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Abstract 

 

The brain matures with large quantitative changes in anatomy and function. Graph 

analysis of EEG has previously revealed increased connectivity between distant 

brain areas and a decrease in randomness and increased integration in the brain 

network with concurrent increased modularity. Comparisons of graph parameters 

across age groups, however, may be confounded with network degree distributions. 

Here, we analyzed graph parameters from minimum spanning tree (MST) graphs. 

MST graphs are constructed by selecting only the strongest available connections 

avoiding loops resulting in a backbone graph that is thought reflect the major 

qualitative properties of connectivity while allowing a better comparison across age 

groups by avoiding the degree distribution confound. EEG was recorded in a large 

(N=1500) population-based sample aged 5 to 71 years. Connectivity was assessed 

using Phase Lag Index to reduce effects of volume conduction. As previously 

reported, connectivity increased from childhood to adolescence, continuing to grow 

nonsignificantly into adulthood decreasing only after ~30 years of age. Leaf number, 

degree, degree correlation, maximum centrality from the MST graph indicated a 

pattern of increased integration and decreased randomness from childhood into early 

adulthood. The observed development in network topology suggested that 

maturation at the neuronal level is aimed to increase connectivity as well as increase 

integration of the brain network. We confirm that brain network connectivity shows 

quantitative changes across the life span, and additionally demonstrate parallel 

qualitative changes in the connectivity pattern.  

 

Keywords: Graph Theory, Brain Development, Aging, Electroencephalography, PLI, 

Volume conduction. 
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Introduction 

 

The brain is a complex network of highly connected brain areas under constant 

pressure for optimal performance. Describing the brain network using graph 

theoretical parameters has proven useful providing biomarkers for disease(Heuvel et 

al., 2010; Menon, 2011; Stam et al., 2009; Tijms et al., 2013; Zhao et al., 2012); In 

addition, it provides a theoretical underpinning for what might constitute optimal 

performance in an optimal network organization(Bullmore and Sporns, 2009; de 

Haan et al., 2009; Sporns, 2014; Stam, 2014a). Ontological development may show 

similar pressure for increased optimal organization. Anatomically, the human brain 

shows large changes on a global scale (Casey et al., 2000; Courchesne et al., 2000; 

Giedd et al., 1999; Lenroot and Giedd, 2006; Paus et al., 2001; Westlye et al., 2010), 

on the intermediate scale of distinct brain areas (Gogtay et al., 2004; Lenroot and 

Giedd, 2006; Paus, 2005; Shaw et al., 2006), but also on the neuronal micro scale 

(Huttenlocher, 1979; Huttenlocher and Dabholkar, 1997; Huttenlocher and de 

Courten, 1987). These anatomical changes are accompanied by changes on a 

functional level, as measured using fMRI and M/EEG. The resting state networks 

seem largely in place by the age of two (Fransson et al., 2010) but also show clear 

development by increasing (long-distance) connectivity as evidenced both from fMRI 

(Fair et al., 2009, 2008; Power et al., 2010) and M/EEG studies (Courchesne et al., 

2000; Hanlon et al., 1999; Smit et al., 2012). Comparing young to older adults, 

modularity decreases for longer connectivity distances and across networks (Meunier 

et al., 2009), and in aging, connectivity decreases in strength (Smit et al., 2012). 

Functional methods of determining connectivity use either direct (EEG, MEG) 

or indirect (fMRI BOLD) measures of correlated neuronal activity to derive coupling 

strength between brain areas. The high temporal resolution of M/EEG may be 

particularly useful for estimating short duration networks that appear and disappear 

on second scale (“fragile binding”). On a larger temporal scale, fMRI can also detect 

connectivity, as illustrated most clearly by the resting state networks (Damoiseaux et 

al., 2006). Recent work has shown that both the fMRI and M/EEG based resting 

state activity share a common ground (Britz et al., 2010; Mantini et al., 2007; Musso 

et al., 2010). Our previous investigations showed that connectivity showed 

substantial change over time closely following anatomical developmental curves of 

white matter (Boersma et al., 2010; Smit et al., 2012, 2010). Moreover, connectivity 

correlated with white matter volume (Smit et al., 2012). When connectivity matrices 

from EEG were converted to graphs and analyzed following Watts and Strogatz 

(Watts and Strogatz, 1998) global network efficiency showed similar correlations with 
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white matter and protracted development from childhood into young adulthood (Smit 

et al., 2012). 

