NP — hard.

This can easily be seen by considering the related, known to be NP-hard, max-
imum weight independent set problem [3]. Alternatively, the similarity to the
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problem of constructing the asymmetric median tree, which is also known to be
NP — hard [6], can be observed.

For the maximum weight independent set problem, we are confronted with an
undirected graph whose nodes are given weights. The task is then to find a set
of nodes that maximize the sum of weights, such that no two nodes in this set
are connected via an edge. A reduction from this problem, to finding C(b) is
straight-forward. Let (W, E) be an undirected graph with weighted nodes W
and edges E. Let B(b) = xy|vz. First we introduce one bipartition xz|vy for
every node in W, with support equal to the node weight. Then, for every pair of
bipartitions where the corresponding nodes in W do not share an edge in E, we
add four taxa that are unique to those bipartitions, in such a way that they can
never be compatible (consider ...ablcd. .. and ...ac|bd...). If we find C(b) for
the newly introduced bipartitions, the corresponding nodes yield a maximum
weight independent set.

For this reason, the definition of the IC' A, used and implemented in [8], which
we also use here, does not guarantee C'(b) to contain the set of conflicting bi-
partitions that maximize the sum of support. Instead C(b) is constructed via a
greedy addition strategy.

Additionally, Salichos and Rokas [7] advocate to use a threshold of 5% support
frequency for conflicting bipartitions in C(b). That is, C'(b) may only take
elements B that have support

F(B) > 0.05. (4)

This is done to speed up the calculation. Under this restriction, the problem of
maximizing the support for C(b) is no longer NP — hard. However, the search
space is still large enough to warrant a greedy addition strategy, over searching
for the best solution exhaustively.

Furthermore, if B(b) does not have the largest frequency among all bipartitions
in C(b), the IC(B) and ICA(b) score are multiplied with —1 to indicate this.
This distinction is necessary since we may have |[ICA(b)| = |[ICA(b)| for some
b € C(b). So an artificial negative value denotes that the bipartition in the
reference tree is not only strongly contested, but not even the bipartition with
the highest support. This can for example occur when the reference tree is the
maximum-likelihood tree, and the tree set contains bootstrap replicates.

From the IC scores and IC'A scores the respective Tree Certainties T'C' and
TCA can be computed. These are defined as follows:

Tree certainty The T'C (tree certainty) and TCA (tree certainty all)
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scores are simply the sum over all respective IC or IC A scores. That is,

TC= Y  IC(b) (5)

b internal branch
in reference tree

TCA = > ICA®). (6)

b internal branch
in reference tree

Furthermore, the relative TC and TCA scores are defined as the respective
values normalized by the number of internal branches b, that is, branches for
which B(b) is a non-trivial bipartition.

As we can see, all we need to calculate the IC, T'C, ICA and TCA scores is to
calculate C(b) (Section 2) and f(B) (Section 2.1).

2 Adjusting the Internode Certainty

Now we must consider how to obtain the relevant information, that is the sets
C and corrected support f, from partial bipartitions.

First, we formally define the input. We are given a so called reference tree T with
taxon set S(T') node set V(T') D S(T) and a set of branches E(T') C V(T)xV(T)
connecting the nodes of V(T)). Let E(T) C E(T) be the set of internal branches.
That is, for b € E the bipartition B(b) is non-trivial.

Additionally, we are given a collection of trees T. From this collection we can
easily extract the set of all non-trivial bipartitions Bip. The bipartitions in
Bip are used to adjust the frequency of other bipartitions. The taxon sets of
the bipartitions in Bip are subsets of, or equal to, S(T). We call a bipartition
with fewer than |S(T")| taxa a partial bipartition. A bipartition that includes
all taxa from S(7T') is called comprehensive or full bipartition. From Bip and
the bipartitions in the reference tree, we can construct a set of bipartitions P,
for which we will adjust the score.

Figure 1 gives an overview of the steps explained in the following sections.

2.1 Correcting the Support

We aim to measure the support the given set of partial trees T (or bipartition
set Bip) induces for any of the bipartitions in P. We call this the adjusted
frequency or adjusted support. If Bip and P only contain comprehensive
bipartitions, the support for any given bipartition is simply equal to its frequency
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of occurrence.

In case of partial bipartitions, some thought must be given to the process.
Imagine a comprehensive bipartition B = X|Y in P, and a sub-bipartition D of
B in Bip. Even though D does not exactly match B, it also does not contradict
it. More so, it supports the super bipartition, by agreeing on a common sub-
topology.

