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Abstract

Understanding the transmission dynamics of infectious diseases is important for both

biological research and public health applications. It has been widely demonstrated that

statistical modeling provides a firm basis for inferring relevant epidemiological quantities

from incidence and molecular data. However, the complexity of transmission dynamic mod-

els causes two challenges: Firstly, the likelihood function of the models is generally not

computable and computationally intensive simulation-based inference methods need to be

employed. Secondly, the model may not be fully identifiable from the available data. While

the first difficulty can be tackled by computational and algorithmic advances, the second

obstacle is more fundamental. Identifiability issues may lead to inferences which are more

driven by the prior assumptions than the data themselves. We here consider a popular and

relatively simple, yet analytically intractable model for the spread of tuberculosis based on

classical IS6110 fingerprinting data. We report on the identifiability of the model, presenting

also some methodological advances regarding the inference. Using likelihood approximations,

it is shown that the reproductive value cannot be identified from the data available and that

the posterior distributions obtained in previous work have likely been substantially domi-

nated by the assumed prior distribution. Further, we show that the inferences are influenced

by the assumed infectious population size which has generally been kept fixed in previous

work. We demonstrate that the infectious population size can be inferred if the remaining

epidemiological parameters are already known with sufficient precision.
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Statistical models for transmission dynamics are widely employed to answer fundamental

questions about infectivity of bacteria and viruses, and to make predictions for intervention

policies, such as vaccines, de-colonization and case containment. For some types of infectious

disease, the complexity of the transmission process and the corresponding model, combined

with the characteristics of the available data, make the inference an intricate task. A par-

ticular difficulty arises from the need to use computationally intensive methods. Examples

include the work by Tanaka et al. 2006; Sisson et al. 2007; Blum 2010; Stadler 2011;

Fearnhead and Prangle 2012; Del Moral et al. 2012; Baragatti et al. 2013; Al-

bert et al. 2015, who considered the transmission dynamics of Mycobacterium tuberculosis

based on IS6110 fingerprinting data from tuberculosis (M. tuberculosis) cases in San Fran-

cisco, reported earlier by Small et al. (1994). Except for Stadler (2011), who proposed an

inference scheme based on likelihood and Markov chain Monte Carlo, the above-mentioned

studies employed and improved an approximate inference technique known as approximate

Bayesian computation (ABC), which was originally introduced by Tavaré et al. (1997).

Although the estimation of epidemiological parameters of M. tuberculosis with the model

of Tanaka et al. (2006) has been widely studied, concerns with identifiability have been

raised. Originally Tanaka et al. (2006) reported a wide credible interval for the reproductive

value R and later, Blum (2010) suggested that the data of Small et al. (1994) are not

informative enough for confident estimation of R in the original setting by visually comparing

the prior to the inferred posterior distribution. Stadler (2011) further questioned the

accuracy of the ABC approach of Tanaka et al. (2006) after obtaining significantly different

estimates with her method. This concern was later reconciled by Aandahl et al. (2014) who

showed that the ABC method was valid and, moreover, also computationally more efficient.

However, their confirmatory experiments with synthetic data were only covering the setting

with a single free parameter, which leaves the question about estimability open for models

with multiple free parameters.

In certain cases the outcomes of ABC may not be accurate because the method includes
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several approximations and because practical algorithms can have several tuning parameters.

Multiple validation methods have thus been developed. Many operate by using synthetic

data generated with known parameter values in place of the observed data, and comparing

the inference results with the known parameter values. Wegmann et al. (2009), for example,

used the absolute difference between the data-generating parameter values and the posterior

point estimates to test whether the inferred posterior distribution is concentrated around the

right parameter values; to test whether the spread of the distribution is not overly large or

small, they suggest to compute the proportion of times the credible interval contain the data-

generating parameter values (see also the work by Prangle et al. (2014)). Csilléry et al.