MEG and EEG recordings are subject to volume conduction effects that blur 

the recorded signals at the scalp or sensor level. Volume conduction is particularly 

problematic for determining functional connectivity between signals for algorithms 

like Coherence and Synchronization Likelihood (Nunez et al., 1997; Nunez and 

Srinivasan, 2006). For this reason, Stam et al. (Stam et al., 2007) proposed the 

Phase Lag Index (PLI), which reduces the effect of volume conduction by ignoring 

zero and 180* phase differences between pairs of signals. The PLI algorithm 

inspects the instantaneous phase of a signals oscillation (e.g., alpha oscillations) by 

computing the Hilbert transform, instantaneous phase being then determined as the 

angle of the complex valued signal:   

atan2(s(t) + H(s(t))i),  

where s(t) is the signal over time t, and H the Hilbert transform, i is sqrt(-1), and 

atan2 is the arctangent considering the sign of the real and imaginary inputs to return 

positive or negative angles. Next, the phase difference is computed between pairs of 

signals as the difference in instantaneous phase and restricted to the [-pi, pi] range. If 

the distribution of phase differences is symmetric around zero, this may be evidence 

for spurious connectivity due to volume conduction. Deviances from a symmetric 

distribution must be due to dependency between sources (direct or indirect). Flat 

distributions show no evidence for connectivity, spurious or not spurious. Our first 

aim is to establish whether average connectivity, as well as the graphs derived from 

connectivity matrices, still show the strong developmental effects that we have 

reported earlier (Boersma et al., 2013, 2010; Smit et al., 2012, 2010).  

A second limitation of previous studies may be that the comparison of 

networks across the different age groups is problematic, as networks have different 

average connectivity and degree(van Wijk et al., 2010). Although the use of graph 

parameters compared to those of randomized graphs is often thought to remove 

much of these comparability problems, this may only partly be the case(van Wijk et 

al., 2010). The use of the Minimum Spanning Tree (MST) graph might provide 

additional information over the use of thresholded or weighted graphs (Boersma et 

al., 2013; Stam, 2014b; Stam et al., 2014). MST graphs are connected graphs 

constructed from weighted, undirected connectivity matrices in such a way that they 

i) are fully connected, and ii) do not form loops, thus forming a “backbone” tree-like 

graph. Table 1 describes the MST graph parameters that we derived from the MST 

graphs. Figure 1 shows how graph characteristics can be scaled as a function of the 

leaf number. It has been argued that optimal network function is a trade-off between 
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small diameter (i.e., the MST network reveals that the underlying brain network is 

compact) but not dependent on a single hub-node (which has very small diameter 

but may be less resilient (Albert et al., 2000; Stam, 2014b; Stam et al., 2014). 

Increased integration of the network may manifests itself as a move from low to high 

leaf number in MST graphs. How MST graphs relate to optimization of the brain is a 

matter of ongoing investigation (Stam, 2014b; Stam et al., 2014). However, it has 

been shown that MST parameters are altered in Parkinson’s disease, epilepsy, 

Alzheimer’s disease, and near brain tumors (Dubbelink et al., 2014; Tewarie et al., 

2014; van Dellen et al., 2014); for an overview, see (Stam, 2014a). 

In sum, we investigated whether the observed increase in network order 

remains after connectivity has been established with a measure less sensitive to 

volume conduction. Next, we investigated whether the MST graphs from connectivity 

networks provide a similar picture of increased order with maturation. Finally, while 

our previous analyses focused on a narrow age range in childhood (5 and 7 year 

olds (Boersma et al., 2013)), here we provide data on subjects aged 5 – 71 from 

multiple large longitudinal EEG datasets covering adolescence and adulthood. Using 

these data we will establish whether the previously reported increase in MST order in 

childhood continues up to adolescence and is maintained during adulthood. 

