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Abstract

Transportation of livestock carries the risk of spreading foreign animal diseases2

throughout a susceptible population, leading to costly public and private sector
expenditures on disease containment and eradication. Individual animal tracing4

systems that exist in countries other than the US have allowed epidemiologists
and veterinarians in those countries to model the risks engendered by livestock6

movement and prepare responses designed to protect the livestock industry. Within
the US, data on livestock movement is not su�cient for direct parameterization of8

disease models, but network models that assimilate limited data provide a path
forward in model development to inform preparedness for disease outbreaks in the10

US. Here, we report on a novel data stream, the information publicly reported by US
livestock markets on the origin of cattle consigned at live-auctions, and demonstrate12

such potential. By aggregating weekly auction reports from markets in several
states, some spanning multiple years, we obtain an ego-centric sample of edges14

from the dynamic cattle transportation network in the US. We first demonstrate
how the sample might be used to infer shipments to unobserved livestock markets16

in the US, although we find the assumptions of edge prediction by generalized linear
models too restrictive. The sample itself, however, can still be used to parameterize18

simplified disease models; which we use to demonstrate that the temporal resolution
of the data is su�cient to reveal seasonal trends in the risk of disease outbreaks. We20

conclude that future work on statistical models for dependence between edges will
improve the inference of a complete cattle movement network model from market22

data, one able to addresses the capacity of markets to spread or control livestock
disease.24
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Author Summary

We have “crowd-sourced” the collection of previously unavailable cattle movement26

data, benefiting from buyers interest in the origins of cattle sold at live-auction
markets, to implement a minimum level of movement surveillance. Using our novel28

dataset, we demonstrate potential to infer a complete dynamic transportation net-
work and model national-scale livestock epidemics.30

Introduction

Livestock operations within the United States (US) must be vigilant against trans-32

boundary animal diseases, including the critical threat to cattle producers posed by
a re-introduction of foot-and-mouth disease [FMD; 1 ]. The 2001 FMD outbreak34

in the United Kingdom (UK) cost their agricultural sector £3 billion, and 5% of the
nation’s 11 million cattle were culled to control the disease [2]. A study on FMD36

risk to California’s 5 million beef and dairy cattle predicts economic losses in the
tens of billions of dollars, even for an outbreak artificially terminated at Califor-38

nia’s border [3]. The potential impact of a full-blown epidemic in the US, putting
at risk a 90 million strong cattle herd [4], compels us to study the likely patterns40

of disease spread from an initially infected cattle operation [5]. Mechanistic mod-
els that incorporate livestock transportation are needed to help guide prevention42

and control of FMD-like diseases, which are known to cause massive burdens on
livestock industries, require costly public interventions, raise public health concerns44

and impact food security [6].
Studies of past livestock epidemics and disease simulations reveal that network46

models provide a useful abstraction of data on animal shipments between livestock
operations [7]. Network models typically emphasize heterogeneity in the number of48

disease transmitting contacts attributed to infectious nodes, a pattern that emerged
strongly during the initial spread of FMD in the UK’s 2001 epidemic [8] and one50

usually absent from simulations where transmission depends on distance alone.
Network representations of cattle trade exist for several European livestock indus-52

tries [9–14], where data for model development is generated from animal tracking
systems mandated by the European Parliament [15]. Availability of these data have54

allowed for several advances in surveillance and control strategies: for example, (1)
identification of “sentinel” livestock premises projected to become infected early56

during an outbreak in Italy [16], (2) validation of risk reduction from the stand-
still rules implemented in the UK after 2001 [17], and (3) evaluation of targeted58

movement bans that selectively eliminate network edges based on node centrality
in transportation networks [14]. Network models for the UK cattle production sys-60

tem have additionally provided a foundation for livestock transportation strategies
that promise e�cient control of endemic diseases [18].62

The US has opted against individual animal tracking in favor of animal disease
traceability, which only requires that a paper trail on individual movements can64

be unearthed subsequent to disease detection. With respect to the development of
models for disease prevention and preparation, the traceability principle promotes66

inadequate and belated data collection, and is significantly limited compared to the
point-to-point data on individual animal movements that drive models of European68
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systems. In addition, the findings gleaned from epidemiological models based on
European livestock transportation patterns are not transferable to the US due to the70

nature and scale of the US industry: the US industry has developed an unparalleled
feedlot system that relies on widely distributed calving and back-grounding farms72

to supply the 25 million head sold annually by feeding operations [4], and the US
Department of Agriculture (USDA) census shows that 22% of the US herd are74

transported across state lines in a year [19].
The best data currently available is maintained by individual state agricultural76

agencies, which collect shipment origin and destination locations on interstate cer-
tificates of veterinary inspection (ICVIs) for cattle entering the state. One cattle78

transportation network model has been estimated from a 10% sample of year 2009
ICVIs acquired from 48 state agencies [20,21]. The epidemiological network model80

constructed from these data [22] represents the state of the art for analysis of a
nation-wide epidemic in the US, but limitations in the underlying data are substan-82

tial. Given that on average only 19.2 (SEM 3.1) percent of shipments onto US beef
operations travel over 100 miles [23], shipping within states likely occurs at much84

higher rates than shipments documented on ICVIs. Interannual variability in the
transportation network cannot be observed without repeating a major collection86

e↵ort, nor can the type of origin or destination facility be determined from ICVIs
alone. Finally, and of most relevance to the present study, ICVIs are not required88

for shipments to exempt facilities, including certain federally approved livestock
markets [24].90

