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1 Abstract

Transportation of livestock carries the risk of importing infectious disease into
a susceptible population, leading to costly public and private sector expendi-
tures on disease containment and, hopefully, eradication. Individual animal
tracing systems implemented outside the US have allowed epidemiologists5

and veterinarians to model the risks of livestock transportation and prepare
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responses designed to protect the livestock industry. Within the US, data
on livestock transportation available to researchers is not sufficient for direct
forcing of disease models, but network models that assimilate limited data
provide a platform for disease models that can inform policy. Here, we report10

on a novel data stream with such potential: the information publicly reported
by US livestock markets on the origin of cattle consigned at live-auctions.
By aggregating weekly auction reports from markets in several states, some
providing multi-year historical archives, we obtain an ego-centric sample of
edges from the dynamic cattle transportation network in the US. We first15

illustrate, using over-simplified disease models, how such data are relevant to
the outcome of a disease outbreak. Subsequently, we demonstrate how the
sample might be used to infer shipments to unobserved livestock markets in
the US, although we find the assumptions of edge prediction by generalized
linear models too restrictive. We conclude that in combination with statis-20

tical models allowing greater dependence between edges, the market data
create potential for inference of a complete transportation network model,
one which includes the capacity of markets to spread or control livestock
disease.

2 Introduction25

Livestock operations within the United States (US) must be vigilant against
transboundary animal diseases, among which foot-and-mouth disease (FMD)
is recognized as a critical threat for cattle producers (USDA-APHIS-VS,
2014). The 2001 FMD outbreak in the United Kingdom (UK) cost their
agricultural sector 3 billion, and 5% of the nation’s 11 million cattle were30

culled to control the disease (Thompson et al., 2002). A study on FMD
risk to California’s 5 million beef and dairy cattle predicts economic losses
in the tens of billions of dollars, even for an outbreak artificially terminated
at California’s border (Carpenter et al., 2011). The potential impact of a
full-blown epidemic in the US, putting at risk a 90 million strong cattle herd35

(USDA\NASS, 2015a), compels us to study the possible routes of disease
spread from an initially infected animal holding premises (Shields and Math-
ews, 2003). Mechanistic models that incorporate livestock transportation
are needed to help guide prevention and control of FMD-like diseases, which
are known to cause massive burdens on livestock industries, require costly40

public interventions, raise public health concerns and impact food security
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(Anderson, 2002).
Studies of past livestock epidemics and disease simulations reveal that

network models provide a useful abstraction of data on animal shipments
between livestock operations (Vernon and Keeling, 2009). Network models45

typically emphasize heterogeneity in the number of disease transmitting con-
tacts attributed to infectious nodes, a pattern that emerged strongly during
the initial spread of FMD in the UK’s 2001 epidemic (Shirley and Rushton,
2005) and one usually absent from simulations where transmission depends
on distance alone. Network representations of cattle trade exist for sev-50

eral European livestock industries (Bigras-Poulin et al., 2006; Kao et al.,
2006; Nöremark et al., 2011; Dutta et al., 2014; Lentz et al., 2011; Natale
et al., 2009), where data for model development is generated from animal
tracing systems mandated by the European Parliament (Anonymous, 2000).
Availability of these data have allowed for several advances in surveillance55

and control strategies: for example, (1) identification of “sentinel” livestock
premises projected to become infected early during an outbreak in Italy (Ba-
jardi et al., 2012), (2) validation of risk reduction from the standstill rules
implemented in the UK after 2001 (Green et al., 2006), and (3) evaluation of
targeted movement bans that selectively eliminate network edges based on60

node centrality in transportation networks (Natale et al., 2009).
Cattle transportation is a vital component of the US livestock industry,

but point-to-point data on animal movements is extremely limited (Shields
and Mathews, 2003). The US Department of Agriculture (USDA) census
collects inventory, production and disposition estimates; assuming these are65

balanced by in-shipments suggests that 22% of the US herd gets transported
across state lines each year (USDA\NASS, 2015b). State agencies collect
shipment origin and destination locations on certificates of veterinary inspec-
tion (CVIs) for cattle entering their state. One cattle transportation network
model has been estimated from a sample of year 2009 CVIs aquired from70