 

Methods 

Subjects and procedure 

Data were collected as part of a study into the genetics of brain development and 

cognition. A total number of 1675 individuals (twins and additional siblings) accepted 

an invitation for extensive EEG measurement. For the present analyses, EEG data 

recorded during 3–4 minutes of eyes-closed rest were available from six 

measurement waves with ages centered approximately around 5, 7, 16, 18, 25, and 

50 years. Part of these consisted of longitudinal measurements at two ages (5–7 and 

16–18 years). In addition, some of the subjects aged 16–18 years were invited back 

for measurements at age 25. In total, this study incorporated 2540 EEG recordings. 

After data cleaning, 2137 recordings were available. The structure of the final subject 

set after data cleaning used in the present study was 331, 368, 418, 380, 350, and 

290 respectively for the six measurement waves, which included 294 longitudinal 

observations between 5 and 7, 374 between 16 and 18, 96 between 18 and 25, of 

which 95 with measurements at three waves 16, 18, and 25. 

Ethical permission was obtained via the "subcommissie voor de ethiek van het 

mensgebonden onderzoek" of the Academisch Ziekenhuis VU (currently METc of the 

VU University Medical Centre). All subjects (and parents/guardians for subjects 
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under 18) were informed about the nature of the research. All subjects or 

parents/guardians were invited by letter to participate, and agreement to participate 

was obtained in writing. All subjects were treated in accordance with the Declaration 

of Helsinki. 

 

EEG acquisition 

The childhood and adolescent EEG were recorded with tin electrodes in an 

ElectroCap connected to a Nihon Kohden PV-441A polygraph with time constant 5 s 

(corresponding to a 0.03 Hz high-pass filter) and lowpass of 35 Hz, digitized at 250 

Hz using an in-house built 12-bit A/D converter board and stored for offline analysis. 

Leads were Fp1, Fp2, F7, F3, F4, F8, C3, C4, T5, P3, P4, T6, O1, O2, and bipolar 

horizontal and vertical EOG derivations. Electrode impedances were kept below 5 

kΩ. Following the recommendation by Pivik et al. (Pivik et al., 1993), tin earlobe 

electrodes (A1, A2) were fed to separate high-impedance amplifiers, after which the 

electrically linked output signals served as reference to the EEG signals. Sine waves 

of 100 µV were used for calibration of the amplification/AD conversion before 

measurement of each subject.  

Young adult and middle-aged EEG was recorded with Ag/AgCl electrodes 

mounted in an ElectroCap and registered using an AD amplifier developed by 

Twente Medical Systems (TMS; Enschede, The Netherlands) for 657 subjects and 

NeuroScan SynAmps 5083 amplifier for 103 subjects. Standard 10-20 positions were 

F7, F3, F1, Fz, F2, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1 and O2. For 

subjects measured with NeuroScan Fp1, Fp2, and Oz were also recorded. The 

vertical electro-oculogram (EOG) was recorded bipolarly between two Ag/AgCl 

electrodes, affixed one cm below the right eye and one cm above the eyebrow of the 

right eye. The horizontal EOG was recorded bipolarly between two Ag/AgCl 

electrodes affixed one cm left from the left eye and one cm right from the right eye. 

An Ag/AgCl electrode placed on the forehead was used as a ground electrode. 

Impedances of all EEG electrodes were kept below 5 kΩ, and impedances of the 

EOG electrodes were kept below 10 kΩ. The EEG was amplified, digitized at 250 Hz 

and stored for offline processing. 

 

EEG preprocessing 

We selected 12 EEG signals (F7, F3, F4, F8, C3, C4, T5, P3, P4, T6, O1, O2 and 

both EOG channels) for further analysis as the set with the most complete match 

between the different measurement waves/cohorts. 
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All signals were broadband filtered from 1 to 35 Hz with a zero-phase FIR 

filter with 6dB roll-off. Next, we visually inspected the traces and removed bad 

signals. Note that for the network analysis a full set of EEG signals was required and 

therefore any rejected EEG channel resulted in the loss of that subject. Next, we 

used the extended ICA decomposition implemented in EEGLAB to remove artifacts, 

including eye movements, and blinks. After exclusion of components reflecting 

artifacts, the EEG signals were filtered into the alpha (6.0 to 13.0 Hz) frequency 

band. The peak alpha frequency developed from 8.1 Hz at age 5 to 9.9 Hz at age 18, 

after which a slow decline to 9.4 Hz was observed at around 50 years. The lower 

edge of the alpha filter was set such that alpha oscillation of all subjects was included 

from ~2.0 Hz below the lowest peak frequency to ~3.0 Hz above the highest average 

peak frequency. 