(2012), on the other hand, recommend comparing the observed data with data simulated

from the posterior predictive distribution. Further validation methods include confidence

intervals, interquantile ranges, visualizations of the posterior distributions (e.g. Tanaka

et al. 2006; Toni et al. 2009; Blum 2010), and principal component analysis (Toni et al.

(2009) and Cornuet et al. (2010)).

Failure to pass some of the validation tests can be due to several reasons. The approx-

imation may not be accurate enough, the settings of the inference algorithm could be the

problem, or the issue could be deeper: the model may not be fully identifiable in the first

place. In this paper, we assess the identifiability of the epidemiological model of Tanaka

et al. (2006) for genotype data of the kind available from the San Francisco study (Small

et al. 1994). Since the likelihood function indicates the informativeness of the data, we

approach the identifiability problem directly by approximating the likelihood. Further, as

previous ABC studies dealing with the same epidemiological model have assumed a fixed

infectious population size for the data, we investigate how this choice influences the estima-

tion of the epidemiological parameters, and whether it is possible to infer the population size

from this kind of genotype data without access to more extensive surveillance data about in-

cidence. Since comparable data are widely considered for many different kinds of pathogens,

the issue of model identifiability – and our approach of addressing it by approximating the
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likelihood function – is of wider general interest beyond the particular case discussed here.

MODELS AND METHODS

Model for disease transmission: The model considered in the paper is a linear birth-

death process with mutations (BDM) introduced by Tanaka et al. (2006). The process

model is defined as follows: Each infected individual, hereafter host, carries the pathogen

characterized by an allele at a single locus of its genome. The host transmits the pathogen

and the corresponding allele with rate α, and dies or recovers with rate δ. For simplicity we

call α the birth rate and δ the death rate. In addition, the pathogen mutates within the host

with rate τ , resulting each time in a novel allele in the population of hosts (infinite alleles

model). When simulating the process, one begins with a single host and stops when either

the population of hosts X reaches a predetermined size m or the pathogen goes extinct. The

observation model assumes sampling of n < m hosts from X without replacement. It has

been earlier noted by Stadler (2011) that due to the time scaling of the model, at least

one of the rate parameters must be fixed. Similarly to many of the earlier studies, we use

a time scale of one year and fix the mutation rate to τ = 0.198 per year throughout the

experiments. Likewise, the infectious population size m is set to 10, 000 unless otherwise

stated.

The epidemiological parameters of interest in this study are the reproductive value R

and the net transmission rate t. In addition, we will consider inference of the underlying

infectious population size m given some estimate of R and t. In what follows, we will often

use θ to denote the tuple (R, t). The epidemiological parameters R and t are in a one-to-one

correspondence to the event rate parameters of the BDM process: R = α/δ, t = α− δ, and

δ = t/(R− 1), α = tR/(R− 1).

Data: The alleles of the pathogen carried by the n sampled hosts are summarized in the

form of the allele vector a = (a1, a2, . . . , an) ∈ Nn, where element ai equals to the number of
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allele clusters of size i present in the sample. An allele cluster is a set of hosts having the

same allele of the pathogen, and its size is the number of hosts which belong to the cluster.

For example, the vector a = (4, 0, 1) implies that there are four singleton clusters and one

cluster with three hosts in the sample. In other words, there are four different alleles each

found in only one host and one allele shared by three hosts. The size of a is defined as the

sample size n, which can be written in terms of a as n =
∑

i iai.

For inference of the parameters, as in Tanaka et al. (2006), we used the San Francisco

data of Small et al. (1994) which consist of an allele vector a∗ of size n = 473. Its nonzero

elements are a∗1 = 282, a∗2 = 20, a∗3 = 13, a∗4 = 4, a∗5 = 2, a∗8 = 1, a∗10 = 1, a∗15 = 1, a∗23 = 1,

and a∗30 = 1.