48 state agencies (Lindström et al., 2013; Buhnerkempe et al., 2013). The
epidemiological network model constructed from these data (Buhnerkempe
et al., 2014) represents the state of the art for analysis of a nation-wide
epidemic in the US, but limitations in the underlying data are substantial.
Given that a mean of only 19.2 (SEM 3.1) percent of shipments onto US beef75

operations travel over 100 miles (USDA, 2009), shipping within states likely
occurs at much higher rates than shipments documented on CVIs. While
shorter range shipments can be inferred, they cannot be validated against
CVI data, nor can annual variation in the network be estimated without re-
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peating a major collection effort, and nor can the type of origin or destination80

facility be determined from CVIs alone. Finally, and of most relevance to
the present study, CVIs are not required for shipments to exempt facilities,
including certain federally approved livestock markets (Anonymous, 2013).

As in the UK, where livestock markets had very high centrality in the
2001 foot-and-mouth (FMD) epidemic network (Shirley and Rushton, 2005),85

and other countries with recent outbreaks of non-endemic FMD(McLaws and
Ribble, 2007), cattle in the US are commonly sold at live auction markets
between stages of beef or dairy production. In the most recent national sur-
vey, over half of beef producers sold non-breeding stock at auction markets
in the US (60.7% steers, 58.3% cows), with internet auctions and private90

treaties being the main alternatives (USDA, 2010). Dairy contributes fewer
US cattle shipments, but cows removed from dairy operations are also pre-
dominantly sent to auction markets or stockyards (Usda, 2007; Buhnerkempe
et al., 2013). Localized but explicitly epidemiological studies have also found
direct contacts with livestock markets prevalent in Colorado and Kansas95

(McReynolds et al., 2014) and California (Bates et al., 2001). The economic
reality now, and for the foreseeable future, is that cattle owners regularly
buy and sell cattle at particular stages of production and rely on live-auction
markets to obtain the best price (RTI, 2007a; Bailey et al., 1995).

The epidemiological importance of livestock markets arises from their100

potentially high degree in both contact and epidemic networks—the same
epidemic phenomena airports create as hubs for transmission and spread of
human influenza (Colizza et al., 2006). When a livestock operation ships
infected animals to market, two processes spread the disease: splitting of the
original group of infected animals among multiple buyers, and transmission to105

susceptible animals passing through the same market (Dawson et al., 2014).
Both processes acted to give livestock markets high out-degree in an epidemic
network for FMD (Gibbens et al., 2001; Shirley and Rushton, 2005), while a
less contagious disease would primarily be affected by splitting up infected
animals arriving from one premises. Livestock markets can also have high110

in-degree within the contact network, or a large number of operations from
which cattle are sourced (Robinson and Christley, 2007). High in-degree
markets are a natural point of surveillance for disease detection; indeed,
markets seeking USDA approval are required to provide veterinary inspection
of cattle at auction (Anonymous, 2013).115

On the premise that transportation of cattle to and from markets is an
important class of potential disease-transmitting contacts between farms and
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other longer-term animal holdings, we studied the potential for data-driven
modeling of a market-based contact network for infectious livestock disease
in the US. To this end, we collected data on the locations of origin for indi-120

vidual cattle sold at livestock markets that publicly share this information
as a form of advertising. Because the data represent an opportunistic sample
of livestock transportation, we first report basic trends in the data along-
side some potential sources of bias in the sample. We then demonstrate two
methods for inference of a network model of contacts between livestock oper-125

ations from these data: (1) using the sample to estimate degree distributions
of an otherwise random contact network, and (2) fitting coefficients to covari-
ates that may predict the presence or weight of unobserved network edges.
The results firmly establish that market-bound cattle shipments are domi-
nated by intra-state movements, and are consistent with the possibility that130

transportation to markets also drives interstate flows. The daily resolution
of this data source allows detection of sub-annual variation in trade volume
and network degree distributions, and as a continuously updated data stream
creates potential for both inter-annual trend and recent-event detection. We
demonstrate high potential for inferring the properties of un-observed edges135

connected to non-reporting livestock markets, and conclude with a discus-
sion of the critical gaps for building a complete epidemic network model that
includes markets acting as hubs for the spread of livestock disease.