 

Connectivity 

Connectivity was calculated using the Phase Lag Index (PLI). For a detailed 

description we refer the reader to Stam et al., (Stam et al., 2007). In short, the phase 

lag index inspects the distribution of phase differences between pairs of signals 

X={X1,X2,X3…XN}. First, signals in X are filtered for oscillations in the frequency band 

of interest. Next, instantaneous phase for a signal Xi is established using the Hilbert 

transform 𝐻 𝑋! 𝑡 ), as described above. Phase difference between signals n and m 

is then 𝛥𝜙 𝑡 =   𝜙! 𝑡 − 𝜙! 𝑡   for 𝑛 ≠ 𝑚. Next PLI is calculated as   

 𝑃𝐿𝐼 = 𝑎𝑏𝑠 𝑠𝑖𝑔𝑛 𝑠𝑖𝑛 𝛥𝜙 𝑡   

for 𝛥𝜙 modulated within the range – 𝜋 and 𝜋. 

 

Graph analysis 

MST Graphs were created with the Kruskal algorithm applied to the PLI connectivity 

matrices. Next, we derived parameters described in table 1 from these graphs using 

a variety of MATLAB algorithms including standard MATLAB code, the MIT graph 

toolbox (http://strategic.mit.edu/downloads.php?page=matlab_networks), the brain 

connectivity toolbox (Rubinov and Sporns, 2010), and custom scripts. We performed 

the same analysis on 1000 random graphs by creating symmetric matrices with 

random numbers on a (0, 1) interval. We extracted the same graph parameters 

(Table 1) and averaged these across the 1000 graphs. 
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Statistics 

The effect of age was determined in several ways. First, we created developmental 

plots (scatterplots) from connectivity and each of the MST graph parameters on age. 

Next, local nonlinear weighted regression trends were fitted (loess, on 65% window 

size second order polynomials). 95% confidence intervals were obtained using a 

bootstrap with 10000 repeats. Since some observations are nested within family, the 

bootstrap was based on the independent unit (family) rather than individual. Note, 

however, that the bootstrap was not used to establish significance. To test 

significance of developmental trends, we estimated different fixed effect models. 

First, linear, quadratic, and cubic trends were fitted to the dataset, which we tested 

for significance. Because the complex structure of the data including repeated 

measures and family dependencies, which even extended across the different age 

groups (siblings of twins might fall into a different age category than the proband 

twins), we used Generalized Estimating Equations (GEE) to obtain p-values. GEE 

with the exchangeable correlation matrix estimates a single correlation across 

residuals within clusters (i.e., family number). Even though the residual matrix is in 

fact more complex than the single estimated working correlation (for example, within-

subject correlations and MZ twin correlations are expected to be higher than other 

within-family correlations), the robust SEs are not affected by this misspecification 

(Minică et al., 2014). 

Second, we defined nine age-groups using the following boundaries specified 

in years: 4.9 – 6.0, 6.0 – 7.4, 13.0 – 16.6, 16.6 – 20.0, 20.0 – 25.0, 25.0 – 35.0, 35.0 

– 45.0, 45.0 – 57.5, and 57.5 and older. These were tested in a pair-wise fashion for 

significance with FDR correction for the n(n-1)/2 comparisons (36 at n=9) tested at 

q=0.025 (Benjamini and Hochberg, 1995). This level of q was chosen to 

accommodate the dimensionality of the data, which showed a clear two-dimensional 

structure (see results).  

 

Results 

 

Increased order with increased leaf number 

Figure 1 shows the dependency of MST graph parameters on LN. Each point in the 

scatterplot represents the MST graph values of a single individual. Note that most 

values fall close to the polynomial regression. A second order polynomial fit was 

significant in all cases. The centrality measures and Kmax showed a positive relation 

with upward curve as expected from random graph simulations (Boersma et al., 

2013). TH also showed a positive dependence on LN, but with a downward curve, 
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thus setting a limit to the effect of LN on TH. DI decreased with increasing leaf 

number in a linear fashion, which may be expected since maximum and minimum 

values for DI may be derived analytically from LN (Stam, 2014b). DI will lie between 

𝐷𝐼!"# = 𝑁 − 𝐿 + 1 and 𝐷𝐼!"# = 2 𝑁 − 1 /𝐿. 

