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Abstract

Understanding the transmission dynamics of infectious disease is important for both biologi-

cal research and public health applications. It has been widely demonstrated that statistical

modeling provides a firm basis for inferring relevant epidemiological quantities from inci-

dence and molecular data. However, the complexity of transmission dynamic models causes

two challenges: Firstly, computationally intensive simulation-based inference methods need

to be employed. Secondly, the model may not be fully identifiable from the available data.

While the first difficulty can be tackled by computational and algorithmic advances, the

second obstacle is more fundamental. Identifiability issues may lead to inferences which are

more driven by the prior assumptions than the data themselves. Moreover, problems with

identifiability may be hard to recognize, in particular when simulation-based inference meth-

ods are used. We here consider a popular and relatively simple, yet analytically intractable

model for the spread of tuberculosis based on classical IS6110 fingerprinting data. We report

on the identifiability of the model, presenting also some methodological advances regarding

the inference. It is shown that the model does not allow for accurate inference about the

reproductive value, and that the posterior distributions obtained in previous work have likely

been substantially dominated by the assumed prior distribution. It is further shown that

the inferences are influenced by the assumed infectious population size, which has generally

been kept fixed in previous work. We demonstrate that the infectious population size can

be inferred if the remaining epidemiological parameters are already known with sufficient

precision.
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Statistical models for transmission dynamics are very widely employed to answer fun-

damental questions about infectivity of bacteria and viruses, and to make predictions for

intervention policies, such as vaccines, de-colonization and case containment. For some

types of infectious disease, the complexity of the transmission process and the correspond-

ing model, combined with the characteristics of the available data, make the inference an

intricate task. A particular difficulty arises from the need to use computationally intensive

methods. Examples include the work by Tanaka et al. 2006; Sisson et al. 2007; Stadler

2011; Fearnhead and Prangle 2012; Del Moral et al. 2012; Baragatti et al. 2013,

who considered the transmission dynamics of Mycobacterium tuberculosis based on IS6110

fingerprinting data from tuberculosis (M. tuberculosis) cases in San Francisco, reported ear-

lier by Small et al. (1994). Except for Stadler (2011), who proposed a likelihood-based

inference scheme, the above-mentioned studies employed and improved an approximate in-

ference technique known as approximate Bayesian computation (ABC), which was originally

introduced by Tavaré et al. (1997).

Although the estimation of epidemiological parameters of M. tuberculosis with the model

of Tanaka et al. (2006) has been widely studied, important open issues still remain. Only

more recently, for instance, Aandahl et al. (2014) reconciled a major difference in the

estimates of the reproductive value R between the ABC approach of Tanaka et al. (2006)

and the method of Stadler (2011). In order to accomplish this, Aandahl et al. (2014)

simplified the inference task by either providing an informative prior for the death rate δ or,

alternatively, by setting it to a fixed value. The need of using such prior knowledge in the

inference indicates that the model may not be fully identifiable.

We here address the reliability of the ABC estimates by evaluating the accuracy of the

approximate inference method and the influence of the prior, for genotype data of the kind

available from the San Francisco study (Small et al. 1994). As the above-mentioned studies

have assumed a fixed infectious population size of 10, 000 for the data, we further investigate

how this choice influences the estimation of the epidemiological parameters, and whether it is
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possible to infer the population size from this kind of genotype data without access to more

extensive surveillance data about incidence. Since comparable data are widely considered for

many different kinds of bacteria, the issue of model identifiability is of wider general interest

beyond the particular case discussed here.

MODELS AND METHODS

Model for disease transmission: The model considered in the paper is a linear birth-

death process with mutations (BDM) introduced by Tanaka et al. (2006). The process

model is defined as follows: Each infected individual, hereafter host, carries the pathogen

characterized by an allele at a single locus of its genome. The host transmits the pathogen

and the corresponding allele with rate α, and dies or recovers with rate δ. For simplicity we

call α the birth rate and δ the death rate. In addition, the pathogen mutates within the host

with rate τ , resulting each time in a novel allele in the population of hosts (infinite alleles

model). When simulating the process, one begins with a single host and stops when either

the population of hosts X reaches a predetermined size m or the pathogen goes extinct. The

observation model assumes sampling of n < m hosts from X without replacement. It has

been earlier noted by Stadler (2011) that due to the time scaling of the model, at least one

of the rate parameters must be fixed. As in the earlier studies, we use a time scale of one

year and fix the mutation rate to τ = 0.198 per year throughout the experiments. Likewise,

the infectious population size m is set to 10, 000 unless otherwise stated.