3 Methods

3.1 Data Collection140

As an integral part of livestock trade, stockyards are distributed across all
parts of the US with beef or dairy operations, i.e. throughout the US (Fig.
1)(Carroll and Bansal, 2014). Prices obtained at live auction are rapidly pub-
licized to help consignors and buyers decide when and where to trade cattle.
In some cases, professional market reporters attend sales and distribute vol-145

ume and price information through the USDA Market News Service. Where
market reporters are unavailable, or to provide additional information, sale
reports might be generated by the market itself and publicized on its own
website. A subset of markets list specific lots of cattle sold in their sale
reports, including a location of origin and other attributes. These data,150

sometimes labeled “representative sales” as we refer to them here, indicate
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cattle were transported from the origin to market on, or very near, the sale
date.

We aggregated representative sales from several livestock markets and
georeferenced each location of origin to a US county or county-equivalent155

(hereafter “county”). All websites listed in the directory of the Livestock
Marketing Association (lma) were manually searched for representative sales.
We wrote software to parse data from the subset of websites regularly publish-
ing representative sales and which permit crawling by the Robots Exclusion
Protocol. For each lot given as a representative sale, the software attempts160

to parse the consignor’s location along with cattle type (e.g. steer or heifer),
number, average weight and price (either per head or per hundred weight).
A single animal per lot was assumed whenever the number of cattle could
not be parsed. We tuned the parser for each website until two researchers
found no data extraction errors in independent spot checks of representative165

sales. Websites were checked for new reports weekly between June 1, 2015
and variable start dates from June 2014, and parsers returning data of the
wrong type (i.e. string or numeric) were promptly corrected.

Acceptable locations of origin are given as the name of a city or other
populated place, with or without a state, and can be ambiguous. We matched170

each location, substituting common abbreviations for full words as needed
to obtain a match, to names of populated places in North America using the
GeoNames webservice (Anonymous) to identify the encompassing county.
The county closest to the reporting market, as determined by the great-
circle distance between county centroids (orn, 2011), is recorded as the true175

location of origin.

3.2 Comparison with Interstate Shipments

Interstate cattle shipments are sometimes found among representative sales,
allowing a comparison to cattle shipping data obtained from state ICVI
records. For each state with at least one market providing representative180

sales, we correlated the number of cattle in representative sales originat-
ing in other states with the analogous interstate flows reported by Shields
and Mathews (2003). The ICVI data sampled shipments occurring the 2001
calendar year, while the majority of available representative sales occurred
within the past year. To capture variation over the course of a full year,185

we aggregated representative sales dated within the year preceding 2015-03-
01before calculating correlations, but the comparison necessarily reflects a
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decade of changes in the livestock system on top of any differences between
market shipments and ICVI shipments.

3.3 Analysis of Sampling Rate190

Representative sales are not randomly sampled from all cattle shipped to
markets, the sample is in-effect stratified by individual sale reports. Estima-
tion that involves any aggregation across sale reports should take into account
the sample weight, but the total number of animals shipped to market is un-
known in roughly a third of market reports. We analyzed variation in the195

sample size of representative sales for the remaining sales by fitting a GLMM
to the number of head in representative sales, given the total head of cattle
sold (“receipts”). Receipts on a given day were extracted from USDA Market
News Service reports (USDA\AMS) or, when available, from the market’s
own report. Inventory and sales of cattle in the county where the market is200

located (USDA\NASS, 2015a), receipts, and season of year (with four lev-
els) were fixed effects in the model. Positive, integer predictors were first
log transformed and standardized. Each market was allowed a random inter-
cept, but the number of representative sales remained overdispersed relative
to the fitted model. To avoid possible parameter bias, we added an observa-205

tion level random intercept to eliminate overdispersion (Harrison, 2014). We
fit binomial family GLMMs with logit link function using the ’lme4’ package
(Bates et al., 2014), and performed Wald χ2 tests for significance of fixed
effects using the ’car’ package (Fox and Weisberg, 2011), in R version 3.1.3
(R Core Team, 2015).210

3.4 Network Inference: Random Graph

The definition of nodes and the meaning of edges in contact networks are
flexible, facilitating data-driven modeling approaches. Models for disease
spread among livestock incorporate transportation data as edges in the net-
work of contacts between susceptible and infected individuals (Kao et al.,215