 

PLI connectivity shows an inverted-U development 

Figure 2 (top row) shows the results of average connectivity developing over age. 

PLI connectivity showed a pattern of development similar to those reported 

previously based on a different measure of connectivity (Smit et al., 2012). Left 

column (A) shows the development with loess fit (50% window size, 2nd order fit). 

The data points reveal large individual differences. The middle column (B) reveals 

changes from childhood to early adulthood in average PLI, a decrease from 16 to 25 

after which a plateau was reached. Bootstrapping confidence intervals suggest that 

significant changes are present in the data, especially from childhood to 

adolescence. To test significance we compared age groups in pairwise manner. 

Significant increases were found from childhood to adolescence, but also between 

ages 5 and 7. A significant decline in connectivity was observed in the 50+ age group 

compared to adolescent and other adult age groups (except age group ~22).  

Our previous report on the same sample used Synchronization Likelihood 

(SL) as a measure of functional brain connectivity. The current results show 

remarkable similarities. Both PLI and SL showed strong development from childhood 

to adolescence with effect sizes over r>0.40 comparing age group 5 with other ages. 

PLI showed peak value at age 40 (Figure 2C), where the SL peaked at around age 

50. This suggests that the previous results were quite robust against effects of 

volume conduction and common reference. However, the current results also differed 

from those reported previously. Connectivity measured using SL showed a 

continuous increase up to the peak age, whereas PLI connectivity showed a 

decrease from age 18 to ~22. 

 

Connectivity patterns change with age 

Although average PLI connectivity may change similarly across different age groups, 

localized differences may still occur, leading to different network types. We assessed 

the connectivity between all possible pairs of signals and calculated change across 

the 8 age groups in rate per annum. 3D headplots were constructed using 

BrainNetViewer with approximate locations of the electrodes (see Figure 2A). The 

thickness of the edges were rescaled to average increase per annum making it 
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comparable across headplots. Red colors indicate increase, blue decrease, and 

green indicates no change.  

Changes within childhood were largely limited to intrahemispheric 

connections (figure 2B). Homologous (left-right lateralized) electrode positions and 

other interhemispheric connections showed low PLI connectivity increase. From 

childhood to adolescence both inter- and intrahemispheric connections showed 

increases, but homologues still showed less PLI change. In adolescence, a change 

is seen with homologues reaching the largest change. In later ages, reduction in 

connectivity strength is clearest in interhemispheric connections (other than 

homologues). In sum, the changes during childhood, adolescence and middle-age 

show remarkable differences in topology. Clearly, the brain does not simply change 

connectivity but changes the overall pattern of connectivity.  

 

 

An increasingly integrated network 

Figure 2 shows the development of MST graph parameters as scatterplot with 

loess fit (A), bootstrap of the loess fit with 95% confidence intervals (B), and pairwise 

testing of significance across age groups (C). Network parameters showed 

developmental trends highly comparable to connectivity. Cubic curves were not 

significant (absolute robust z<1.4, ns). All quadratic terms were significant (absolute 

robust z>6.44, p<1.2E-10) with all parameters showing inverted-U shapes—except 

MST diameter showed a U curve as expected. 

The brain network of children showed lower leaf number, indicating a more 

line-like / less integrated organization. Increasing age resulted in increased leaf 

number and a correspondingly increased BCmax, ECmax, Kmax. TH changed similarly in 

an inverted-u shape. DI and DC decreased. These findings are consistent with an 

increasingly star-like organization and increased integration. The comparison of most 

measures showed significant change from 5 years of age to adolescence/adulthood 

with highly significant values (p<0.0001, and p<0.001 compared to age ~40 for DC 

and ECmax). Age 7 showed a similar pattern. Both ages 5 and 7 generally showed no 

significant difference with the oldest age group (>57.5). 