Cattle in the US are commonly sold at live auction markets between stages of
beef or dairy production (Box 1). In year 2007-08 surveys by the USDA, over half of92

beef producers sold non-breeding stock at auction markets in the US (60.7% steers,
58.3% cows), with internet auctions and private treaties being the main alternatives94

[25]. Dairy contributes fewer US cattle shipments, but cows removed from dairy
operations are also predominantly sent to auction markets or stockyards [21, 26].96

Local epidemiological studies have also found direct contacts with livestock markets
prevalent in Colorado and Kansas [27] and California [28]. The economic reality98

now, and for the foreseeable future, is that cattle owners regularly buy and sell
cattle at particular stages of production and rely on live-auction markets to obtain100

the best price [29, 30].
In the UK, and quite possibly in other countries with recent outbreaks of non-102

endemic FMD [31], livestock markets played a central role in early, rapid expansion
of the 2001 FMD epidemic [8]. The epidemiological importance of livestock markets104

arises from their potentially high degree in both contact and epidemic networks—
the same epidemic phenomena airports create as hubs for transmission and spread of106

human influenza [32]. When a livestock operation ships infected animals to market,
two processes spread the disease: splitting of the original group of infected animals108

among multiple buyers, and transmission to susceptible animals passing through the
same market [33]. Both processes act to give livestock markets high out-degree in110

an epidemic network for FMD [8,34], while a less contagious disease would primarily
be a↵ected by splitting up infected animals arriving from one premises. Livestock112

markets can also have high in-degree within the contact network, or a large number
of operations from which cattle are sourced [35]. High in-degree markets are a114

natural point of surveillance for disease detection; indeed, markets seeking USDA
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approval are required to provide veterinary inspection of cattle at auction [24].116

On the premise that transportation of cattle to and from markets is an im-
portant class of potential disease-transmitting contacts between farms and other118

longer-term animal holdings, we studied the potential for data-driven modeling of a
market-based contact network for infectious livestock disease in the US. To this end,120

we collected data on the locations of origin for individual cattle sold at livestock
markets that publicly share this information as a form of advertising. Because the122

data represent an opportunistic sample of livestock transportation, we first report
basic trends in the data alongside some potential sources of bias in the sample. We124

then demonstrate two methods for inference of a network model of contacts between
livestock operations from these data: (1) using the sample to estimate degree dis-126

tributions of an otherwise random contact network, and (2) fitting coe�cients to
covariates that may predict the presence and weight of unobserved network edges.128

The results firmly establish that market-bound cattle shipments are dominated by
intra-state movements, and are consistent with the possibility that transportation130

to markets also drives interstate flows. The daily resolution of this data source
allows detection of sub-annual variation in trade volume and network degree dis-132

tributions, and as a continuously updated data stream creates potential for both
inter-annual trend and recent-event detection. We demonstrate high potential for134

inferring the properties of unobserved edges connected to non-reporting livestock
markets, and conclude with a discussion of the critical gaps for building a complete136

epidemic network model that includes markets acting as hubs for the spread of
livestock disease.138

Methods

Data Collection140

As an integral part of livestock production, stockyards are distributed across all
parts of the US with beef or dairy operations, i.e. throughout the US [Box 1; 36 ].142

Prices obtained at live auction are rapidly publicized to help consignors and buyers
decide when and where to trade cattle. In some cases, professional market reporters144

attend sales and distribute volume and price information through the USDA Market
News Service. Where market reporters are unavailable, or to provide additional146

information, sale reports might be generated by the market itself and publicized
on its own website. A subset of markets list specific lots of cattle sold in their sale148

reports, including a location of origin, number of cattle, and other attributes. These
data, sometimes labeled “representative sales” as we refer to them here, indicate150

cattle were transported from the origin to market on, or very near, the sale date.
We aggregated representative sales from several livestock markets and georef-152

erenced each location of origin to a US county or county-equivalent (hereafter
“county”). Overlapping and incomplete directories of US livestock markets are154

maintained by multiple regulatory agencies or business associations: we compiled
four such directories to identify target markets [36]. The directory released by156

the Livestock Marketing Association [37] uniquely provides websites of livestock
markets, when available. We manually searched the 322 listed websites for repre-158

sentative sales, and wrote software to parse data from sites that regularly (usually
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weekly) publish market reports and which permit crawling by the Robots Exclusion160

Protocol. For each lot provided as a representative sale, the software attempts to
parse the consignor’s location along with cattle type (e.g. steer or heifer), number,162

average weight and price (either per head or per hundred weight). A single ani-
mal per lot was assumed whenever the number of cattle could not be parsed. We164

tuned the parser for each website until two researchers found no data extraction er-
rors in independent spot checks of representative sales. Websites were subsequently166

checked twice weekly for new reports, and parsers returning data of the wrong type
(i.e. string or numeric) were promptly corrected. This study addresses sale reports168

obtained between June 2014 and June 28, 2015, including some archived reports on
sales dating from the first week of 2012.170

Acceptable locations of origin are given as the name of a city or other populated
place, with or without a state, and can be ambiguous. We matched each location,172

substituting common abbreviations for full words as needed to obtain a match, to
names of populated places in North America using the GeoNames web-service [38]174

in order to identify the encompassing county. The county closest to the reporting
market, as determined by the great-circle distance (GCD) between county centroids176

[39], is recorded as the true location of origin.

Comparison with Interstate Shipments178

Interstate cattle shipments are present among representative sales, allowing a com-
parison to cattle shipping data obtained from state ICVI records. For each state180

with at least one market in our study, we correlated the number of cattle in repre-
sentative sales originating in every other state with the analogous interstate flows182

reported by Shields and Mathews [5]. The ICVI data sampled shipments occurring
in the 2001 calendar year, which pre-dates all sale reports collected for this study.184

To match the time scale of the certificate-derived data, we aggregated representative
sales over the year preceding June 28, 2015 before calculating correlations. However,186

the comparison necessarily reflects over a decade of change in the livestock system
on top of any di↵erences between market shipments and shipments accompanied by188

ICVIs.