Inference method: The likelihood function plays a central role in statistical inference. But

for the model considered in this paper, it cannot be expressed analytically in closed form

(Tanaka et al. 2006). Tanaka et al. (2006) thus used approximate Bayesian computation

(ABC) for the inference. We here approximate the likelihood function using kernel density

estimation with a uniform kernel and a distance measure d, an approach which is related

to ABC but which makes explicit its inherent approximations (Blum 2010; Gutmann and

Corander 2015).

For a fixed value of the population size m, the likelihood function L(θ) is approximated

as L(θ) ≈ L̂Nd,ε(θ),

L̂Nd,ε(θ) ∝
1

N

N∑
i=1

1[0,ε]

(
d(a∗, a(i))

)
, (1)

where 1[0,ε](·) is an indicator function which equals one if the distance d is less than a thresh-

old ε and zero otherwise, a(i) is an allele vector simulated using parameter θ, and N is the

number of such simulations performed (Gutmann and Corander 2015). The distance

d(a∗, a) is a non-negative function which measures the similarity between the observed allele

vector a∗ and the simulated allele vector a. Possible choices of d are discussed below. Equa-

tion 1 means that the likelihood is approximated by the fraction of times the simulated allele
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vector a is within distance ε from the observed allele vector a∗. The approximate likelihood

function for inference of the population size m for fixed θ is defined in an analogous manner.

While there are several variants of the inference procedure of ABC, they are essentially

built out of sampling candidate parameter values θ and retaining those for which the distance

d(a∗, a) is less than the threshold ε. Under certain conditions, the retained parameters

correspond to samples from the posterior. In ABC, the approximate likelihood function is

generally never explicitly constructed, but is implicitly represented by the sampled parameter

values for which the simulated data are close to the observed data. By contrast, in this paper

the likelihood function is explicitly approximated using Equation 1, which is important

because it provides information about the identifiability of the parameters.

Since the parameter space is low-dimensional, we can evaluate the approximate likelihood

function by varying the parameters on a grid. Several grids were created based on the

different inference tasks considered.

• For inference of θ, we formed a 137×120 evenly spaced grid over a subspace ∆α×∆δ =

[0.3, 2] × [0.0125, 1.5] of the (α, δ) BDM parameter space. At each node of the grid,

N = 3000 allele vectors were simulated in order to approximate the likelihood in that

location by using Equation 1.

• To study the effect of m on R, four different grids (one for each value of m) with 41

nodes were created, being subsets of the interval ∆α = [0.53, 1.4] and having N = 3000

simulations in each node.

• For the evaluation of the feasibility of inference of m also four grids were used, two

with size 50 and two with 51, N = 3000, all grids being subsets of the interval ∆N =

[500, 25000].

• For the final inference of the population size m, we used two grids, one with 15 nodes

and the other with 26 nodes, both subsets of ∆N = [500, 35000] with N = 30, 000

simulated allele vectors in each node.
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The amount of simulated data in the grids above was selected to ensure the stability of the

likelihood approximations. Results for the stabilization of the marginal likelihoods for the

grid over the (α, δ) parameter space above are shown in Appendix A. The dimensions of the

two dimensional grid were chosen such that the grid includes the modes of the likelihoods

used in the experiments. The one dimensional grids were chosen so that they included all of

the significant mass of the approximated likelihood functions, so that numerical computation

of the posterior means is possible.

Distance measures used to approximate the likelihood: The likelihood approxima-

tion in Equation 1 relies on a distance measure d(a∗, a) between the observed sample a∗ and

the sample a produced by the simulation process with the parameter vector θ. Consequently,

different distance measures may lead to different estimation results, depending on how much

information about the generating process they are able to capture from the data. It is thus

natural to ask which distance measures would be optimal for a model of the type considered

here.

In the limit of ε→ 0 and N →∞, one can easily define distance measures d(a∗, a) which

lead to exact likelihoods L(θ). The only requirement is that d(a∗, a) = 0 if and only if a = a∗.

In practice, however, too small thresholds ε and a very large number of simulations N are

computationally not feasible. Therefore one has to rely on likelihood approximations L̂d,ε(θ)

dictated by the distance measure d, a non-zero threshold value ε and a finite N .