We distinguish whether the observed sub-bipartition D from Bip is allowed to
support any possible bipartition, even those not observed in Bip and P, or just
those we observe in P. There seems to be no clear answer as to which of these
assumptions is more realistic. The choice is thus merely a matter of definition.

2.1.1 Support of all possible bipartitions: Probabilistic Support

If we assume that an observed sub-bipartition from Bip supports all possible
super-bipartitions, not just those in P, with equal probability, the impact on the
adjusted support of each such super-bipartition from P (C(b)) quickly becomes
negligible. Consider the following example:

Let B = X|Y € P, be a super-bipartition of D = z|y € Bip with |X \ z| +
|Y'\ y| = k. That is, B contains k taxa that D does not contain. There are 2¥
distinct bipartitions with taxon set X UY that also contain the constraints set
by D. For k = 10 we already obtain 2!° = 1024. That is, the support of D will
only increase (adjust) the support of B by less than one permille. More formally,
let Rp be the set of sub-partitions in Bip of the comprehensive bipartition B
in P and fp the support for a partial bipartition D in Bip. Then the adjusted
support for B, fp is

B b
fs = Z 2(IS(T)[—np)’
DeERp

where np is the number of taxa D, and |[S(T)| the number of taxa in the
reference tree. We use |S(T')| in this formula, since any bipartition in P is
implicitly a comprehensive bipartition. That is, even though we do not explicitly

Find conflicting

Find bipartitions bipartitions Caleulate IC and ICA values
in
Reference Tree | =——""— probabilistic/
Adjusted] — | C(p) [observed
P support
for P — | IC TC
- —] 1 lossless A1 lrca
e ICA

Partial Tree set | —— | Bip . Adjusted

‘Adjust Support SUDDOLE

(probabilistic / observed) fog I(V ( b')

Adjust Support (lossless)

Figure 1: Overview of the proposed methods.
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assign the remaining taxa from a partial bipartition B = X|Y in P to X or Y,
they must belong to one of these sets. The missing taxa in D thus have

2
probability to belong to the same set (X or Y) each.

The effect of such an adjustment scheme is that partial bipartitions in Bip with
fewer taxa affect the T'C' and IC' scores substantially less than bipartitions with
more taxa. This can also be observed in our computational results in Section
3. Since fp is the sum over the observed frequency times the probability of
constructing the actual bipartition implied by B we call this the probabilistic
adjustment scheme.

2.1.2 Support of observed bipartitions: Observed Support

If we do not want to discard some of the frequency of occurrence when calculat-
ing the adjusted support from partial bipartitions, we can distribute their fre-
quency of occurrence uniformly among comprehensive bipartitions in P. When
we assume the prior distribution of bipartitions in P to be uniform, this process
is simple. For a given partial bipartition D in Bip, with support fp, let Sp be
the set of bipartitions in P that are super-bipartitions of D. Then D contributes
é—g‘ support to any B € Sp. In other words, the adjusted support for each full
bipartition B is

= Y 22 ™)

D s.t. BeSp S

Since this distribution scheme distributes the support for each sub-bipartition
among bipartitions that we observed in the tree set only, we call this the observed
support distribution scheme.

2.1.3 Support of conflicting bipartitions: Lossless Support

One problem with the adjustment strategy explained above is that trees with
more taxa typically have more bipartitions in P than trees with fewer taxa. For
an intuitive understanding of why this can be problematic consider the example
illustrated in Figure 2. Let bipartitions By and By come from the same tree.
Further, let bipartition Bs be the only, and exclusive, sub-bipartition of By and
By in Bip. Similarly, let bipartition B4 be the only super-bipartition of Bs.
Let the sub-bipartitions Bs and Bs both have a frequency of occurrence of f
and let By and Bs be conflicting with Bs. If we apply the above distribution
scheme, bipartition B; and By have an adjusted frequency of f/2, while By
has an adjusted frequency of f. Penalizing bipartitions from trees with larger
taxon sets however seems unwarranted. Thus, we propose a correction method
that takes this into account. In order to circumvent this behavior we choose
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A X A
B
B D D
C

Bipartitions: AB|XCD  ABX|CD AC|DB

Observed: 1 \ /1 / fo

2 Bl
Bip: AB|CD frequency f; AC|DB frequency fo
f:
Lossless: N\ /

Conflicting Set: {AB|XCD,AC|DB}

Figure 2: Distribution of adjusted support for observed and lossless adjustment
scheme.

to distribute the frequency of any sub-bipartition only to a set of conflicting
super-bipartitions (namely bipartitions in C(b)). That is:

f
= 2, o O ©

D s.t. BESp

Where Sp is defined as before. Note that, the adjusted support now depends
on the set of conflicting bipartitions C'(b) which is defined by a branch b. This
means that, the adjusted support for a given (conflicting) bipartition must be
calculated separately for each reference bipartition B(b).