2006, e.g.). Representative sale data is compatible with a model having two
types of nodes: one representing all farms, ranches and other long-term an-
imal holdings located within a given county, and one representing a single
market. In order to study the contribution of these data to the inferred
topology of the contact network, and its consequence for disease spread, we220

ignore edges between counties that arise from fence-line contact, private sales,
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transportation for grazing, and other mechanisms that might transmit dis-
ease directly between counties. Observing no indication of market-to-market
transportation in the representative sales, we assumed their absence as well.
As a result, the only edges we infer from representative sales are between225

nodes of different types, yielding a bi-partite contact network.
One approach to building a network topology that is consistent with rep-

resentative sales is to estimate only the degree distribution for markets from
the data, while specifying all remaining network properties parametrically.
With ki the ith of m sampled values representing market degree, empirical230

estimates for the market degree distribution generating function, GM,0(x),
and the generating function for market “excess degree” (e.g. Newman, 2002,
eq. 12), GM,1(x), are

GM,0(x) ≈ 1

m

m∑
i=1

xki (1)

GM,1(x) ≈
∑m

i=1 kix
ki−1∑m

i=1 ki
. (2)

We specify properties of the full network by choice of the algorithm for con-
nectivity and the probability distribution for county degree: we assume a bi-235

partite configuration model for edges and a Poisson distribution on county
degree. In a static network with these properties, the expected size of a
disease outbreak in terms of the number, or proportion, of counties affected
can be calculated exactly (Meyers et al., 2003). With τC and τM the disease
transmission probabilities from counties and markets, respectively, and the240

mean county degree equal to λC , the epidemic threshold is a fixed value of
φ = τCτMλC determined by the market degree distribution. The threshold
occurs at

φ−1 = G′M,1(1). (3)

For parameterizations below this threshold, the expected number of counties
affected by an outbreak is245

1 +
φG′M,1(1)

1− φG′M,1(1)
. (4)

For parameterizations above this threshold, the proportion of counties in the
epidemic is

1− eλC(u−1), (5)
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where u is the smallest root of

u = (1− τC) + τCGM,1

(
(1− τM) + τMe

λC(u−1)) . (6)

See Appendix 5 for an explanation of these equations.
Two features of representative sales data conflict with applying this ’ran-250

dom graph’ approach to network modeling of livestock disease spread. First,
the degree of each market potentially varies from sale to sale, admitting pos-
sible temporal variation in the observed degree distribution. We examine
the extent of variation in degree by visualizing temporal variation and calcu-
lating seasonal estimates of epidemic size. Second, the representative sales255

may not include all the counties of origin, potentially biasing the observed
distribution toward smaller degrees. Using the iNEXT R-package developed
for analysis of species accumulation curves (Chao et al., 2014; Hsieh et al.,
2014), we calculate complete degree estimates for each sale using extrapola-
tion of the county accumulation curve as a function of the number of cattle260

in representative sales.

3.5 Network Inference: Edge Prediction

Modeling disease spread on a random graph assumes the absence of cluster-
ing within the contact network, ignoring any propensity of livestock opera-
tions within different counties to trade cattle at the same two markets. A265

model that represents additional structural attributes of the transportation
network, including clustering, may yield different predictions for the spread
of disease, but direct estimation of these attributes requires particular sam-
pling methods (Morris, 2004). For example, a random sample of nodes is not
appropriate for estimating clustering coefficients; a first-wave link tracing ap-270

proach (sensu Handcock and Gile, 2010) is needed to avoid underestimating
the number of triangles touching each focal node. Edge prediction is any pro-
cess for inferring the properties of unobserved edges, and allows construction
of network models that are more flexible than random graphs.

We applied a regression approach to the problem of edge prediction, us-275

ing observed edges to estimate whether county and market covariates predict
their connectivity. The response variable we examined is the number of cat-
tle shipped from a given county to a market, which we assume to arise from
a multinomial distribution given the total number of representative sales ob-
served at that market. This GLM includes the fixed effects of the previous280
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GLMM, with the addition of GCD distance between the centroids of each
origin county and the county of each market, the number of registered and
bonded market agencies giving an address in each origin county (Carroll and
Bansal, 2014), and the product of inventory and sales. Distance and square-
root transformed distance were included, and as for all numeric predictors,285

each was normalized to unit variance with zero mean. In practice, the multi-
nomial model is converted to an equivalent (with respect to the likelihood
of the multinomial probabilities) Poisson model with log-link function, re-
quiring an additional fixed effect of market. We evaluate the utility of the
model by leave-one-out validation: we fit the model with one market re-290

moved, then predict the county of origin for all cattle in representative sales
for that market.

