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Abstract.

DNA methylation is an epigenetic modification, influenced by both genetic and environmental

variation, that can affect transcription and many organismal phenotypes. Although patterns

of DNA methylation have been shown to differ between human populations, it remains to be

determined whether epigenetic diversity mirrors the patterns observed for DNA polymorphisms

or gene expression levels. We measured DNA methylation at 480,000 sites in 34 individuals

from five diverse human populations in the Human Genome Diversity Panel, and analyzed these

together with single nucleotide polymorphisms (SNPs) and gene expression data. We found

greater population-specificity of DNA methylation than of mRNA levels, which may be driven

by the greater genetic control of methylation. This study provides insights into gene expression

and its epigenetic regulation across populations and offers a deeper understanding of worldwide

patterns of epigenetic diversity in humans.

Keywords: Illumina HumanMethylation450K Array; DNA methylation; RNA-seq; HGDP;

PCA; population specificity; human diversity
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Introduction.

Human evolutionary history has left a strong signature on worldwide patterns of genetic variation

(Cavalli-Sforza et al., 1994; Li et al., 2008; Novembre et al., 2008). Principal component analyses

and related methods have been instrumental in revealing how the genetic diversity of individuals

varies within and across populations in exhibiting population stratification and admixture. The

first two principal components of a single nucleotide polymorphism (SNP) genotype matrix

are often sufficient to compare the ancestries of different populations and to show how genetic

similarity between populations varies with geographic distance (Jakobsson et al., 2008; Li et al.,

2008; Ramachandran et al., 2005; Rosenberg et al., 2005; Price et al., 2006).

Here we ask whether this evolutionary history has left similar traces on worldwide patterns

of epigenetic variation. The epigenome is situated at the interface between the genome and

the environment, and their interactions may underlie the role of epigenetics in adaptation to

the environment and other complex phenotypes. However, our understanding of the global

epigenomic and transcriptomic diversity across human populations is far from complete (Heyn

et al., 2013; Fraser et al., 2012; Martin et al., 2014) . Does epigenetic diversity exhibit signatures

of human evolutionary history and do these signatures mirror the patterns of genetic variation?

The relationship between the geographic patterns of ancestry in genomic and epigenomic

variation is still uncharacterized in studies of genome-wide methylation in different human pop-

ulations (Heyn et al., 2013; Fraser et al., 2012); however PCA on DNA methylation data from

two populations did show partial separation (see Moen et al. (2013)). Previous studies aimed

at understanding the patterns of diversity in gene expression levels have found that, unlike

genotype-based PCA plots, PCs of expression data do not cluster by geographic location, and

population ancestry cannot be determined using mRNA levels alone (see, for example, Stranger

et al. (2012), Martin et al. (2014)).

Here, we analyze data on SNPs, CpG methylation levels and transcriptional variation (mRNA
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levels) for the same individuals from five different populations. These populations are among the

Centre d’Etude du Polymorphisme Humain/Human Genome Diversity Panel (CEPH-HGDP)

populations and span the breadth of human migration history (Cann et al., 2002). Using this

dataset, we compare the population specificity of the methylome and the transcriptome and

study the correspondence between predefined population groups with those inferred from indi-

vidual multi-locus genotypes and epigenotypes.

We find that DNA methylation and gene expression patterns of variation closely resemble

the geographic population relationships inferred from the patterns of genomic variation. Small

levels of differentiation between individuals at a large number of methylated sites are sufficient to

cluster them into different groups that coincide with their ancestral origins. Moreover, we find

that greater population specificity for the methylome than the transcriptome may be driven

by tighter genetic control of CpG methylation. This finding provides further clues as to the

contribution of the genome in shaping worldwide patterns of methylation and gene expression

variation. Although our understanding of the establishment and maintenance of epigenomic

variation is far from complete, these results provide a first resource for analyzing epigenetic

population specificity and its genetic determination.

Results.