Given a fixed number of simulations N , differences in the quality of the approximations

arise from the ability of the distance measures d to produce approximate likelihood func-

tions which are as close as possible to L(θ). Because the likelihood L(θ) is unknown in the

first place, the evaluation of the approximations is challenging. One method to evaluate

the goodness of an approximate likelihood function is to measure the goodness of the corre-

sponding estimates using synthetic observed data as where the data generating parameters

θs are known. In particular, the mode of the likelihood approximation should, on average,
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be near θs if the sample as is in general informative enough.

In this study, we evaluate the performance of three different distance measures. The

baseline distance measure is the one introduced by Tanaka et al. (2006) and is defined as

dbase(a, a
′) =

1

n
|ga − ga′|+ |Ha −Ha′|, (2)

where Ha = 1 −
∑

i ai(i/n)2 is a gene diversity summary statistic and ga =
∑

i ai is the

number of distinct alleles in a, or in other words the total number of clusters present in the

data.

The second distance measure called “simple” is defined as

dsim(a, a′) = |a1 − a′1|+ |Ma −Ma′ |, (3)

where a and a′ are allele vectors and Ma = max {i|ai 6= 0} is the largest cluster size in a.

This measure compares the number of singleton clusters in the sample and the sizes of the

largest clusters. It can be seen as a simplified version of the baseline distance measure by

excluding some information.

The third distance measure dGKL is motivated by the observation that element ai of the

allele vector a is proportional to the frequency of occurrence of cluster size i in the data, with

the proportionality factor ga =
∑

i ai being equal to the total number of clusters present.

We can thus consider ai to indicate the probability to observe cluster size i in the data. This

probabilistic interpretation of vector a opens up the possibility to use known divergence

measures from probability theory to gauge the similarity between two vectors a and a′.

In more detail, since both a and a′ correspond to estimated probabilities, we shall discount

small differences in the number of clusters of similar size, which may be present due to chance

alone, and represent a and a′ by smooth continuous functions fa and fa′ approximating the

two vectors in the discrete locations i, that is, fa(i) ≈ ai and fa′(i) ≈ a′i. Like a and

a′ correspond to unnormalized probability vectors, fa and fa′ correspond to unnormalized

probability densities, and we can assess their similarity by the generalized Kullback-Leibler
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divergence,

dGKL(fa, fa′) =

∫
fa(x) [log fa(x)− log fa′(x)]dx−

∫
fa(x)dx+

∫
fa′(x)dx. (4)

The generalized Kullback-Leibler divergence belongs to the family of Bregman divergences

(Bregman 1967) which have a number of desirable properties, for example nonnegativity

and being equal to zero if fa = fa′ , as well as useful applications (see for example Collins

et al. 2002; Frigyik et al. 2008; Gutmann and Hirayama 2011). Unlike in the usual

Kullback-Leibler divergence, the integrals over fa and fa′ need not equal one in the gen-

eralized Kullback-Leibler divergence. In fact, by construction of fa and fa′ , the difference

between their integrals assesses the difference between the total number of clusters ga and

ga′ , much like in dbase. Conceptually, our probabilistic interpretation of a boils down to

using the cluster size as a summary statistic and comparing its probability distribution for

observed and simulated data in a nonparametric way.

RESULTS

Evaluations of the distance measures: In order to compare the performance of the

alternative distance measures dsim and dGKL to the baseline distance measure dbase in like-

lihood approximation, the difference ∆error between the relative errors in their respective

estimates was computed. A value ∆error > 0 indicates that the relative error is larger for the

baseline compared with the alternative method, in which case the alternative method would

be preferable.

The relative error was defined as
∑

i(|θsi − θ̂i|/θsi ), where θs is the true data-generating

parameter value used to simulate the synthetic data as, and θ̂ is the estimate obtained by

maximizing the approximate likelihood. Maximization was performed in a simple way, by

searching for the maximal value over the two-dimensional grid. To compute the relative

error, a total of 50 synthetic observations as were simulated using θs, and the likelihood

function was approximated with the grid for each observation as. The threshold ε was set
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for each distance measure to the value minimizing the sum of the relative errors over the 50

trials.