Analysis of Sampling Rate190

We analyzed variation in the sample size for each sale report by fitting a GLMM to
the number of head in representative sales, given the total head of cattle sold (“re-192

ceipts”), using covariates from the agricultural census [4]. The analysis intends to
address two issues: estimation of sampling rate for reports where the total receipts194

is unknown, and detection of potential bias among representative sales. Represen-
tative sales are not randomly sampled with equal weight from all cattle shipped196

to reporting markets, but are e↵ectively stratified by sale report. Because markets
may vary the proportion of sales listed as representative, each sale report should198

have an associated sample weight for shipments found in that report. Estimation
that involves aggregation across sale reports should take this weight into account,200

but receipts are unknown for roughly one third of sale reports. By taking covariates
into account while estimating unknown receipts with a fitted GLMM, resulting es-202
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timates will address certain biases that show up as statistical associations between
known sampling rates and covariates for a given sale.204

Receipts for a given sale are taken from USDA Market News Service reports [40]
or, when available, from the market’s own report. Covariates included as fixed ef-206

fects include the inventory and sales of cattle, as well as the number of cattle oper-
ations, in the county where the market is located [4], the number of representative208

sales, the sale year and the sale week. Numeric covariates were first log transformed
and standardized. Each market is additionally allowed a random intercept, repre-210

senting unexplained variation attributed to average behavior of individual markets.
To avoid possible parameter bias, we added an observation level random intercept212

to eliminate overdispersion [41]. We fit a binomial family GLMM with logit link
function using the ’lme4’ package [42], and performed Wald �

2 tests for significance214

of fixed e↵ects using the ’car’ package [43], in R version 3.1.3 [44].

Network Inference: Edge Prediction216

The definition of nodes and the meaning of edges in contact networks for disease
models are flexible, facilitating data-driven modeling approaches. Models for disease218

spread among livestock incorporate transportation data as edges in the network of
contacts between susceptible and infected individuals [e.g. 10 ]. Representative220

sale data is compatible with a model having two types of nodes: one representing all
farms, ranches and other long-term animal holdings located within a given county,222

and one representing a single market. In order to study the contribution of markets
to the livestock transportation network, and its consequence for disease spread, we224

ignore edges between counties that arise from fence-line contact, private sales, trans-
portation for grazing, and other mechanisms that might transmit disease directly226

between counties. Observing no indication of market-to-market transportation in
the representative sales, we assumed their absence as well. As a result, the only228

edges in a network derived from representative sales are between nodes of di↵erent
types, yielding a bi-partite contact network.230

Edge prediction is any process for inferring the properties of unobserved edges,
which must be made explicit for disease models that use contact networks to drive232

infectious interactions between nodes [e.g. 22 ]. A primary goal of edge prediction
is to build a model that reflects clustering within the transportation network, or234

the propensity of livestock operations within di↵erent counties to trade cattle at the
same two markets, without directly observing these second-degree interactions. A236

model that represents higher-order structural attributes of the network, including
clustering, may yield di↵erent predictions for the spread of disease, but direct esti-238

mation of these attributes requires particular sampling methods [45]. For example,
a random sample of nodes is not appropriate for estimating clustering coe�cients;240

a first-wave link tracing approach [sensu 46 ] is needed to avoid underestimating
the number of triangles touching each focal node.242

We applied a regression approach to the problem of edge prediction, using ob-
served edges to estimate whether county and market covariates predict their connec-244

tivity. The response variable is the number of cattle shipped from a given county to
a market, which we assume to arise from a zero-inflated negative binomial (ZINB)246

distribution. This GLM includes the sales, inventory and number of farms for cattle
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(including calves) for each county of origin, GCD distance between the centroids of248

each county and the county of each market, the square of this distance, the num-
ber of livestock markets giving an address in each origin county, a boolean factor250

indicating whether the market is in the county, and a boolean factor indicating
whether both are in the same state. All numeric predictors are normalized to unit252

variance with zero mean. Finally, the model includes a fixed e↵ect of market: in
the simpler case of a Poisson GLM, this fixed e↵ect would have no e↵ect on the254

resulting multinomial probability of cattle originating from each county, given the
total number of cattle by market. The more complicated ZINB, necessary to obtain256

a good fit to the observed edges, comes at the cost of incorporating a meaningful
market e↵ect which will interfere with edge prediction for non-reporting markets.258

We fit the ZINB GLM using the ’pscl’ package in R [47].

Disease Consequence of Degree Distribution260

A key insight from network epidemiology is that the degree distribution for contacts
among individuals, or nodes, is of primary importance for disease spread [48, 49].
Edge prediction is not needed to infer the degree distribution among livestock mar-
kets; we may assume the number of counties appearing in the representative sales
data for each market are independent samples from this distribution, and then
specify the remaining network properties parametrically. We define ki as the sam-
pled degree for market i of m markets. Empirical estimates for the market degree
distribution generating function, GM,0(x), and the generating function for market
“excess degree” [e.g. 50 eq. 12], GM,1(x), are

GM,0(x) ⇡
1

m

mX

i=1

x

ki (1)

GM,1(x) ⇡
Pm

i=1 kix
ki�1

Pm
i=1 ki

. (2)