This distribution scheme distributes the entire frequency of sub-bipartitions only
to these conflicting bipartitions. Thus, the sum of adjusted frequencies for all
conflicting bipartitions is exactly equal to the sum of frequencies of occurrence of
the found sub-bipartitions. For this reason we call this the lossless adjustment
scheme.

Note that, C'(b) is obtained via a greedy addition strategy, depending on the
adjusted support of bipartitions. Since the adjusted support according to the
lossless adjustment scheme depends on C(b) we obtain a recursive definition.
To alleviate this, we simply precompute the above explained probabilistic ad-
justment scheme to obtain an adjusted support for each bipartition. The set of
conflicting bipartitions C(b) is then found with respect to the probabilistically
adjusted support values. Then, using C(b), the actual lossless support adjust-
ment is calculated and replaces the probabilistic support in the calculation of
IC and IC'A values.

For the above example we get the following. Let {By, B4} be the set of conflict-
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ing bipartitions. Then, the support for B; and B, after applying the lossless
distribution scheme is f for both bipartitions, which is the desired behavior for
this distribution scheme.

2.2 Finding Conflicting Bipartitions

From Bip we construct a set of maximal bipartitions P. That is, bipartitions
that are not themselves sub-bipartitions of any other bipartition in Bip. Once
we have constructed P, we can calculate the internode certainty IC(b) as before.
The construction of P is trivial. The set P simply contains all bipartitions that
are not themselves strict sub-bipartitions of other bipartitions in Bip. We do
this step, since any information contained in a sub-bipartition is also contained
in the super-bipartition. That is, the implied gene tree (or species tree) for
the super-bipartition can also explain the gene tree for all taxa in the sub-
bipartition. How the frequency of occurrence of the sub-bipartition affects the
frequency of occurrence of the super-bipartition has been explained in Section
2.1.

We implicitly assume that each bipartition in P should actually contain all taxa
from S(T). To achieve this, we keep the placement of the missing taxa ambigu-
ous. That is, we assume that, each missing taxon has a uniform probability to
fall into either side of the bipartition.

To construct C'(b) greedily as proposed above, the support of the bipartitions
must be known. However, the lossless support adjustment scheme explained
above is only reasonable on a set of conflicting bipartitions (that is, C(b) itself).
To avoid this recursive dependency, we first compute an adjusted support that
does not depend on C(b) for this case. (Here we use the so-called probabilistic
adjusted support, as explained in Section 2.1.1, to obtain an initial adjusted
support.) Then, a greedy algorithm is used to approximate the set C'(b) with
the highest sum of adjusted support, with respect to the initial adjustment.
Once C(b) is obtained, the support for all bipartitions in C(b) is adjusted using
the new method, which depends on a set of conflicting bipartitions. These new
values then replace the initial estimate via the first adjustment scheme.

Keeping the above in mind, we can easily construct C(b) from P for every
branch b in E(T). Note that, we also defined the reference bipartition B(b) to
be in C'(b). Thus, we simply start with B(b) and iterate through the elements
of P in decreasing order of adjusted support (that is, the probabilistic adjusted
support if we are to apply the probabilistic or lossless distribution scheme, and
the observed adjusted support if this distribution is desired) and add every
bipartition that conflicts with all other bipartitions added to C'(b) so far. During
this process the threshold given in Equation 4 is applied.

Given B(b), C(b) and Bip we can calculate the IC and IC A values as defined in

10
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Equations 1 and 3 under the probabilistic or observed adjustment schemes. For
the lossless adjustment scheme (2.1.3), the actual adjusted frequencies have to
be calculated separately for each bipartition in C'(b) for all reference bipartitions
b in this step.

3 Computational Results

We implemented the methods described in Section 2 in RAxML [10]. In this
section we re-analyze the yeast dataset as used by Salichos and Rokas in [7].
The difference is that, we do not only use trees with full taxon sets but also
trees with partial taxon sets, which has not been done before. The dataset
contains 23 taxa. After applying some filtering techniques we obtain 2494 trees
as the basis for our calculations. Of these trees, 1275 contain all 23 taxa. In
[7] Salichos and Rokas analyzed a slightly smaller subset of these trees of size
1070. The remaining 1219 trees only contain a partial set of taxa. The number
of taxa in these trees ranges from 4 to 22. See Figure 3.a for the distribution of
taxon numbers.