Older age (57.5+) was marked by significant decrease for many parameters, 

although the effects were not very strong (p<0.01). LN and TH decreased with older 

age compared to ages ~30 to ~50. Connectivity decreased only compared to age 

~40 (p<0.01). The centrality measures showed less consistent decrease, possibly 

due to a noisier variation.  
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Principal components reveal partly separate sources of variation 

Since the developmental trends of connectivity and MST graph parameters showed 

markedly similar paths, we subjected the correlation matrix of four different measures 

for connectivity (homologous contralateral connectivity, other interhemispheric 

connectivity, intrahemispheric connectivity left and right) and six MST based graph 

parameters (LN, DI, BCmax, ECmax, Kmax, DC) to an eigenvalue decomposition after 

selecting one random subject per family and regressing out the effects of age and 

sex. TH was excluded since it was based on two other parameters and therefore 

does not add information to the correlation matrix. Scores for DI and DC were 

inversed so as to enforce positive correlations. Figure 3 shows the results. The 

correlation matrix shows a clear clustering of connectivity versus MST graph 

parameters. The highest eigenvalue of 5.85 explained 58.5% of the variance, the 

second highest was 2.09 (20.9% variation). Both the correlation matrix (Figure 3A) 

and the scree plot (Figure 3C) strongly suggest a two-factor solution. After varimax 

rotation MST parameters loaded strongly on the first component and PLI connectivity 

measures on the second (Figure 2B). Figure 2D shows that the two components 

show different developmental patterns, with a much clearer U-curve for MST graph 

parameters, while PLI connectivity shows a decrease from adolescence to young 

adulthood. For these reasons, we conclude that MST graphs parameters and PLI 

based connectivity largely reflect different sources of variation in brain function with 

different developmental curves. 

 

 

Discussion 

 

Our aim was to investigate whether the increased integration of the network 

observed from 5 to 7 years of age extends into adolescence and adulthood. The 

large and highly significant differences found in graph parameters and connectivity 

between childhood and adolescence/adulthood suggest that this is the case. We 

established that life-span development of average connectivity between pairs of 

scalp-recorded signals closely mimic those reported previously (Smit et al., 2012). By 

using the PLI (Stam et al., 2007)—a measure that ignores volume conduction—we 

have found support that our previous findings using synchronization likelihood (Stam 

and van Dijk, 2002) have not been spurious. We hypothesize that the sparse 

electrode layout in our previous report may have been protective against detecting 

false synchronization (Smit et al., 2012).  
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Average connectivity measured with PLI showed strong increases within 

childhood and from childhood to adolescence. Several findings in the extant literature 

suggest that this increase in EEG functional connectivity depends on maturation of 

white brain matter, including myelinization. For example, it has been found that 

interhemispheric EEG connectivity measured by coherence has been related to DTI 

diffusivity (Teipel et al., 2009), and to T2 relaxation times in white matter in head 

injury, which arguably is related to neuronal membrane lesion (Thatcher et al., 1998). 

In addition, we have previously found that developmental curves for connectivity are 

highly consistent with the protracted development of white matter development: both 

connectivity and White Matter Volume (WMV) showed peaks in middle age (Allen et 

al., 2005; Bartzokis et al., 2001; Benes et al., 1994; Good et al., 2002; Walhovd et 

al., 2005a, 2005b; Westlye et al., 2010). Moreover, a moderate correlation was found 

between WMV and connectivity. Because PLI reduces the effects of spurious 

connectivity in the brain based on volume conduction and common reference, these 

results seems to further strengthen the idea that functional connectivity in the resting-

state reflects the strength of anatomical connectivity between distant brain areas. 

Arguably, MST graphs are more comparable across groups than thresholded 

graphs (Stam, 2014b; van Wijk et al., 2010). Graph parameters derived from the 

MST graph showed evidence for change in the level of integration. All MST 

parameters show an inverted-U curve (and a U curve for diameter). The backbone 

graph in human brain activity moved from a line to a more star-like configuration 

during development. In later age, a return to a more line-like configuration was found. 