We considered three different setups for the data-generating parameter value θs. In the

first setup, the value of θs was set to the estimate (3.4, 0.69) of Tanaka et al. (2006). The

second setup uses the estimate (2.1, 0.57) from Aandahl et al. (2014). To further see if the

values of the actual epidemiological parameters had an effect on the estimation accuracy, we

considered one more setup where both the reproductive value R and the transmission rate t

of the first setup were divided by two.

Figure 1 shows the resulting distribution of ∆error for the comparison between dsim and

dbase (blue curve), and the comparison between dGKL and dbase (red curve). The simple

distance measure performs slightly worse than the baseline although the difference is not

significant in any of the setups (the null hypothesis of a zero mean of ∆error cannot be

rejected). This means that reducing the distance measure dbase of Tanaka et al. (2006) to

the simpler dsim does not cause a notable reduction in estimation accuracy. The generalized

Kullback-Leibler distance dGKL, on the other hand, performs slightly better than the baseline

and the difference is significant in the last setup (the zero mean hypothesis of ∆error can be

rejected at the p-value 0.0237). It should nevertheless be noted that the absolute errors tend

to be rather large with all of the distance measures as shown in Appendix B.

Since dGKL was found to perform at least as well as the other measures, it was used in

the remaining parts of the paper unless stated otherwise. Furthermore, we will for simplicity

often drop the qualifier “approximate” and use “approximate likelihood” and “likelihood”

interchangeably.
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Figure 1: The distribution of the difference ∆error between the relative estimation errors for

the baseline and two alternative distance measures. A positive value of ∆error indicates that

the alternative method performs better. The intervals at the top show the estimated mean

and the 95% confidence interval.

Relative effects of likelihood and prior on the posterior: The simulator operates

genuinely in the (α, δ) space, where α and δ are the birth rate and the death rate in the

model. Accordingly, all of the ABC studies so far have assumed an uninformative (uniform)

prior for the region 0 < δ < α in the Bayesian framework. The law of transformation of

random variables implies that choosing a uniform prior for (α, δ) is equivalent to choosing

the following prior for the epidemiological parameters (R, t),

p(R, t) ∝


t

(R−1)2 if R > 1, t > 0

0 otherwise.

(5)

The prior is visualized in Appendix C. The formula and the figure show that its probability

mass is concentrated on small values of the reproductive value R.

Figure 2(a) shows the likelihood function of (R, t) for the San Francisco data of Small

et al. (1994) on the rectangle defined by 1.2 < R < 80 and 0.4 < t < 0.7. We used the same

grid as in the previous section with threshold equal to the 10−4 quantile of all the distances.

The likelihood function is flat over large areas of the parameter space and many values of

R are equally likely, which means that the data are not informative enough to identify the
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parameter R of the model.

Figure 2(b) shows the posterior distribution of (R, t) for the prior in Equation 5, that

is, for the uniform prior on (α, δ). It can be seen that the prior leads to a substantial shift

of the probability mass towards the lower end of values of R. The difference between the

modes of the likelihood and the posterior is striking: R = 50.6 versus R = 2.7 as shown in

Table 1. The table also shows the posterior means and credible intervals for the case that

the likelihood is interpreted as the posterior distribution with a uniform prior in the (R, t)

space. It should be noted that the upper value of the credible intervals for R is an artifact of

limiting our computation to values of R less than 80. The shape of the likelihood in Figure

2 (a) suggests that computations with larger values of R would lead to a corresponding

increase of the credibility intervals. The results mean that the prior dominates the posterior

distribution, which confirms previous findings by Blum (2010).