Further, we analyze a dataset with 2000 trees and up to 48 taxa. Of these trees,
500 contain the full 48 taxa, the remaining trees contain either 47 taxa (500
trees) or 41-43 taxa (1000 trees). The distribution is illustrated in Figure 3.b.
These trees, based on avian genomes, have previously been published in [5].

1400 600

1200
1000
800

600

200 I I 100
,Lm el mnill .

4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 42 43 44 47 48
a) Full tree has 23 taxa. The number of trees with a given amount of taxa are showr b) Full tree has 48 taxa. The number of trees with a given amount of taxa are shown

Number of Trees
Number of Trees

Figure 3: Distribution of trees in the trees files.

The software and datasets on which these evaluations are based can be found
at http://www.exelixis-1lab.org/material/ICTC.tar.gz. The probabilistic
and lossless distribution scheme are also included in the latest version of RAxML
(https://github.com/stamatak/standard-RAxML). We chose to omit the im-
plementation for the observed support adjustment from the official RAxML
release, as it does not seem to offer any advantages over the other two methods.
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We initially report results for the yeast dataset. The results are then confirmed
by the second dataset.

First, we assess the effect of including partial gene trees into the analysis. See
Table 1 for the results. Table 2 shows the respective results for the IC' A values.
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Figure 4: Bipartition numbers corresponding to the presented tables.

Trees Adjustment | Bip. 1| 2 [3] 4 |5] 6 7 (8|9 10|11 |12 |13 |14 | 15 |16 |17 |18 |19 | 20
Full None 919411199 1|71 2 |5]|95|56|29| 3 | 14| 7 |<1|95| 71|48 |27 |75
Full and Partial | Probabilistic 8192|1922 65| 2 |6|91 52|28 |3 |15 | 7 |<1|8|70|46 |28 |72
Full and Partial Observed 1319228 (2|67 1 |4]62|38|13| 3 |15]| 7 1 |91 |71 (55|24 |72
Full and Partial Lossless 1589|368 |1|56|<1|5 |41 |15 2 2 110 7 | <18 |65|39]|26]|61

Table 1: IC scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 4.

Trees Adjustment | Bip. 1| 2 |3 | 4 [5| 6 |78 |9 [10|11 |12 13|14 |15 |16 |17 |18 |19 | 20
Full None 7194|298 |8 |71 |3 |14]95(45 |23 |8 | 12| 7 |9 | 95|71 |48 |25 |75
Full and Partial | Probabilistic 692 |1(92|7|60 |3 |14 |91 |38 |21 |13 |11 |25 |11 |89 |70 |46 |26 | 72
Full and Partial Observed 10192 (2|76 |8 |67 |2 |12|62 |36 |17 | 13|10 |25 | 7 |91 |71 |53 |24 |72
Full and Partial Lossless 10 |89 8|68 |5 |49 |3 | 13|46 |29 (13| 7 | 9 | 7 | 5 |8 |65 |39]|27]61

Table 2: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 4.

We see that for both, the IC and IC' A values, the values for the tree set with
full trees is closer to those obtained by the probabilistic adjustment, for full
and partial trees combined, than the lossless adjustment scheme for the same
tree set. This is expected, since for the probabilistic adjustment, smaller bi-
partitions contribute less to the overall scores than larger bipartitions. Full
bipartitions/trees are thus affecting the outcome most.

12


https://doi.org/10.1101/022053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/022053; this version posted July 6, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The values for the individual IC' and IC A scores can be higher for the lossless
adjustment scheme than for the probabilistic adjustment scheme and the ob-
served adjustment scheme. However, the relative TC' and T'C' A values suggest,
that the lossless adjustment attributes a lower certainty to individual bipar-
titions as well as the entire tree. The actual values are 0.298 for the relative
TC score and 0.322 for the relative T'C'A score for the lossless adjustment; 0.389
and 0.399 for the probabilistic adjustment; and 0.358 and 0.379 for the observed
adjustment scheme.

Next, we analyze the behavior of the adjustment schemes if only partial trees
are provided. See Tables 3 and 4.