We specify properties of the full network by choice of the algorithm for connectivity
and the probability distribution for county degree: we assume a bi-partite config-
uration model for edges and a Poisson distribution on county degree. In a static
network with these properties, the expected size of a disease outbreak in terms of
the number, or proportion, of counties a↵ected can be calculated exactly [51]. With
⌧C and ⌧M the disease transmission probabilities from counties and markets, respec-
tively, and the mean county degree equal to �C , the epidemic threshold is a fixed
value of � = ⌧C⌧M�C determined by the market degree distribution. The threshold
occurs at

�

�1 = G

0
M,1(1). (3)

For parameterizations below this threshold, the expected number of counties af-
fected by an outbreak is

1 +
�G

0
M,1(1)

1� �G

0
M,1(1)

. (4)
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For parameterizations above this threshold, the proportion of counties in the epi-
demic is

1� e

�C(u�1)
, (5)

where u is the smallest root of

u = (1� ⌧C) + ⌧CGM,1

⇣
(1� ⌧M ) + ⌧Me

�C(u�1)
⌘
. (6)

See S1 Text for an explanation of these equations.
Two features of representative sales data conflict with applying this ’random262

graph’ approach to network modeling of livestock disease spread. First, the degree
of each market potentially varies from sale to sale, admitting possible temporal264

variation in the observed degree distribution. We examine the extent of variation
in degree by visualizing temporal variation and calculating seasonal estimates of266

epidemic size. Second, the representative sales may not include all the counties of
origin, potentially biasing the observed distribution toward smaller degrees. Using268

the iNEXT R-package developed for analysis of species accumulation curves [52,53],
we calculate complete degree estimates for each sale using extrapolation of the270

county accumulation curve as a function of the number of cattle in representative
sales.272

Results

Cattle transported to 55 markets located in 53 counties in 16 states are represented274

in this analysis (Box 1). The first section below describes seasonal trends observed
in the representative sales, the fair to strong correlation with published records of276

inter-state shipments, and quantifies the unexplained variation in the proportion of
sales that di↵erent markets report as representative of a live auction. In the next278

section, we relate edge presence and weight to their distance and county covariates
from the agricultural census, as well as unexplained di↵erences between markets.280

The last section provides a demonstration of network epidemiological inferences
that incorporates degree distributions from representative sales data. Data on each282

movement, summarized in tables suitable for reproducing our analyses, are freely
available online (S2 Text).284

Characteristics of Representative Sales

The average number of cattle movements reported in representative sales for a live286

auction increases to a peak of 1000-1500 head in late fall and decreases to a few
hundred during summer months (Fig 1A). This seasonal trend persists between288

the period for which representative sales come from a handful of markets with
accessible archives and the period since mid-2014, when we began capturing rep-290

resentative sales posted weekly (Fig 1B). At a given sale, livestock markets report
receiving cattle from 11.2 (SD 1.5) counties on average, with weekly average mar-292

ket degree showing seasonal variation peaking in late autumn (Fig 1C). While the
timing of peak degree closely corresponds to the time of year when the number of294

representative sales is also greatest, the troughs in degree are flatter, broader and
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less pronounced than the summertime lows in representative sales. The seasonal296

fluctuation in market degree is weakest during the most recent year, for which the
sample size is larger as well as geographically more expansive. Aggregating across298

all markets, the proportion of sales that originate in-state shows no trend in devi-
ations from an average of 0.84 (SD 0.07) (Fig 1C). Markets selling the majority of300

out-of-state cattle appear to be clustered in Oklahoma and South Dakota, where it
is not uncommon for less than half of representative sale cattle to originate in-state302

(Fig 1E).
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Box 1: Cattle trade at live auction markets is an integral part of the US livestock
system. Markets are distributed widely throughout the US because di↵erent opera-
tions specialize on di↵erent stages of production and trade cattle at live auction to
obtain the best price. By collecting representative sales from markets with online
reports, we obtain a sample of the cattle transportation network. A) The number
of livestock markets per county (grayscale) in a compilation of public and private
market directories [36], as well as the location (red points) of the livestock mar-
kets reporting representative sales collected for this study. B & C) In northeastern
Colorado and adjacent states, four markets (red points) post representative sales
online, revealing movement of cattle from unspecified farms (numbered squares) to
specified markets (red arrows). Black arrows represent un-sampled edges represent-
ing movement of cattle leaving a market or sold at non-reporting markets (black
circles). B) Individual animals may pass through multiple markets and farms; for
example, a cow-calf operation (0) will sell weaned steer calves for purchase by a
stocker/back-grounder (1), who subsequently sells the animal to a buyer for a feed-
lot (2), which sells the fed steer at auction for slaughter. C) Our method of data
collection aggregates farms within counties, so farms 3 and 4 would be combined
in a single node connected to two markets. Another limitation of the data is that
closed cycles in the transportation network, the loop involving farms 5 and 6 for
example, cannot be observed directly.
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Figure 1: Representative sales captured for a 3.5 year time span that include the
county of origin for each shipment to a given market. A) The average (+/- SEM)
head of cattle reported with locations of origin each week by a single livestock
market. The outlying observation in the first week of June, 2014 includes a massive
sale conducted by the World Livestock Auctioneer Champion in Ft. Pierre, SD. B)
The total number of reports collected for cattle sales occurring within a given week.
C) The average (+/- SEM) number of counties from which cattle arrived for sale
at a market on a given week. D) The proportion of representative sales from all
reporting markets that originate within state for a given week. E) The proportion
of representative sales that are transported from a county within the same state to
each reporting market.