(a) Likelihood (b) Posterior with uniform prior in (α, δ) space

Figure 2: Likelihood and posterior distribution when using a uniform prior in the (α, δ)

space. The approximate posterior is obtained by multiplying the approximate likelihood

with the prior on the grid. The red cross denotes the mode. Note the different scales of the

x-axes.
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Prior Parameter Mode Mean Credible Interval (95%)

Uniform prior in (R, t) R 50.6 44.1 (9.5, 80.0)

t 0.59 0.59 (0.51, 0.67)

Uniform prior in (α, δ) R 2.7 10.5 (1.4, 39.0)

t 0.52 0.56 (0.46, 0.66)

Table 1: Effect of the prior on the posterior mode, mean, and credible interval of the epi-

demiological parameters of M. tuberculosis for the San Francisco data.

Effect of the infectious population size: The previous sections suggest that data of the

kind considered in the San Francisco study do not carry enough information for accurate

inference of R, but that the prior plays a major role. To make the inference of R possible,

Aandahl et al. (2014) obtained an estimate 0.52 for the death rate δ by summing the rates of

self cure, death from causes other than tuberculosis and death from untreated tuberculosis

as estimated in other studies. The parameter δ was then either fixed to this value or an

informative prior centered to it was used. Also previously, in all of the corresponding ABC

studies, the infectious population size m has been fixed, commonly to the value m = 10, 000

following Tanaka et al. (2006). We were thus interested in whether reducing the infectious

population size to a smaller, possibly more realistic number has an influence on the estimated

value of R. To ease the comparison with previous studies, we used the distance dbase in the

likelihood approximation. The thresholds were set to the 5 · 10−3 quantile of the distances

in the respective grids.

Figure 3 shows the likelihoods of R for m ∈ {1000, 5000, 10000, 20000} using the San

Francisco data (Small et al. 1994) and δ = 0.52. The difference in location of the likeli-

hoods is clear with modes shifting to the right with increasing m. The mode locations were

(1.1, 1.6, 1.9, 2.2) given in the order of increasing m. Posterior means with uniform prior over

the support of the likelihoods were the same. The results show that the assumed infectious

population size m affects the inference of R.
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Figure 3: Likelihoods of the reproductive value R with fixed death rate δ = 0.52 and four

alternative population sizes m using the San Francisco data. The vertical lines indicate the

modes of the likelihoods.

Inference of the infectious population size: The observed effect of the infectious popu-

lation size m on the inference of R means that there is some (statistical) dependency between

m and R. This suggests that it might be possible to infer the size of the underlying infectious

population from the data when R and δ are known. Alternatively, due to the relationship

between the parameters, knowing any two of α, δ, R or t would be sufficient.

We fixed δ = 0.52 as earlier and considered two alternative configurations: R = 2.1 and

R = 1.1. The former is also the estimate of Aandahl et al. (2014). To test whether inference

of the infectious population size parameter is possible, we ran 50 trials with synthetic data

as before, and determined each time the maximizer of the approximate likelihood on the

grid. The thresholds ε were set to the 10−2 quantile of the distances. Table 2 shows the

results of these experiments: The estimated population sizes are reasonable, and the actual

population size m is covered by the 95% confidence interval of the mean in all but one of

the cases. Only in the last case, the true m is just barely outside of the interval. These

results thus illustrate that estimation of m is possible, provided that reliable information is
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m m̄ CI (95%)

R = 2.1 1000 1051 (990, 1112)

10000 10020 (9380, 10660)

R = 1.1 1000 1007 (976, 1038)

10000 10510 (10003, 11017)

Table 2: Mean estimated population size m̄ for 50 trials and the respective confidence interval

(CI) under two alternative configurations of R and population size m. Death rate was fixed

to δ = 0.52. Results are for synthetic data.

available about the other epidemiological parameters.