The epidemiological parameters of interest in this study are the reproductive value R

and the net transmission rate t. In addition, we will consider inference of the underlying

infectious population size m given some estimate of R and t. In what follows, we will often

use θ to denote the tuple (R, t). The epidemiological parameters R and t are in a one-to-one

correspondence to the event rate parameters of the BDM process: R = α/δ, t = α− δ, and

δ = t/(R− 1), α = tR/(R− 1).

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2015. ; https://doi.org/10.1101/021972doi: bioRxiv preprint 

https://doi.org/10.1101/021972


Data: The alleles of the pathogen carried by the n sampled hosts are summarized in form

of the allele vector a = (a1, a2, . . . , an) ∈ Nn, where element ai is equal to the number of

allele clusters of size i present in the sample. An allele cluster is a set of hosts having the

same allele of the pathogen, and its size is the number of hosts which belong to the cluster.

For example, the vector a = (4, 0, 1) implies that there are four singleton clusters and one

cluster with three hosts in the sample. In other words, there are four different alleles each

found in only one host and one allele shared by three hosts. The size of a is defined as the

sample size n, which can be written in terms of a as n =
∑

i iai.

For inference of the parameters, as in Tanaka et al. (2006), we used the San Francisco

data of Small et al. (1994) which consists of an allele vector a∗ of size n = 473. Its nonzero

elements are a∗1 = 282, a∗2 = 20, a∗3 = 13, a∗4 = 4, a∗5 = 2, a∗8 = 1, a∗10 = 1, a∗15 = 1, a∗23 = 1,

and a∗30 = 1.

Inference method: The likelihood function plays a central role in statistical inference. But

for the model considered in this paper, it cannot be expressed analytically in closed form

(Tanaka et al. 2006). Tanaka et al. (2006) thus used approximate Bayesian computation

(ABC) for the inference. We here approximate the likelihood function using kernel density

estimation with a uniform kernel and a distance measure d, an approach which is related

to ABC but which makes explicit its inherent approximations (Blum 2010; Gutmann and

Corander 2015).

For a fixed value of m, the likelihood function L(θ) is approximated as L(θ) ≈ L̂Nd,ε(θ),

L̂Nd,ε(θ) ∝
1

N

N∑
i=1

χε
(
d(a(i), a∗)

)
, (1)

where χε(d) is an indicator function which equals one if the distance d is less than a threshold

ε and zero otherwise, a(i) is an allele vector simulated using parameter θ, and N is the number

of such simulations performed (Gutmann and Corander 2015). The distance d(a, a∗) is

a non-negative function which measures the similarity between the simulated allele vector
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a and the observed allele vector a∗. Possible choices of d are discussed below. Equation

1 means that the likelihood is approximated by the fraction of times the simulated allele

vector a is within distance ε from the observed allele vector a∗. The approximate likelihood

function for inference of the population size m for fixed θ is defined in an analogous manner.

While there are several variants of the inference procedure of ABC, they are essentially

built out of sampling candidate parameter values θ and retaining those for which the distance

d(a, a∗) is less than the threshold ε. Under certain conditions, the retained parameters

correspond to samples from the posterior. In ABC, the approximate likelihood is generally

never explicitly constructed. While this can be advantageous in some cases, it can also

mask the influence of the prior on the posterior. In our approach, on the other hand, using

Equation 1, we are able to disentangle the contribution of the approximate likelihood and

the prior to the posterior. This is important because the approximate likelihood provides

information about the identifiability of the parameters.

Since the parameter space is low-dimensional, we can evaluate the approximate likelihood

function by varying the parameters on a grid. Several grids were created based on the

different inference tasks considered. For inference of θ, we formed a 121× 137 evenly spaced

grid over a subspace ∆α × ∆δ = [0.3, 2] × [2, 1.5] of the (α, δ) BDM parameter space. At

each node of the grid, N = 3000 allele vectors were simulated to approximate the likelihood.

For inference of the population size m, we used a grid with N = 30, 000 simulated allele

vectors in each node. The amount of simulated data was selected to ensure the stability of

the likelihood approximations. Results for the stabilization of the marginal likelihoods are

shown in Appendix A. All of the grids were found to cover the relevant parameter values for

the data used in this paper.