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2015. ; https://doi.org/10.1101/021980doi: bioRxiv preprint 

https://doi.org/10.1101/021980


The state of origin for interstate shipments show fair to strong correlation with304

certificate-derived data from 2001 (Table 1). Among the states we could compare
to this published summary of interstate transportation, and aside from Idaho, the306

proportion of cattle shipped within state is above 71%, so the number of cattle
shipments used for each correlation is relatively small. For example, a nearly exact308

correlation results for New Mexico, but the number of head in representative sales
available for comparison is only a few thousand head. South Dakota has the largest310

number of cross-border representative sales that we observed, however, and also
shows a strong correlations of 0.79. Montana and Colorado have similarly large312

sample sizes, the first showing a strong correlation of 0.88 while the latter is among
the weakest at 0.46. Shipments into Texas and California are insu�cient for a314

meaningful comparison, while the lowest correlation (0.24 for Idaho) is driven by one
strong connection to Nye County in Nevada. Variation in the strength of correlation316

across sample sizes suggests the presence of real variation in the kind of interstate
shipments sampled by di↵erent data streams. Di↵erences here could be due to the318

relative proportions of shipments that are market bound versus non-market bound
as well as heterogeneity in state requirements for health certificates.320

Table 1: Correlations between inter-state representative sales and inshipment data
from Shields & Mathews [5]. For each destination state with market data, the table
shows the Pearson correlation (r) for the number of cattle from n origin states, along
with the total head of cattle in the representative sales used and the proportion (p)
of representative sales used.

Dest. p Head n r

CA 1.00 6 43 0.30
CO 0.85 10557 23 0.46
ID 0.49 1155 43 0.24
KS 0.93 3386 38 0.58
MN 0.96 2124 37 0.49
MO 0.81 6367 17 0.41
MT 0.93 11996 16 0.88
ND 0.97 4714 3 0.79
NM 0.84 3722 17 0.99
NV 0.95 232 28 0.89
OK 0.71 3927 18 0.73
SD 0.74 95570 39 0.79
TX 1.00 35 33 0.82
WY 0.86 7506 28 0.73

Uncertainty about the total number of animals shipped to market for a given
sale is amplified by unknown sources at the market level and to a lesser extent for322

each individual report. For roughly one third of market reports, the total receipts
is not available for use in weighting the sale’s a↵ect on estimates aggregating across324

sales or markets. In other reports, the proportion of sales given as representative is
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associated with the number of representative sales (�2
1 = 2.40⇥103), with a positive326

regression coe�cient (approx. 95% CI 0.88 to 0.95). Both year (�2
3 = 17.7) and

week of year (�2
50 = 4.64⇥102) are associated with variation in the sampling proba-328

bility, but none of the covariates taken from agricultural census data are significant.
Overall, the fixed e↵ects contribute the majority of variation in the fitted GLMM,330

leaving the random e↵ect of market (SD = 0.82) and the observation level ran-
dom e↵ect (SD = 0.20) to explain the remainder of the variance between sampling332

probabilities. Average di↵erences between markets account for 20% of the variance;
however, the observed proportions remain overdispersed with respect to the model334

fitted without observation level random intercepts. In other words, variation in
the binomial sampling probability predicted by the fitted model for each market336

underestimates actual variation observed in the representative proportion (Fig 2).
Observation level random intercepts are included to account for the remaining 12%338

of variance in the proportion of cattle reported in the representative sales, but the
random intercept for each market is the greater source of uncertainty.340
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Figure 2: Observed versus predicted proportions of cattle listed as representative
sales, grouped by market. Horizontal bars show within-market variability in the
observed ratios of representative sales to receipts. Vertical bars show corresponding
variability in the binomial sampling probability predicted by the GLMM described
in the main text, but with the observation level random e↵ect dropped. Bars
intersect at the mean and extend from the 5th to 95th percentiles.
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Edge Prediction

The regression model returns a negative coe�cient for the impact of distance (ap-342

prox. 95% CI -2.07 to -1.42) on the average number of cattle shipped from a county
to market, as well as a positive coe�cient (approx. 95% CI 6.88 to 7.61) that as-344

sociates greater distances with zero-inflation, or the absence of an edge between
county and market. This confirms intuition that cattle are preferably shipped to346

nearby markets, and quantifies the e↵ect of distance to use when extrapolating edges
for non-reporting markets. In addition, both distance-related factors for edges link-348

ing counties to markets within that county (�2
1 = 65.5) or within the same state

(�2
1 = 92.6) are significant predictors. The covariates extracted from the agricul-350

tural census have inconsistent results, possibly due to their strong inter-correlations.
The e↵ect of sales (approx. 95% CI -0.19 to -0.05) and inventory (approx. 95% CI352

0.93 to 1.78) on the average head of cattle shipped are of opposite sign, while the
number of farms is insignificant. Because the covariates are standardized, we can354

interpret the result to mean that the size of cattle operations measured by head is of
greatest importance and is consistent with the hypothesis that counties with larger356

inventory contribute more heavily weighted edges. Among the census covariates,
only the number of farms has a non-zero (approx. 95% CI -0.62 -0.40) e↵ect on358

zero-inflation.
Judged by simulated response variables generated by the fitted ZINB model,360

the model shows a good fit to the observed transportation network (Fig 3). Market
degree distributions obtained with simulated response variables are uniformly simi-362

lar to the observed distribution for market in-degree aggregated over the full study
period (Fig 3A). While a single realization of simulated edge data cannot reveal the364

model’s degree of uncertainty, mapping the edges provides visual confirmation of
the role of distance and distance related factors on the weight of network edges (Fig366