We next estimated the infectious population size for the M. tuberculosis in San Francisco

area during the time the data of Small et al. (1994) were collected. Threshold ε was selected

as the 10−3 quantile of the distances. Figure 4 shows the likelihood functions for two different

values of R: R = 1.1 and R = 2.1 (with δ = 0.52 as before). Assuming R = 1.1 produced

the posterior mean m̂ = 2106 and the 95% credible interval (1166, 3226) with uniform prior

over the support of the likelihood function. Assuming R = 2.1, on the other hand, produced

the posterior mean m̂ = 21, 108 and the 95% credible interval (13408, 30155).
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Figure 4: Likelihoods of population size m with fixed death rate δ = 0.52 and two alternative

values of R using the San Francisco data. The vertical lines indicate the modes of the

likelihoods.

DISCUSSION

Statistical inference plays an important role in the study of the transmission dynamics of

infectious diseases. In this paper, we considered some of the challenges arising from model

identifiability and from the expert choices necessary for approximate inference, using the

relatively simple, yet analytically intractable model of Tanaka et al. (2006) for the trans-

mission dynamics of M. tuberculosis . It is reasonable to assume that these problems persist

for more complex transmission models, unless molecular and epidemiological data are de-

tailed enough to mitigate their effect.

Due to the intractability of the transmission model, an approximate inference approach

was used, belonging to the framework of “approximate Bayesian computation” (ABC), which

relies on a distance measure gauging similarity between observed and simulated data. An

alternative approach has been presented by Stadler (2011) based on likelihood and Markov

chain Monte Carlo (MCMC). Also in this approach, the model has an analytically intractable

likelihood function meaning that the probability of the observed data as a function of the
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parameters of interest is not available in closed form. The reason for the intractability is

the presence of unobserved variables (forming the transmission tree in her model), which are

integrated out using MCMC. While feasible for a small number of variables, this technique

runs into problems when the number of unobserved variables is large (see e.g. Green et al.

2015). The problems manifest themselves in the form of increased convergence issues of

the Markov chain. Aandahl et al. (2014) resolved such issues in the approach of Stadler

(2011) but concluded that the ABC method has a similar accuracy and better computational

efficiency than the amended version.

In all of the tests comparing distance measures in ABC, the generalized Kullback-Leibler

distance measure attained lower or equal estimation error compared to the baseline mea-

sure introduced by Tanaka et al. (2006), suggesting that one can reduce the estimation

error to some degree by the choice of the distance measure only (see also Fearnhead and

Prangle 2012). A possible disadvantage of the approach with the generalized Kullback-

Leibler distance is a slight increase in computational cost. Although not an issue in our

study where the computational bottleneck was the simulator, it may be an issue when the

inference procedure is repeated for a large number of data sets, or when the simulation of the

data is not computationally expensive. While the measure used by Tanaka et al. (2006) has

some clear biological meaning, the generalized Kullback-Leibler distance is based on a more

general information-theoretical construction. The observed increase in the performance is

thus interesting, because in ABC, distances are usually strongly based on application-specific

knowledge even though some exceptions do exist (Gutmann et al. 2014).

Our explicit construction of the approximate likelihood function put on display the diffi-

culties in the estimation of R when inferring both the reproductive value R and the transmis-

sion rate t (Tanaka et al. 2006; Blum 2010). The credible intervals for R were (1.4, 38.0) or

(9.5, 80.0) when using a uniform prior over the (α, δ) or (R, t) space, respectively. The large

upper end points of the credible intervals reflect the extreme flatness of the approximate

likelihood function with respect to the reproductive value parameter. An uninformative
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prior over the (α, δ) space has been, to our knowledge, the standard choice in all of the

related ABC studies. Comparing the posterior with the approximate likelihood function

shows how significantly the prior contributed to the posterior, altering the shape of the like-

lihood function greatly. The results highlight the usefulness of likelihood approximation as

an identifiability check when performing inference for models with intractable likelihoods.

A uniform prior is usually considered uninformative so that it may seem paradoxical that

the prior had such a strong influence on the posterior. The apparent paradox is readily

resolved by noting that the uniform prior was not imposed on the actual epidemiological

quantities of interest but on a nonlinear transformation of them.