4 Results

4.1 Characteristics of Representative Sales

Cattle transported to 48 markets located in 46 counties in 15 states are295

represented in this analysis (Fig. 1), and data on each movement are freely
available online (5). The average number of cattle shipments reported as
representative of a given sale increases to a peak of 1000-1500 head in late
fall and decreases to a few hundred during summer months (Fig. 2). This
seasonal trend persists between the period for which representative sales come300

from a handful of markets with accessible archives and the period since mid-
2014, when we began capturing representative sales posted weekly.

The majority of representative sales are for cattle shipped to a livestock
market from within the same state (Fig. 4A&B). Markets selling the ma-
jority of out-of-state cattle appear to be clustered in Oklahoma and South305

Dakota, where it is not uncommon for less than half of representative sale
cattle to originate in-state (Fig. 4A). Aggregating across all markets, the
proportion of total sales that originate in-state showns no trend in devia-
tions from an average of 0.84 (SD 0.07) (Fig. 4B). Among the states we
could compare to a summary of inter-state transportation during 2001, the310

proportion is at least 70% of representative sales 1. The origin of remaining
shipments showed fair to strong correlation with the health-certificate de-
rived data. One of the strongest correlations, 0.87 for South Dakota, arose
in the state with the largest number of cross-border representative sales that
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we observed. Shipments into Texas are insufficient for a meaningful compar-315

ison, but other low correlations (e.g. 0.44 for Colorado) are unlikely to be
sample-size artifacts. Variation in the strength of correlation across sample
sizes suggests the presence of real variation in the kind of inter-state ship-
ments sampled by different data streams. The difference could be due to the
relative proportions of shipments that are market bound versus non-market320

bound as well as heterogeneity in state requirements for health certificates.
Uncertainty about the total number of animals shipped to market for a

given sale is amplified by unknown sources at the market level and to a lesser
extent for each individual report. For roughly one third of market reports,
the total receipts is not available for use in weighting the sale’s affect on325

estimates aggregating across sales or markets. In other reports, the number
of representative sales affects the proportion of receipts observed(FIXME),
with a positive regression coefficient (FIXME). Season is also a significant
factor (χ2

3 = 19.3, p < 0.001), with the winter contrast taking the largest
coefficient (95% CI (9.2 × 10−2, 0.27)) by an order of magnitude. Neither330

inventory nor sales is significant in the GLMM, leaving the random effect
of market (SD = 1.6) to explain the remainder of the 61% of variance be-
tween market averages of observed proportion. However, the representative
proportion remains overdispersed with respect to the model fitted without
observation level random intercepts. In other words, variation in the binomial335

sampling probability predicted by the fitted model for each market underes-
timates actual variation observed in the representative proportion (Fig. 3).
The breadth of the observation level random intercepts (SD = 0.65) reflects
unexplained variability in the proportion of cattle reported in the represen-
tative sales, but the random intercept for each market remains the greater340

source of uncertainty.

4.2 Epidemic Size on Random Graphs

At a given sale, livestock markets report receiving cattle from 11.3 (SD 1.5)
counties on average, with weekly average market degree showing seasonal
variation peaking in late autumn (Fig. 4). While the timing of peak degree345

closely corresponds to the time of year when the number of representative
sales is also greatest, the troughs in degree are flatter, broader and less pro-
nounced than the summertime lows in representative sales. The majority
of seasonal variation in the distribution on market degree exists between a
winter season (the 42nd through 10th weeks of the year), and the remaining350
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seasons, which have barely distinct empirical cumulative distribution func-
tions (ECDFs; Fig. 5A). For a disease spreading on a bi-partite random
graph with these market degree distributions, seasonal variation effects the
location of the epidemic threshold with respect to the unknown parameters.
Roughly 20% lower values of φ, the product of both transmisabilities and355

mean county degree, prompt an epidemic for the peak time of year relative
to off-peak (Fig. 5C). Above the epidemic threshold, the difference between
seasons becomes negligible as transmisability increases; it is overwhelmed by
the overall high degree of livestock markets. Even with the average excess
degree of counties equal to one, nearly two-thirds of counties are affected in360

the extreme case that every contact between susceptible and infective cattle
leads to successful disease transmission (Fig. 5D).