For all but the centrality measures, these resulted in significant drops for age group 

57.5+ compared to ages 30 and 50. Importantly, principal components analysis 

showed that MST graph parameters reflected different sources of variation compared 

to PLI connectivity. Clearly, not just the average connectivity, but the connectivity 

pattern changes. Note that we observed that MST graph parameters showed a more 

star-like configuration than random graphs (Figure 1). In this sense, the observed 

developmental changes showed a move from random networks towards more 

integrated networks, and more random networks in later life. This, too, is consistent 

with previous observations of life-span development in the same sample (Boersma et 

al., 2010; Smit et al., 2012, 2010). 

The results make MST graph parameters highly suitable as biomarkers for 

development in early life and cognitive decline associated with older age. Follow-up 

studies could target the genetic variants that have been linked to neuronal change 

such as myelination. Additionally, studies could investigate how genetic variants 

exert their influence in cognitive decline or Alzheimer’s disease (e.g., APOE, 
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CLU/APOJ, and PICALM (Harold et al., 2009; Hollingworth et al., 2011; Lambert et 

al., 2013). Carriers of the APOE \epsilon4 allele have an increased risk for forming 

beta-amyloid plaques; during prion-like aggregation, damage to neurons is done by 

oxidative stress, resulting in brain atrophy. This loss significantly reduces the number 

of neurons available for connectivity such as seen in MCI and AD (Jelic et al., 1997; 

Tóth et al., 2014), but may also result in the loss of integration in the MST network. 

Likewise, clusterin (CLU/APOJ) is involved in the clearance by binding to beta-

amyloid resulting in variability in neurodegeneration (Desikan RS et al., 2014; 

Mengel-From et al., 2013) and could have similar effects on connectivity and 

connectivity patterns. PICALM highights the need to investigate inflammatory 

pathways (Perry et al., 2010). From the current results we expect that connectivity 

loss will prove to be nonrandom, resulting in reduced integration due to specifc 

atacks on central nodes (see also (He et al., 2009; Stam et al., 2009)). 

In developmental neurobiology, the dichomotmy into long and shorter 

projection distances may be essential. In an fMRI study, it was shown that decreased 

short range connectivity concurs with increased long-range connectivity. Local 

connections in a cognitive control network become less diffuse with development 

from 10 to 22 years of age, which is accompanied by increased long distance 

functional connectivity (Kelly et al., 2009). Similar findings of changes in (long-

distance) connectivity have been reported (Dosenbach et al., 2010; Fair et al., 2009; 

Supekar et al., 2009). The present results extend these findings in showing that from 

childhood to adulthood brain networks move from less to more integrated graphs 

(figure 2). Since network parameters may be relevant predictors of cognitive 

performance (Micheloyannis et al., 2006; Tewarie et al., 2014; van den Heuvel et al., 

2009) and are disrupted in neurological disorders (Stam et al., 2014, 2009; Tewarie 

et al., 2014; van Dellen et al., 2014), we can hypothesize that the increasingly 

integrated network topology is essential to the large developmental changes in 

human cognitive performance during the same period. Indeed, a more integrated 

network was predictive of better cognitive performance in MS patients (Tewarie et al., 

2014). Cognitive performance correlated with a larger decrease in network 

integration in Parkinson’s patients (Olde Dubbelink et al., 2014). Whether these 

findings generalize to the normal population may be addressed in future 

investigations. 

In conclusion, brain connectivity measured by the PLI shows large changes 

over the lifespan. These changes largely corroborate the earlier findings that 

connection strength increases during development (Hagmann et al., 2010; Smit et 

al., 2012, 2010). Since PLI is less sensitive to volume conduction by ignoring the 
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zero and pi phase differences between signal pairs (Stam et al., 2007), 

developmental changes are therefore unlikely to reflect changes in conductive 

properties across age groups. The use of the minimum spanning tree backbone 

graph aimed to solve the problem that graph measures may not be compared across 

different sizes and degree distributions (van Wijk et al., 2010). However, MST graphs 

confirmed that brain matures across the lifespan and shows changes in structure 

both in the development in childhood and during ageing later life. These findings 

corroborates our earlier findings that the network shows reduced randomness from 

childhood to young adulthood (Boersma et al., 2013, 2010; Schutte et al., 2013; Smit 

et al., 2012, 2010).  
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Figure captions 

 