Distance measures used to approximate the likelihood: The likelihood approxima-

tion in Equation 1 relies on a distance measure d(a, a∗) between the observed sample a∗ and

the sample a produced by the simulation process with the parameter vector θ. Consequently,
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different distance measures may lead to different estimation results, depending on how much

information about the generating process they are able to capture from the data. It is thus

natural to ask which distance measures would be optimal for a model of the type considered

here.

In the limit of ε→ 0 and N →∞, one can easily define distance measures d(a, a∗) which

lead to exact likelihoods L(θ). The only requirement is that d(a, a∗) = 0 if and only if a = a∗.

In practice, however, too small thresholds ε and a very large number of simulations N are

computationally not feasible. Therefore one has to rely on likelihood approximations L̂d,ε(θ)

dictated by the distance measure d, a non-zero threshold value ε and a finite N .

Given a fixed number of simulations N , differences in the quality of the approximations

arise from the ability of the distance measures d to produce approximate likelihood func-

tions which are as close as possible to L(θ). Because the likelihood L(θ) is unknown in the

first place, the evaluation of the approximations is challenging. One method to evaluate

the goodness of an approximate likelihood function is to measure the goodness of the corre-

sponding estimates using synthetic observed data as where the data generating parameters

θs are known. In particular, the mode of the likelihood approximation should, on average,

be near θs if the sample as is in general informative enough.

In this study, we evaluate the performance of three different distance measures. The

baseline distance measure is the one introduced by Tanaka et al. (2006) and is defined as

dbase(a, a
′) =

1

n
|ga − ga′|+ |Ha −Ha′|, (2)

where ga =
∑

i ai is the number of distinct alleles in a and Ha = 1 −
∑

i ai(i/n)2 is a gene

diversity measure.

The second distance measure called “simple” is defined as

dsim(a, a′) = |a1 − a′1|+ |Ma −Ma′ |, (3)

where a and a′ are allele vectors and Ma = max {i|ai 6= 0} is the largest cluster size in a.

This measure compares the number of singleton clusters in the sample and the sizes of the
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largest clusters. It can be seen as a simplified version of the baseline distance measure by

excluding some information.

The third distance measure considered is a generalized Kullback-Leibler divergence

dGKL(fa, fa′) =

∫
fa(x) [log fa(x)− log fa′(x)]dx−

∫
fa(x)dx+

∫
fa′(x)dx, (4)

where fa : R → R is a smoothed continuous function which approximates a in the discrete

locations i, that is, fa(i) ≈ ai. The idea is to consider vectors a and a′ as unnormalized

probability vectors of cluster sizes and to compare their distribution while allowing small

differences in the number of clusters of similar size. Unlike in the usual Kullback-Leibler

divergence, fa and fa′ can be unnormalized, that is, they do not need to integrate to one. The

generalized Kullback-Leibler divergence above belongs to the family of Bregman divergences

(Bregman 1967) which have been shown to have a number of desirable properties and

useful applications (see for example Collins et al. 2002; Frigyik et al. 2008; Gutmann

and Hirayama 2011).

RESULTS

Evaluations of the distance measures: In order to compare the performance of the

alternative distance measures dsim and dGKL to the baseline distance measure dbase in like-

lihood approximation, the difference ∆error between the relative errors in their respective

estimates was computed. A value ∆error > 0 indicates that the relative error is larger for the

baseline compared with the alternative method, in which case the alternative method would

be preferable.

The relative error was defined as
∑

i(|θsi − θ̂i|/θsi ), where θs is the true generating param-

eter used to simulate the synthetic data as, and θ̂ is the estimate obtained by maximizing

the approximate likelihood. Maximization was performed in a simple way, by searching for

the maximal value over the two-dimensional grid.

In total 50 simulated sets of observations as with a known generating parameter θs were

used in three different setups. In the first setup, the value of θs was set to the estimate
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(0.69, 3.4) of Tanaka et al. (2006). As we were also interested to see if the values of the

actual epidemiological parameters had an effect on the estimation accuracy, we considered

two alternative values for θs. In the first alternative, we doubled the reproductive value R,

and in the second, both the transmission rate t and the reproductive value R were divided

by two.