The number of counties included in representative sales is, on average,
FIXME of the estimated number of counties extrapolated from county ac-
cumulation curves. In over half of sale reports, the estimate is less than 1%365

greater than the observed number of counties; and among the rest the aver-
age increase in degree is just 10% (Fig. 5B). The rarity of singleton counties
(i.e. counties with only one individual in representative sales) and the suf-
ficiently high sampling rates (Fig. 3) are responsible for the completeness
of the sample for counties of origin. Using the extrapolated values in calcu-370

lating disease spread on a random graph has the same qualitative effect as
the shift from off-peak to peak season market degree distributions. Quanti-
tatively however, the difference between observed and extrapolated market
degree distributions has less impact on the estimates of disease spread (Fig.
5C&D).375

4.3 Edge Predictability

The single most important predictor of counties of origin for cattle shipped to
market ought to be distance, and the regression model returns a parameter
value for distance within 95% CI (-5.75, -5.70) and for the square root of
distance within 95% CI (-1.31, -1.33). However, while these and all other380

predictors in the model are judged significant, the deviance goodness-of-fit
test rejects the assumption that samples are drawn from a Poisson family
distribution (χ2 value numerically zero). Parameter uncertainty cannot be
reliably determined for this model.

Visualization of the model validation result indicates that a key problem385

with the regression approach is the effective overestimation of market degree.
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The proportion of receipts, summed across all sales for each market, that
originate in different counties gives an impression of the size and variability
of livestock marketsheds (Fig. 6A). Due to aggregation across sales, market
degree tends to be higher here than in the weekly average (Fig. 4), but it’s390

not so high that every county within reach of a market is connected. In
contrast, the analogous marketshed predicted with the regression approach
shows even greater degree; rarely is a sufficiently close county not connected.

5 Discussion

The epidemiological contact network is a fundamental component of models395

for the spread of diseases, and sale reports publicized by livestock auction
markets contribute data to drive inference of these networks for the US live-
stock system. For this study, we initiated an ongoing process for archiving
representative sales as an opportunistic sample of cattle transported from
counties with beef or dairy operations to livestock markets distributed across400

the central US. The study complements previous efforts to summarize trans-
portation of cattle within the US using data derived from veterinary inspec-
tion certificates (Shields and Mathews, 2003; Buhnerkempe et al., 2013), but
extends our ability to model within-state shipping patterns. We demonstrate
how inference of a bi-partite contact network, between nodes representing ei-405

ther cattle holding operations aggregated within a US county or a particular
auction market, can allow for new models for the spread of economically
disruptive livestock diseases.

Representative sales extracted from livestock market reports provide a re-
liable sample of cattle shipments and the corresponding potential for disease410

transmitting contacts. Seasonal variation in the volume of representative
sales is consistent with beef cattle production systems, where calves are pro-
duced in spring and weaned cattle or yearlings sold to pasturing or feedlot
operations in the fall and subsequent spring (RTI, 2007b). The proportion
of receipts at a given sale whose origin can be identified is anywhere from a415

small fraction to around three quarters, and understanding this variability is
important for scaling up assessments of transportation networks. Although
covariates from agricultural census and season are significant predictors, the
dominant source of variability is between markets and can be quantified
for future modeling efforts despite having no identified deterministic source.420

While interstate shipments from representative sales correlate fairly well with
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health certificate derived data, the former provide data on shipments within
a state that were previously unavailable and dominate market directed ship-
ments at typically more than 80% on any week.

The market derived data allows estimates for contact networks ranging425

in complexity from random graphs, which have many analytically tractable
properties, to networks with non-trivial clustering, modularity, assortativity
and other non-random features. A collection of edge data resulting from
sampling random nodes, without tracing any discovered edges, is an ego-
centric sample that allows straightforward estimation of node, but not edge,430

attributes (Morris, 2004). From this sample, we find market degree distribu-
tions that fit a negative binomial distribution with variance roughly twice the
mean, which has more dispersion than a Poisson distribution but less than a
power law. We also find seasonal shifts in the degree distribution that lower
the epidemic threshold of a random graph during the peak cattle trading sea-435

son. However, the overlapping marketsheds apparent in this sample suggest
high potential for network clustering, which can strongly influence disease
spread but are not so easily assessed from an ego-centric sample. Estimating
this kind of structural attribute requires inference about unobserved edges,
and a first analysis shows potential for linear effects of county and market440

attributes in exponential family likelihoods for edge weight. Extensions to
this likelihood that include multiple response variables, particularly market
degree and squares in the bi-partite network, may achieve a reliable fit to
the representative sales that provides a data-driven, non-random graph for
livestock disease simulations (Handcock and Gile, 2010).445