Trees Adjustment | Bip. 1| 2 3 415 6| 7|89 |10|11]12|13 |14 | 15|16 | 17|18 | 19| 20
Partial | Probabilistic 61| 95| 43 | 93|49 | 83|39 |59 |85 | 64|64 |58 |46 | 56 | 47 | 93 | 78 | 72 | 66 | 77
Partial Observed 74193 | <165 |38 [90| 1 |8 |8 |21 |71 |62| 1 |57|40|92]90]| 91|89 |90
Partial Lossless 58 |88 | 12 | 7 |12 | 42|24 32|68 | 2 |24 |12 | 12| 43|38 |80 |49 | 66 | 57 | 54

Table 3: IC scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 4.

Trees Adjustment | Node1 | 2 | 3 | 4 |5 | 6 | 7 |8 ]9 |10 |11 |12|13 |14 15|16 |17 |18 |19 | 20
Partial | Probabilistic 54 195 |34 |93 |43 |83 |40 |59 |85 | 58 | 64 | 51 | 46 | 56 | 45 | 93 | 78 | T2 | 66 | 77
Partial Observed 741931206541 |90 |21 |82 |8 |21 |71|62| 1 |57|36]|92|90]|91]|89]|90
Partial Lossless 58 | 88 |12 |22 |12 |42 |24 |29 |68 | 2 |27 |24 |11 |43 |38 |80 |49 |66 |57 | 54

Table 4: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 4.

The relative TC' (and T'C A) that result from these calculations are 0.668 (0.651)
for the probabilistic distribution, 0.619 (0.639) for the observed distribution, and
0.394 (0.407) for the lossless distribution scheme. The relative TC and TC A
without correction (obtained from the values shown in Tables 1 and 2), that is
for trees with full taxon sets, are 0.406 and 0.409. The higher TC and TC' A
values obtained for the former two adjustment methods suggest that these ap-
proaches are not providing the conflicting bipartitions with a sufficient adjusted
support, to compare to the reference bipartition. The reference bipartitions al-
ways contain 23 taxa for this data set. Now however, no conflicting bipartition
can have that many taxa, as comprehensive trees are not included in the above
analysis of only partial trees. In order to avoid overestimating the internode
certainty, using the lossless adjustment scheme seems reasonable.

We also have a closer look at the adjusted frequencies of individual bipartitions.
To this end, we consider the 15 bipartitions with the largest adjusted support
after applying the probabilistic adjustment scheme in Table 5. The adjusted
frequencies are applied to the dataset with trees with partial taxon sets only.
That is, no tree with all 23 taxa is included. There are 1449 bipartitions that
are not strict sub bipartitions of other bipartitions, that is, bipartitions in P.
In this table we see that, a high support from the tree set does not seem to
induce a higher adjusted support. The highest scoring bipartition, bipartition
number 1, has an adjusted support of 10.57, while the support from the tree
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Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Adjusted Support 10.57 | 7.90 | 7.88 | 7.57 | 7.24 | 6.79 | 6.69 | 6.69 | 6.68 | 6.44 | 6.30 | 6.12 | 6.09 | 6.06 | 6.02
Support from Tree set 8 3 8 9 1 3 10 7 2 7 11 2 10 7 8

Table 5: List of the 15 highest scoring bipartitions after adjusting the frequency
by the probabilistic scheme. Support from tree set denotes the number of times
this exact bipartition was observed in the dataset. The number only serves as
a way to reference the bipartitions in the text.

set is 8. Several bipartitions have a higher support from the tree set, notably
bipartitions number 7, 11 and 13 with a support of 10, 11 and 10, respectively.
However, for all three, the adjusted support is actually lower than the support
observed from the tree set. Similarly, bipartitions with a low support from the
tree set can still acquire a high adjusted support for themselves. This can be
seen clearly for bipartitions 5, 9, and 12, which only appear once (number 5) or
twice (numbers 9 and 12) in the tree set, but accumulate an adjusted support
such that they are placed among the 15 highest-scoring bipartitions (out of 1449
bipartitions in P).

A similar behavior can be shown for the observed support adjustment scheme.
See Table 6 for the 15 highest scoring bipartitions. The three top scoring bipar-

Number 1 2 3 4 5 6 7 8 9 10 11 | 12 | 13 14 15
Observed support 107 | 21 21 16 15 14 13 12 11 10 10 9 9 9 9
Probabilistic Support | 1.47 | 1.31 | 1.11 | 7.88 | 10.57 | 7.57 | 4.93 | <0.01 | 5.7 | 6.06 | 0.78 | 7.9 | 7.24 | 3.13 | 2.34
Support from Tree set 1 1 1 8 8 9 8 1 11 7 1 3 1 4 4

Table 6: List of the 15 highest scoring bipartitions after adjusting the frequency
by the observed support scheme. The number only serves as a way to reference
the bipartitions in the text and has no relevance to previous numbering of
bipartitions.

titions occur in the tree set only once. Also note that, a low support due to the
probabilistic adjustment scheme does not seem to indicate a low support from
the observed adjustment scheme. See, for example, bipartitions 8 and 11.