Figure 1 shows the resulting distribution of ∆error for the comparison between dsim and

dbase (blue curve), and the comparison between dGKL and dbase (red curve). The simple

distance measure performs slightly worse than the baseline although the difference is not

significant in any of the setups (the null hypothesis of a zero mean of ∆error cannot be

rejected). This means that reducing the distance measure dbase of Tanaka et al. (2006) to

the simpler dsim does not cause a notable reduction in estimation accuracy. The generalized

Kullback-Leibler distance dGKL, on the other hand, performs slightly better than the baseline

and the difference is significant in the last setup (the zero mean hypothesis of ∆error can be

rejected at the p-value 0.0303). It should nevertheless be noted that the absolute errors tend

to be rather large with all of the distance measures in this last setting as shown in Appendix

C.

Since dGKL was found to perform at least as well as the other measures, it was used in

the remaining parts of the paper unless stated otherwise. Furthermore, we will for simplicity

often drop the qualifier “approximate” and use “approximate likelihood” and “likelihood”

interchangeably.
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Figure 1: The distribution of the difference ∆error between the relative estimation errors

for the baseline and two alternative distance measures. A positive value of ∆error indicates

better performance of the alternative method. The intervals at the top show the estimated

mean and the 95% confidence interval.

Effect of the prior: The simulator operates genuinely in the (α, δ) space, where α and δ

are the birth rate and the death rate in the model. Accordingly, all of the studies so far

have assumed a uniform prior for the region 0 < δ < α in the Bayesian framework. As the

objective is to provide estimates for the epidemiological parameters t and R, it is important

to understand the effect of this prior choice to the estimates.

The law of transformation of random variables implies that choosing a uniform prior for

(α, δ) is equivalent to choosing the following prior for (R, t),

p(R, t) ∝


t

(R−1)2 if R > 1, t > 0

0 otherwise.

(5)

The prior is visualized in Appendix B. The formula and the figure show that its probability

mass is concentrated on small values of the reproductive value R.

We show next that the prior in Equation 5, equivalent to the the uniform prior for (α, δ),

has a substantial impact on the posterior distribution of the epidemiological parameters t

and R for the San Fransisco data of Small et al. (1994). Figure 2 visualizes the difference

in shape between the likelihood and the posterior distribution in a rectangular support
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1.2 < R < 80 and 0.4 < t < 0.7. It can be seen that the uniform prior for (α, δ) leads to a

substantial shift of the probability mass towards the lower end of values of R. The difference

between the modes of the likelihood and the posterior is striking: R = 50.6 versus R = 2.7

as shown in Table 1. The table also shows the posterior means and credible intervals for

the case that the likelihood is interpreted as the posterior distribution with a uniform prior

in the (R, t) space. It should be noted that the upper value of the credible intervals for R

is an artifact of limiting our computation to values of R less than 80. The shape of the

likelihood in Figure 2 (a) suggests that computations with larger values of R would lead to

a corresponding increase of the credibility intervals.

(a) Likelihood (b) Posterior with uniform prior in (α, δ) space

Figure 2: Likelihood and posterior distribution when using a uniform prior in the (α, δ)

space. The red cross denotes the mode. Note the different scales of the y-axes.

Effect of the infectious population size: The previous sections suggest that data of the

kind considered in the San Francisco study do not carry enough information for accurate

inference of R, but that the prior plays a major role. To make the inference of R possible,

Aandahl et al. (2014) fixed the death rate to δ = 0.52, a value obtained by summing

the rates of self cure, death from causes other than tuberculosis and death from untreated

tuberculosis as estimated in other studies. Moreover, as to our knowledge in all of the other

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2015. ; https://doi.org/10.1101/021972doi: bioRxiv preprint 

https://doi.org/10.1101/021972


Prior Parameter Mode Mean Credible Interval (95%)

Uniform prior in (t, R) R 50.6 44.1 (9.5, 80.0)

t 0.59 0.59 (0.51, 0.67)

Uniform prior in (α, δ) R 2.7 10.5 (1.4, 39.0)

t 0.52 0.56 (0.46, 0.66)

Table 1: Effect of the prior on the posterior mode, mean, and credible interval of the epi-

demiological parameters of M. tuberculosis for the San Francisco data.

relevant studies, an infectious population size m of 10, 000 individuals was assumed. We

were thus interested in whether reducing the infectious population size to a smaller, possibly

more realistic number has an influence on the estimated value of R. To ease the comparison

with previous studies, we used the distance dbase in the likelihood approximation.