Figure 1. MST graph parameters covary with leaf number (LN). From left to right on 

the x-axis increased LN indicate increased hierarchical order and integration in the 

network. LN ranges from 2 (a linear configuration) to 11 (a star-like configuration) for 

a 12-vertex network, expressed here as a proportion from 0 to 1. Each plot contains 

the average MST graph parameter values plotted against average LN from the actual 

PLI based EEG networks. The dashed line Average diameter decreases linearly as a 

function of LN, as does degree correlation. The centrality-type measures (BCmax, 

ECmax, and Kmax) all show increases with LN with upward curve. Designed as a 

tradeoff measure, TH increases but with a downward slope for higher leaf numbers, 

thus penalizing the star-like configurations with extreme Kmax values. Almost all 

graphs showed a more star-like organization than the average of random graphs. 

 

Figure 2. Localized development of connectivity strength. (Left) 3D heaplots of 

average change in PLI per year from one age group to the next (age groups 5, 7, 16, 

18, 22, ~30, ~40, ~50, 57.5+) from an elevated right posterior viewpoint. The location 

of maximal development is not stable, but changes with age. (Right) Separating 

edges into intra-hemispheric left and right (IntraL, IntraR), contralateral homologues 

(Hom) and other cross-hemisphere (Cross) connections showed that childhood was 

marked by a clear Intrahemispheric increase of connectivity, while later age groups 

showed no such strong prevalence, or stronger increases in contralateral 

homologues (within adolescence). 

 

Figure 3. Age development plots for PLI and MST network parameters of EEG alpha 

oscillations (6.0 – 13.0 Hz). (A) Large individual variation around loess smooth (70% 

width, 2nd order fit) was observed. Most parameters showed (inverted) U curved 

development. (B) The same loess smooth was used in a clustered bootstrap function 

with families as sampling units, thus keeping the residual correlations on average 

intact. Shown are 95% CI range and median values obtained in the bootstrap. (C) 

Group-wise comparison was corrected for residual correlation with robust SEs 

(Generalized Estimating Equations, see methods) and FDR corrected for the n*(n-

1)/2 comparisons at n=9 and with q=0.025 to correct for the dimensionality of the 

data, which was set to 2 as per figure 4. Pairwise comparison was significant when 

an open circle is connected to a grey/red marker. For example, age group 5 differed 
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significantly in PLI connectivity strength from ages 7, 16, 18, 22, and 30. Squares 

indicate the strongest effect (corrected-P<0.0001) followed by diamonds (corrected-P 

<0.001) and circles (corrected-P <0.01). Color saturation indicates –log10(P), with 

grey values for corrected-P = 0.05 ranging to bright red for corrected-P = 10-6. 

 

Figure 4. Principal Components Analysis of connectivity scores separated into 

contralateral homologues (Hom), other cross-hemispheric connections (Cross) intra-

hemisphere left (Intra L) and intra-hemisphere right (Intra R), and MST graph 

measures. Note that TH was excluded as this measure is fully based on two other 

graph parameters (DI and Kmax). Positive correlations of DI and DC with other 

parameters was enforced by reversing scores. (A) The correlation matrix (corrected 

for age and sex) suggested two clusters, one for the four connectivity types, and one 

for the MST graph parameters. (B) The,scree plot also strongly suggested two 

separate sources of variation. (C) The loading pattern for varimax-rotated two-

component extraction showed clear separation of the connectivity and MST graph 

measures. (D) The varimax rotated factor scores (corrected for sex) showed different 

developmental paths, suggesting that development differentially affects connectivity 

and MST graph parameters. 
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Table 1. MST graph parameters and their description 

MST graph parameter Abbreviation. Description 

Leaf number LN Number of end nodes (i.e., nodes with 

degree k=1) represents the dimension 

from linear to star graph (figure 1) 

Diameter DI Largest in the set of shortest paths 

between all possible pairs of nodes. 

Betweenness Centrality  BCmax Maximum value of the number of 

shortest paths passing through the 

nodes 

Eigenvector centrality  ECmax Maximum value of the loadings on the 

first principal component of the graph. 

Maximum degree Kmax Largest degree in the graph 

Tree hierarchy TH Tradeoff between diameter and 

maximum degree 

Degree Correlation DC Correlation between the degrees of pairs 

of connected nodes 
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