3C&D). The most striking di↵erence between the observed and simulated response
is the weight of long-distance edges, suggesting that observed shipments are either368

more clustered on a fewer number of edges (including long-distance edges) or are
even more commonly from nearby counties than simulated shipments.370

Inclusion of the fixed e↵ect of market in the ZINB model greatly improves the
fit (�AIC = �3340 on 55 degrees of freedom), but eliminates direct application of372

the model in predicting cattle shipments to non-reporting livestock markets. The
fitted coe�cients for market e↵ects could instead be modeled as random e↵ects,374

and extrapolation to a full network carried out under the assumption that reporting
markets are an unbiased sample with respect to network attributes. Based on the376

fitted intercepts for each market, however, the usual assumption of normality for
random intercepts may not be justified (Fig 3B).378

Epidemic Size on Random Graphs

A model for disease spread that does not include a full contact network is possible380

under the assumption that epidemics develop as a tree-like graph, and is related
to the representative sales data through estimates of the market degree distribu-382

tion. The majority of seasonal variation in the distribution on market degree exists
between a peak season (from the 39th (the last week of September) through years384
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Figure 3: Comparison between the origin of representative sales observed and
simulated using the fitted zero-inflated GLM. A) The (unweighted) node degree
distribution observed (black) and returned in ten simulations of the fitted model
(gray). B) Normal quantile plot of the estimated fixed e↵ect of each market on the
mean head count (black) and zero-inflation probability (gray). C) The observed
proportion of cattle from each market’s representative sales by county of origin,
aggregating all available sale reports. D) The simulated proportion of cattle from
each of county of origin, again grouped by market, in one simulation from the fitted
GLM. Edge coloration corresponds to individual markets, and opacity is linearly
scaled between a maximum proportion or probability of 0.8 (transparency at 0%)
and a minimum of 0.004 (transparency at 80%).

end) and the remaining o↵-peak portion of the year, which exhibit distinct empirical
cumulative distribution functions (ECDFs; Fig 4A). The former is indistinguishable386

from a negative binomial distribution by Pearson’s goodness-of-fit test (�2
15 = 14.0)

while the latter, although similar in shape, is not (�2
17 = 60.9).388

For a disease spreading on a bi-partite random graph with these market degree
distributions, seasonal variation e↵ects the location of the epidemic threshold with390

respect to the unknown parameters. Roughly 20% lower values of �, the product of
market and county transmisabilities and mean county degree, prompt an epidemic392

for the peak time of year relative to o↵-peak (Fig 4C). Above the epidemic threshold,
the di↵erence between seasons becomes negligible as transmisability increases; it is394

overwhelmed by the overall high degree of livestock markets. Even with the average
excess degree of counties equal to one, nearly two-thirds of counties are a↵ected in396

the extreme case that every contact between susceptible and infective cattle leads
to successful disease transmission (Fig 4D).398

The number of counties included in representative sales is, on average, 8.6% of
the estimated number of counties extrapolated from county accumulation curves.400

In over half of sale reports, the estimate is less than 1% greater than the observed

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2015. ; https://doi.org/10.1101/021980doi: bioRxiv preprint 

https://doi.org/10.1101/021980


Figure 4: Empirical market degree distributions inferred from representative sales
and implications for disease spread on the corresponding random graph. A) Raw
degree distribution for sales occurring during peak (black) and o↵-peak (gray) sea-
sons. B) Percent increase in extrapolated degree relative to sampled degree, with
extrapolation up to the total receipts. C) Expected number of counties a↵ected by a
disease outbreak during the “peak” season (black) or “o↵-peak” time of year (gray),
using either observed (solid) or extrapolated (dashed) degrees. � is a product of
⌧M , ⌧C , and �C . D) Proportion of counties a↵ected in the four cases shown in panel
C but above the epidemic threshold, assuming ⌧M = ⌧C = ⌧ and �C = 1.

number of counties, and among the rest the most common increase in degree is402

just 10% (Fig 4B). The rarity of singleton counties (i.e. counties with only one
individual in representative sales) and the su�ciently high sampling rates (Fig 2)404

are responsible for the completeness of the sample for counties of origin. Using the
extrapolated values in calculating disease spread on a random graph has the same406

qualitative e↵ect as the shift from o↵-peak to peak season market degree distribu-
tions. Quantitatively however, the di↵erence between observed and extrapolated408

market degree distributions has less impact than season on the estimates of disease
spread (Fig 4C&D).410

Discussion

The epidemiological contact network is a fundamental component of models for412

the spread of diseases, and sale reports publicized by livestock auction markets
contribute urgently needed data to support inference of such networks within the414
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US livestock system. For this study, we initiated an ongoing process to archive
representative sales as an opportunistic sample of cattle transported from counties416

with beef or dairy operations to livestock markets distributed across the US. The
study complements previous e↵orts to summarize transportation of cattle within the418

US using data derived from certificates of veterinary inspection [5,21], but extends
our ability to model within-state shipping patterns. We demonstrate how inference420

of a bi-partite contact network, between nodes representing either cattle holding
operations aggregated within a US county or a particular auction market, can allow422

for new models for the spread of economically disruptive livestock diseases.
Representative sales extracted from livestock market reports provide a reliable424

sample of cattle shipments and the corresponding potential for disease transmitting
contacts. Seasonal variation in the volume of representative sales is consistent with426

beef cattle production systems, where calves are produced in spring and weaned
cattle or yearlings sold to pasturing or feedlot operations in the fall and subsequent428

spring [54]. The proportion of receipts at a given sale whose origin can be identified
is anywhere from a negligible fraction to around three quarters, and understanding430

this variability is important for scaling up assessments of transportation networks.
The dominant source of uncertainty is variation between markets, but this can432

be quantified for future modeling e↵orts despite having no identified deterministic
source. Covariates taken from the agricultural census on the county where markets434

are located do not influence the proportion of sales reported, which reduces concern
about biasing population estimates from the representative sales.436