The standard assumption in the previous ABC studies concerned with the Tuberculosis

data from San Francisco (Small et al. 1994) has been that the infectious population size

m equals 10, 000 individuals. We showed that the infectious population size influences the

estimation of R, with the estimate of R increasing with m. Assuming m = 10, 000, the pos-

terior mean was R̂ = 1.9. Smaller assumed population sizes m = 1000 and m = 5000 yielded

smaller estimates R̂ = 1.1 and R̂ = 1.6, respectively, while larger assumed population size

m = 20, 000 increased the estimate to R̂ = 2.2. The corresponding likelihoods (proportional

to posterior distributions with uniform prior) with varying m were clearly distinct from each

other as visible in Figure 3.

Taking advantage of the dependency between R and m, we showed that it is possible

to estimate the infectious population size m when R and δ are known. Using the estimate

δ = 0.52 (Aandahl et al. 2014) and assuming either R = 2.1 or R = 1.1, the posterior

means of m were 21, 100 or 2100, respectively, for the San Francisco data of Small et al.

(1994). Further biological expertise can be used to assess the reasonability of different

inferred population sizes in a comparable modeling setting.

We noticed that for small values of m, the generative model was unable to produce data

with a similar number of distinct alleles as the San Francisco data while containing also large

clusters, supporting the observation of Tanaka et al. (2006) that m = 1000 does not result
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in an appropriate level of diversity. In the San Francisco data, large clusters were present

originating from groups of people with conditions affecting the immune system, e.g. AIDS.

Among such groups the transmission rate of M. tuberculosis can be expected to be notably

higher and thus rapidly producing large clusters. The simple model, however, does not ac-

count for these situations. In future work it would be interesting to consider approximate

inference for models with possibly heterogeneous reproductive values that depend on auxil-

iary epidemiological data (Bacaër et al. 2008). However, given the apparent identifiability

issues with the simple model studied here, it would be of utmost importance to ensure that

the molecular and epidemiological data are jointly informative enough to perform reliable

inferences.
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APPENDIX A

Stabilization of the approximate likelihoods:
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(a) Tanaka distance measure
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(b) GKL distance measure

Figure 5: Stabilization (convergence) of the approximate marginal likelihoods for de-

creasing thresholds. The thresholds εqi were obtained from the quantiles (q1, q2, q3, q4) =

(0.001, 0.0001, 0.00005, 0.000025) of the distribution of the distances.
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APPENDIX B

Mean and median absolute errors:
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Figure 6: Mean (solid lines) and median (dotted lines) errors of the approximate maximum

likelihood estimates with the three different distance measures dbase (blue lines), dsim (red

lines), dGKL (purple lines) and a decreasing threshold ε given by the p-quantile. The error is

the L1 distance between Rs and R̂, that is, |Rs − R̂|.

The rather large difference between the mean and median errors of R in Figure 6 indicates

that there are some large errors which pull the mean error up. This is mostly due the tendency

of R = α/δ to be large when the estimate of the death rate δ is small. Although the errors

for R in Figure 6 are large, the small errors in Figure 7 indicate that the estimation of
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the transmission rate t can still be done accurately and is not affected by the error-prone

estimate of R.
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Figure 7: Mean and median errors of the approximate maximum likelihood estimate of t.

Visualization is as in Figure 6. The error is the L1 distance between ts and t̂, that is, |ts− t̂|.

Absolute errors in the rate parameter space:

We noticed a general tendency of acquiring small estimates of δ irrespective of the setup.

This is a plausible reason for the slightly reduced errors in Figure 8 (a) compared to the

other setups as δ∗ is the smallest in that setup.
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Figure 8: Mean and median errors in the estimated φ = (α, δ). Visualization and setup is

as in Figure 6. The error is the L1 distance between the vectors φ∗ and φ̂.
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APPENDIX C

Transformed uniform prior:

Figure 9: Visualization of the logarithm of the prior in Equation 5 corresponding to the

uniform prior on (α, δ). Note the concentration of probability mass on small R.
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