Figure 3 shows the likelihoods of R for m = 1000 and m = 10, 000 using the San Francisco

data (Small et al. 1994) and δ = 0.52. The difference in location of the likelihoods is clear

with modes at 1.1 for m = 1000 and 1.9 for m = 10, 000 (posterior means assuming uniform

prior were the same). Therefore the assumed infectious population sizem affects the inference

of R.
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Figure 3: Likelihoods of the reproductive value R with fixed death rate δ = 0.52 and two

alternative population sizes m using the San Francisco data. The vertical lines indicate the

modes of the likelihoods.

Inference of the infectious population size: The observed effect of the infectious popu-

lation size m on the inference of R means that there is some (statistical) dependency between

m and R. This suggests that it might be possible to infer the size of the underlying infectious

population from the data when R and δ are known. Alternatively, due to the relationship

between the parameters, knowing any two of α, δ, R or t would be sufficient.

We fixed δ = 0.52 as earlier and considered two alternative configurations: R = 2.1 and

R = 1.1. The former is also the estimate of Aandahl et al. (2014). To test whether inference

of the infectious population size parameter is possible, we run 50 trials with synthetic data

as before, and determined each time the maximizer of the approximate likelihood on the

grid. Table 2 shows the results of these experiments: The estimated population sizes are

reasonable, and the actual population size m is covered by the 95% confidence interval of

the mean in all but one of the cases. Only in the last case, the true m is just barely outside

of the interval. These results thus illustrate that estimation of m is possible, provided that

reliable information is available about the other epidemiological parameters.
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m m̄ CI (95%)

R = 2.1 1000 1051 (990, 1112)

10000 10020 (9380, 10660)

R = 1.1 1000 1007 (976, 1038)

10000 10510 (10003, 11017)

Table 2: Mean estimated population size m̄ for 50 trials and the respective confidence interval

(CI) under two alternative configurations of R and population size m. Death rate was fixed

to δ = 0.52. Results are for synthetic data.

We next estimated the infectious population size for the M. tuberculosis in San Francisco

area during the time the data of Small et al. (1994) were collected. Figure 4 shows the

likelihood functions, given by two alternative configurations of R (with δ = 0.52 as before).

Assuming R = 1.1 produced the posterior mean m̂ = 2150 and the 95% credible interval

(1302, 3300) with uniform prior over m. Alternatively, assuming R = 2.1 in turn produced

the posterior mean m̂ = 21, 900 and the 95% credible interval (14640, 29770).
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Figure 4: Likelihoods of population size m with fixed death rate δ = 0.52 and two alternative

values of R using the San Francisco data. The vertical lines indicate the modes of the

likelihoods.
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DISCUSSION

Statistical inference plays an important role in the study of the transmission dynamics of

infectious disease. In this paper, we considered some of the challenges arising from model

identifiability and from the expert choices necessary for approximate inference, using the

relatively simple, yet analytically intractable model of Tanaka et al. (2006) for the trans-

mission dynamics of M. tuberculosis . It is reasonable to assume that these problems persist

for more complex transmission models, unless molecular and epidemiological data are de-

tailed enough to mitigate their effect.

Due to the intractability of the transmission model, an approximate inference approach

was used, belonging to the framework of “approximate Bayesian computation”, which relies

on a distance measure gauging similarity between observed and simulated data. In all of

the tests we performed, the generalized Kullback-Leibler distance measure attained lower

or equal estimation error compared to the baseline measure introduced by Tanaka et al.

(2006), suggesting that one can reduce the estimation error to some degree by the choice of

the distance measure only (see also Fearnhead and Prangle 2012). While the measure

used by Tanaka et al. (2006) has some clear biological meaning, the generalized Kullback-

Leibler distance is a more general information theoretical construction. The observed increase

in the performance is thus interesting, because in ABC, distances are usually strongly based

on application-specific knowledge even though some exceptions do exist (Gutmann et al.

2014).

Investigation of the likelihood suggests that the estimation of R is difficult when inferring

both the reproductive value R and the transmission rate t. The credible intervals for R

were (1.4, 38.0) or (9.5, 80.0) when using a uniform prior over the (α, δ) or (t, R) space,

respectively. The large upper end points of the credible intervals reflect the extreme flatness

of the approximate likelihood function with respect to the reproductive value parameter.