Interstate shipments among representative sales correlate fairly well with ICVI
data, while the remaining majority of representative sales provide unmatched data438

on cattle shipments that remain within states. Intrastate shipment data were pre-
viously unavailable and dominate market directed shipments at typically over 80%440

on any week. Although transportation of infectious cattle within a state would not
immediately spark a regional epidemic, cattle movements at this scale could spread442

disease beyond the 10km control radius to be established around infected premises
in response to FMD detection within the US [1]. Sale at livestock markets is not the444

only impetus for cattle transportation, but the correlation between representative
sale origins and ICVI origins for transportation between states demonstrates its446

importance. Indeed, if the certificate-derived data do sample all movements with-
out bias, then the magnitude of correlation with representative sales supports the448

hypothesis that most cattle (excepting slaughter animals) shipped between states
are bound for a livestock market. Shipments leaving livestock markets would have450

to primarily remain in-state, and therefore be absent from certificate-derived data,
for this hypothesis to hold: for example, it implies the testable conclusion that feed-452

lots and back-grounders obtain most cattle born out-of-state from in-state livestock
markets.454

The market-derived data allows estimates for contact networks ranging in com-
plexity from random graphs, which have many analytically tractable properties,456

to networks with non-trivial clustering, modularity, assortativity and other non-
random features. A collection of edge data, resulting from sampling random nodes458

without tracing its edges to sample additional nodes, is an ego-centric sample that
allows straightforward estimation of node, but not edge, attributes [45]. From this460

sample, we find market degree distributions that fit a negative binomial distribution
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with variance roughly twice the mean, which has more dispersion than a Poisson462

distribution but less than a power law. We also find seasonal shifts in the de-
gree distribution that lower the epidemic threshold of a random graph during the464

peak cattle trading season. However, the overlapping marketsheds apparent in this
sample suggest high potential for network clustering, which tends to dampen the466

spread of disease but is not easily assessed from an ego-centric sample [55]. Esti-
mating this kind of structural attribute requires inference about unobserved edges,468

and a first analysis shows potential for incorporating linear e↵ects of county and
market attributes in exponential family likelihoods for edge weight. Extensions to470

this likelihood that include multiple response variables, particularly market degree
and squares in the bi-partite network, may achieve a reliable fit to the represen-472

tative sales that provides a data-driven, non-random graph for livestock disease
simulations [46].474

Despite the increased availability of data on livestock transportation in the US
that our study provides, disease models here lag behind the relatively data rich476

European livestock systems. Research in these systems on the optimal spatial and
temporal resolution at which to model contact networks is critical for e�cient use478

of limited information available in the US and targeted development of new data
streams. In a spatially embedded contact network, each node represents a geo-480

graphically constrained subpopulation within an interacting metapopulation [56].
The constraint should reflect where mixing of susceptible and infected individuals482

occurs in proportion to their frequencies, but no theory exists for transferring con-
straints developed in one region (e.g. the UK) to any other (e.g. Pennsylvania). The484

abstraction of temporally discrete livestock shipments into static edges, represent-
ing the potential for disease transmission over time, is better understood [7,57]. An486

additional challenge, for a contact network distinguishing livestock markets from
longer term animal holdings, is the synchronicity of shipments of cattle between488

two counties arriving at the same market. Extreme cases of complete segregation of
cattle from di↵erent origins versus within market mixing should bracket the range490

of disease outcomes [33].
The greater purpose of collecting data on livestock transportation is to improve492

surveillance for disease outbreaks and to guide prevention or control of epidemics.
The sources of nation-wide data on US livestock movements contributing to these494

goals have previously included health certificate records accompanying interstate
movements [5, 21] and owner/operator surveys on animal health and management496

practices for representative animal holdings [58]. Future research should aim to com-
bine these sources with representative sales data to jointly infer contact networks,498

because each data source addresses network attributes absent from the others. The
primary deficiency of representative sales data is the absence of out-going shipment500

information, or the destination of cattle purchased at auction. Surveys of livestock
operations presently include information on the in-shipment degree, source type and502

distance, which may provide evidence about the missing outgoing edges for livestock
markets. Representative sales also only include market-directed shipments, while504

health certificate data provides information on network edges that may not have a
livestock market at either end. Especially in combination, which we recognize to506

be a di�cult task both conceptually and statistically, inference from multiple data
sources will dramatically improve awareness of the network of potentially disease508
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spreading contacts between livestock.
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S1 Text: Disease Percolation on Directed, Bi-Partite

Random Graphs

Equations 4 through 6 in the main text summarize results for the spread of disease
transmitted with constant probability through a bi-partite random graph. The theory
leading to these results is summarized by Newman [1] and Meyers et al. [2]. For
convenience we re-present an extension of the basic theory to a directed, bi-partite
random graph. But in doing so, we also clarify how the number of infected nodes of
just one type, “counties” in our case, may be followed through the derivation.