Despite the increased availability of data on livestock transportation in
the US that our study provides, disease models here lag behind the relatively
data rich European livestock systems. Research in these systems on the op-
timal spatial and temporal resolution at which to model contact networks is
critical for efficient use of limited information available in the US and targeted450

development of new data streams. In a spatially embedded contact network,
each node represents a geographically constrained subpopulation within an
interacting metapopulation (Schumm et al., 2014). The constraint should
reflect where mixing of susceptible and infected individuals occurs in pro-
portion to their frequencies, but no theory exists for transferring constraints455

developed in one region (e.g. the UK) to any other (e.g. Pennsylvania).
The abstraction of temporally discrete livestock shipments into static edges,
representing the potential for disease transmission over time, is better un-
derstood (Vernon and Keeling, 2009; Valdano et al., 2014). The additional
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challenge for a contact network distinguishing livestock markets from longer460

term animal holdings is synchronicity of shipments of cattle between two
counties and the same market, although extreme cases of complete within
market segregation versus mixing (Dawson et al., 2014) should bracket the
range of disease outcomes.

The eventual purpose of collecting data on livestock transportation is465

to improve surveillance for disease outbreaks and prevention of control of
epidemics. The sources of nation-wide data on US livestock movements con-
tributing to these goals have previously included health certificate records
accompanying interstate movements (Shields and Mathews, 2003; Buhn-
erkempe et al., 2013) and owner/operator surveys on animal health and470

management practices for representative animal holdings (Usda-Aphis-Vs,
2009). Future research should aim to combine these source with represen-
tative sales data to jointly infer contact networks, because each data source
addresses network attributes absent from the others. The primary deficiency
of representative sales data is the absence of out-going shipment information,475

or the destination of cattle purchased at auction. Surveys of livestock oper-
ations presently include information on the in-shipment degree, source type
and distance, which provides evidence for missing county-node edges. Rep-
resentative sales also only include market-directed shipments, while health
certificate data provides information on network edges that may not have a480

livestock market at either end. Especially in combination, which we recog-
nize to be a difficult task both conceptually and statistically, inference from
multiple data sources will dramatically improve awareness of the network of
potentially disease spreading contacts between livestock.
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Table 1: Correlations with ERS on between state movements, also show
within-state proportion and other state-numbers (number of markets, re-
ports, movements, etc)

Dest. p head n r
WY 0.88 5149 28 0.71
SD 0.72 87369 39 0.78
CO 0.85 10523 23 0.44
MO 0.82 5581 17 0.34
NV 0.96 148 28 0.66
ND 0.98 3146 3 0.85
MT 0.92 12199 16 0.85
KS 0.89 1610 38 0.68
MN 0.95 484 37 0.44
TX 1.00 12 33 0.29
OK 0.70 1777 18 0.73
NM 0.85 2887 17 0.99
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Figure 1: Cattle auction markets in the US, pinning those sampled in this
study. Using GIPSA’s list until further validated.
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Figure 2: Time series of the average number of representative sales observed,
and the number of markets reporting each week.
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Figure 3: Observed versus predicted representative proportions, grouped by
market. Horizontal bars show SD of observed ratios of head in representative
sales to receipts. Vertical bars show predicted binomial probabilities, leaving
out the observation level random intercept but including the market level
random intercept.
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Figure 4: Time series of the average number of counties of origin across
markets and the proportion of total representative sales originating in-state.
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Figure 5: A) Raw degree distribution for sales occurring with four season
(blue: nominally winter). B) Percent increase in extrapolated degree relative
to sampled degree, with extrapolation up to the total receipts. C) Expected
outbreak size for the winter “peak” season (solid) and remaining “off-peak”
seasons (dashed), including the observed (black) and extrapolated degrees
(gray). φ is a product of τM , τC , and λC . D) Proportion of counties affected in
the four cases shown in panel C but above the epidemic threshold, assuming
τM = τC = τ and λC = 1.
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(b)

Figure 6: The proportion of cattle listed in each market’s representative
sales by county of origin (a), and the multinomial probability of origin by
county predicted for each market by the GLM, fitted while excluding the
focal market (b). Color corresponds to an individual market, and is linearly
scaled between a maximum proportion or probability of 0.8 (transparency at
0%) and a minimum of 0.004 (transparency at 80%)

.
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