Next we consider the adjusted support according to the lossless distribution (see
Table 7). The adjusted support depends on the reference bipartition and the
(greedily chosen) set of conflicting bipartitions. Thus we only display the ad-
justed support for a representative set of conflicting bipartitions. We choose the
bipartition induced by node number 15, as denoted in Figure 4. The set of con-
flicting bipartitions is chosen greedily with respect to the probabilistic adjusted
support. We note two interesting properties. First, bipartitions 1 and 2 demon-
strate that two bipartitions can have the same adjusted support when applying
the lossless distribution scheme, even if the adjusted support calculated by the
probabilistic adjustment scheme is not identical. Similarly, bipartitions 5 and 6
show the opposite behavior. That is, the probabilistic adjustment scheme yields
identical values, while the lossless procedure yields different values. As expected,
the adjusted support obtained through the lossless distribution is higher than
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Number 1 2 3 4 5 6
Lossless Support 35 35 29 11 6 2
Probabilistic Support | 7.89 | 5.22 | 3.69 | 1.47 | 0.5 | 0.5
Support from Tree set 8 4 5 2 1 1

Table 7: Adjusted support under lossless adjustment, probabilistic adjustment,
and support from data set, for a set of six conflicting bipartitions. The number
only serves as a way to reference the bipartitions in the text and has no relevance
to any previous numbering of bipartitions.

the adjusted support from the probabilistic scheme. For the given example,
the order of bipartitions is preserved, independent of which adjusted values are
used. It is worthwhile to note that, this is not the case for all sets of conflicting
bipartitions.

Analyzing the second dataset with a total of 2000 trees yields similar results.
See Table 8 for the T'C' and T'C'A values for this dataset. Specifically, we see

Trees adjustment TC | TCA
48 taxa None -3.14 | -3.17
41-48 taxa | Probabilistic || -2.44 | 7.72
41-48 taxa | Lossless -5.05 | -1.35
41-47 taxa | Probabilistic || 9.34 | 15.75
41-47 taxa | Lossless 6.01 6.01

Table 8: IC' and IC A scores for different subsets of the data set for the proba-
bilistic and lossless distribution schemes.

that, the probabilistic support for analyzing the full data set, of 2000 trees,
again gives T'C values more closely in accordance with the values obtained for
the analysis restricted to the 500 full trees, than the lossless adjustment scheme.

Of note is, that the tree set does not support the reference tree well (as evident
by the negative T'C). At the same time, the TC'A under the probabilistic
adjustment scheme is actually positive. For this data set, the discrepancy can be
explained by the fact that the conflicting bipartitions are also not very distinctly
supported. That is, the reference bipartition has (almost) no support and the
single most supported conflicting bipartition is supported by some value f. If
the support for the reference bipartition is small, the internode-certainty will
approach —1. At the same time, let there be a second conflicting bipartition. If
the adjusted support of this second bipartition is close to f, the IC' A for these
bipartitions will be close to 0.0. If the reference bipartition is the bipartition
with the highest adjusted support in C(b), this effect is less pronounced.

For the analysis of partial bipartitions only, we again see that the conflicting
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bipartitions are not as well supported under any tested adjustment scheme.
Again, the lossless adjustment scheme yields decreased certainty. Thus the
choice of usage of this adjustment scheme is advocated.

From this table, we also see that including trees with the full taxon set seems
to yield more reliable certainties than if we restrict the analysis to partial trees
only.

4 Conclusion

In conclusion we can say that the inclusion of partial trees into any certainty
estimation is beneficial, as the partial trees contain information that is not
necessarily contained in the full/comprehensive trees. This is evident by the
different TC' and TC A scores we obtained.

To calculate the IC and IC A scores, lossless adjustment scheme is found to
be most suitable among the tested methods, since it yields more conservative
certainty estimates.

Furthermore, we advocate the inclusion of (some) comprehensive trees in any
analysis that also includes partial trees to obtain meaningful certainty measure-
ments.
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