In a directed, bi-partite graph, where nodes have type M or C for market or
county, respectively, edges are either M → C or C → M . Let GC,0(x) be the
generating function for the probability distribution on the number of C → M edges
leaving a C node, marginalizing its in-degree. The county “excess degree” distribution
is the probability distribution on the number of C → M edges departing from the
county at the end of a randomly chosen M → C edge. Its generating function is

GC,1 =
G′

C,0(x)

G′

C,0(1)
, (1)

as usual. The market “excess degree” distribution is the same, with M instead of C.
The key random variable of interest is SC→M , the number of infected counties in

the cluster of nodes reached by tracing the out-going edge of a particular infected
county. Let’s denote the generating function for SC→M by HC,1(x), and highlight that
we’re neither counting the number of markets mixed up in this cluster nor the original
county. The function HM,1(x) will generate the distinct distribution on the number of
infected counties reached by tracing a M → C edge. We determine these functions by
deriving self-consistency equations from the following two observations. First, using
superscipt (i) to indicate i of N independent samples of the random variable, N as the
given out-degree of a market, and T as the given boolean variable for successful
disease transmission:

SC→M |T,N =

{

0 T = False

S
(1)
M→C + S

(2)
M→C + . . . S

(N)
M→C T = True.

(2)

This bookeeping equation results from following the instructions, “choose among all
C → M edges going to markets with out-degree N and add up the number of counties
infected, assuming the market either is or is not infected.” The second observation is

SM→C |T,N =

{

0 T = False

1 + S
(1)
C→M + S

(2)
C→M + . . . S

(N)
C→M T = True.

(3)

In the next step, we achieve the desired generating functions on the right hand side:

⟨xSC→M |N⟩ = (1− τC) + τCHM,1(x)
N (4)

and
⟨xSM→C |N⟩ = (1− τM ) + τMxHC,1(x)

N , (5)

where τC and τM are the probabilities that T = True in Eq. 2 and Eq. 3, respectively.
Averaging each equation over the appropriate “excess degree” distribution for N gives
the coupled system:

HC,1(x) = (1− τC) + τCGM,1(HM,1(x)) (6a)

HM,1(x) = (1− τM ) + τMxGC,1(HC,1(x)). (6b)
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These must be solved in order to obtain the distribution on the outbreak size starting
in a randomly infected county, which is generated by HC,0(x) and derived starting
from the observation that

⟨x1+S
(1)
C→M

+S
(1)
C→M

+···+S
(N)
C→M |N⟩ = xHC,1(x)

N . (7)

The derivation is completed by averaging over the county out-degree distribution (not
the county “excess degree” distribution) to obtain

HC,0(x) = xGC,0(HC,1(x)). (8)

The outbreak size and epidemic proportion calculations follow in the usual way.
Let u = HC,1(1) and v = HM,1(1). Using the u = v = 1 solution to Eq. 6, the
expected outbreak size reduces to

H ′

C,0(1) = 1 +
τCτMG′

C,0(1)G
′

M,1(1)

1 + τCτMG′

C,0(1)G
′

M,1(1)
. (9)

Numerically finding other solutions for u and v, with 0 < u < 1 and 0 < v < 1, leads
to the epidemic size proportion as

1−HC,0(1) = 1−GC,0(u). (10)

To obtain Eqs. 4 through 6 in the main text, we assume that county out-degree is
Poisson distributed with mean λC and that market in- and out-degree are perfectly
correlated. Imperfect correlations could be included with an additional parameter.
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S2 Text: Description of Data Release

Note: The data release will coincide with publication of the report – the
DOI given below will remain inactive until release.

Representative sales data collected from several livestock market websites, as
aggregated for the analyses in this report, are available for download from the Bansal
Lab Dataverse [1]. Accompanything the data are scripts for R [2] that reproduce the
results presented in the main text.

volume.csv

date (char as YYYY-MM-DD) date of cattle auction given on each sale report

market (int) unique market identifier

orig location (char) FIPS code for county at market street address

dest location (char) FIPS code for nearest county containing the origin city[, state]

head (int) number of cattle in all lots (each defaults to 1 for missing data)

A disaggregated version of the representative sales data, sufficient to re-create the
panels of Fig. 1 in the main text. Note that the first two characters of a FIPS code
correspond to the state, allowing for in-state proportion calculations.

proportion.csv

year (char) year of cattle auction

week (char) ISO week of year

market (int) unique market identifier

receipts (int) total head sold at auction from sale report or [3] (if unreported)

head (int) head given as representative sales (lot size defaults to 1 for missing data)

sales (int) head in county-wide sales∗

inventory (int) head in county-wide inventory∗

farms (int) farms in county-wide inventory∗

The script proportion.R reads this file and fits a binomial family GLMM, associating
the sampling probability for representative sales in each report with the covariates
provided.

certificate.csv

orig (char) State abbreviation for cattle origin

dest (char) State abbreviation for cattle destination

rep sales (int) Head from representative sales, (see Methods for time-span)

flows (int) Head from certificate-derived data†

Note that the data from [5] are available in electronic form at
http://webarchives.cdlib.org/sw12j6951w/http://www.ers.usda.gov/
Data/InterstateLivestockMovements/View.asp. No script is provided to calculate the
correlations between interstate rep sales and flows for each dest.

∗Reproduced for convenience from [4], without endorsement by the USDA.
†Reproduced for convenience from [5]
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edge.csv

market (char) year of cattle auction

dest location (char) FIPS code for nearest county containing the origin city[, state]

sales (int) head in county-wide sales

inventory (int) head in county-wide inventory

farms (int) farms in county-wide inventory

distance (real) great-circle distance between orig location and dest location county
centroids‡

head (int) head given as representative sales (lot size defaults to 1 for missing data)

instate (bool) zero if and only if dest location and market are in different states

The script edge.R reads this file and fits a zero-inflated negative-binomail family
GLM, associating a zero-inflation probability and mean head of cattle for each
county-market pair with the covariates provided. The script additionally simulates
counts for each pair, with the same random seed used in this report, and writes the
counts to a new file.
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