The uniform prior over the (α, δ) space was, to our knowledge, the standard choice in all of

the studies with a related setting, and we showed that it has a substantial impact on the
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posterior, altering the shape of the likelihood significantly. In previous work, this has likely

remained unobserved because unlike in our work, the approximate likelihood function was

not explicitly constructed. Our study thus highlights the importance of using identifiability

checks when performing inference for models with intractable likelihoods.

A uniform prior is usually considered uninformative so that it may seem paradoxical that

the prior had such a strong influence on the posterior. The apparent paradox is readily

resolved by noting that the uniform prior was not imposed on the actual epidemiological

quantities of interest but on a nonlinear transformation of them.

The standard assumption in previous studies was that the infectious population size m

equals 10, 000 individuals. We showed that the infectious population size influences the

estimation of R; for m = 10, 000, the posterior mean R̂ = 1.9 was well within the credible

interval (1.54, 2.66) reported by Aandahl et al. (2014). For m = 1000, we obtained instead

an estimate R̂ = 1.1 which is clearly outside that credible interval.

Taking advantage of the dependency between R and m, we showed that it is possible

to estimate the infectious population size m when R and δ are known. Using the estimate

δ = 0.52 (Aandahl et al. 2014) and assuming either R = 2.1 or R = 1.1, the posterior

means of m were 21, 900 or 2100, respectively, for the San Francisco data of Small et al.

(1994). Further biological expertise can be used to assess the reasonability of different

inferred population sizes in a comparable modeling setting.

We noticed that for small values of m, the generative model was unable to produce data

with a similar number of distinct alleles as the San Francisco data while containing also large

clusters. In the San Francisco data, large clusters were present originating from groups of

people with conditions affecting the immune system, e.g. AIDS. Among such groups the

transmission rate of M. tuberculosis can be expected to be notably higher and thus rapidly

producing large clusters. The simple model, however, does not account for these situations.

In future work it would be interesting to consider approximate inference for models with

possibly heterogeneous reproductive values that depend on auxiliary epidemiological data.
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However, given the apparent identifiability issues with the simple model studied here, it

would be of utmost importance to ensure that the molecular and epidemiological data are

jointly informative enough to perform reliable inferences.
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APPENDIX A

Stabilization of the approximate likelihoods:
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(b) GKL distance measure

Figure 5: Stabilization (convergence) of the approximate marginal likelihoods for de-

creasing thresholds. The thresholds εqi were obtained from the quantiles (q1, q2, q3, q4) =

(0.001, 0.0001, 0.00005, 0.000025) of the distribution of the distances.
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APPENDIX B

Transformed uniform prior:

Figure 6: Visualization of the logarithm of the prior in Equation 5 corresponding to the

uniform prior on (α, δ). Note the concentration of probability mass on small R.
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APPENDIX C

Mean and median absolute errors:
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Figure 7: Mean (solid lines) and median (dotted lines) errors of the approximate maximum

likelihood estimates with the three different distance measures dbase (blue lines), dsim (red

lines), dGKL (purple lines) and a decreasing threshold ε given by the p-quantile. The error is

the L1 distance between the vectors θs and θ̂, that is, |θs1 − θ̂1|+ |θs2 − θ̂2|.

The rather large difference between the mean and median errors in Figure 7 indicates that

there are some large errors which pull the mean error up. This is mostly due the tendency of

R = α/δ to be large when the estimate of the death rate δ is small. The parameter values in

Figure 7 (c) correspond to a larger death rate than in (a) and (b). This seems to significantly
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decrease the error, possibly because the generating parameter δ is further away from zero.

Although the total errors in Figure 7 are large, the small errors in Figure 8 indicate that the

estimation of the transmission rate t can still be done accurately and is not affected by the

error-prone estimate of R.
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Figure 8: Mean and median errors of the approximate maximum likelihood estimate of t.

Visualization is as in Figure 7. The error is the L1 distance between ts and t̂, that is, |ts− t̂|.
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APPENDIX D

Absolute errors in the rate parameter space:
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Figure 9: Mean and median errors in the estimated φ = (α, δ). Visualization and setup is

as in Figure 7. The error is the L1 distance between the vectors φ∗ and φ̂.

We noticed a general tendency of acquiring small estimates of δ irrespective of the setup.

This is a plausible reason for the slightly reduced error in Figure 9 (b) compared to the other

setups as δ∗ is the smallest in that setup.
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