Data. The data set comprises SNP, CpG methylation and mRNA sequencing information for 34

individuals from a sample of five of the CEPH-HGDP populations. The HGDP lymphoblastoid

cell lines (LCLs) have been used extensively to study patterns of genetic variation (Cann et al.,

2002; Rosenberg et al., 2002; Li et al., 2008). The five populations were chosen to capture differ-

ences in genetic diversity that stem from serial founder effects throughout human evolutionary

history (Ramachandran et al., 2005). The 34 individuals in the study include six Yakut, seven
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Cambodian, seven Pathan, seven Mozabite and seven Maya individuals. Geographic locations

of the samples were previously reported by Cann et al. (2002).

The genotype data used were previously reported (Li et al., 2008) and 644, 258 markers passed

our quality control filters and were kept for subsequent analyses. Genome-wide methylation

patterns were assessed using the Illumina 450K Methylation array (Sandoval et al., 2011) which

quantifies methylation at 480,000 CpG sites genome-wide. After extensive normalization and

quality control (see SI: Methods and Materials), the data used in the analyses here consist

of 317, 109 CpG sites. The mRNA data used consists of expression abundance levels determined

using cufflinks-2.0.2; the FPKM (fragments per kilobase of exon per million mapped reads)

estimates per transcript were previously reported in Martin et al. (2014).

Context of population genetic variation. Worldwide patterns of allele frequencies re-

flect geographic variation in demographic structure and adaptation to environmental differences

among different populations. Genetic variation has been shown to closely correspond to self-

identified groups or to geographically and linguistically similar populations (Cavalli-Sforza et al.,

1988; Ramachandran et al., 2005; Conrad et al., 2006; Jakobsson et al., 2008; Creanza et al.,

2015). This general agreement between genetic variation and geographic location has also been

extensively studied using the HGDP dataset (Rosenberg et al., 2002; Li et al., 2008).

The genetic context for the five populations used in this paper is provided in Figure 1.

Figure 1A shows the geographic locations of our samples, as previously reported in Cann

et al. (2002). We performed principal component analysis (PCA) on the identity-by-state (IBS)

genotype matrix to visualize the patterns of genetic variability. The first and second PCs explain

26% and 24% of the IBS variation, respectively, and clearly differentiate the individuals into five

well-separated clusters that correspond to the five populations sampled (Figure 1B). Even with

the limited sample size, the population structure revealed by the SNP frequencies is extremely

robust. To facilitate comparison between the genetic and epigenetic datasets we quantify the
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strength of the genomic PCA clustering by computing the Silhouette scores (Lovmar et al.

(2005) and SI: Methods and Materials) for the SNPs in the five populations as well as the

average Silhouette for the entire data set (Supplementary Figure S1). The Silhouette score

of an individual measures how similar it is to its own predefined population cluster, relative

to individuals in other clusters. The average Silhouette cluster score across all individuals is

a measure of how tightly the data can be assembled into population clusters. The average

Silhouette score for the genetic clustering presented in Figure 1B is 0.823. A tree generated

using hierarchical clustering also captures the genetic relationships between the individuals and

their populations (Figure 1C). The branching pattern of this tree agrees with the accepted

order of ancestral human expansion, consistent with the out of Africa hypothesis (Cavalli-Sforza

and Feldman, 2003; Ramachandran et al., 2005; Henn et al., 2012).

Population specificity of CpG methylation. We quantified patterns of population speci-

ficity at the methylation level and computed the number of CpG sites with DNA methylation

differences between the five different populations studied.

For every CpG site, we used the Kruskall-Wallis (K-W) test to quantify population difference,

assign p-values and identify CpG sites that are significantly differentially methylated between

the five different populations. Figure 2A shows that there exist significant differences in CpG

methylation between the five populations compared to the uniform p-value distribution that is

expected by chance (black line). We find 7084 CpG sites with a K-W p-value smaller than 0.01

(24% FDR), 321 CpG sites with a K-W p-value smaller than 0.001 (12% FDR) and four CpG

sites with a K-W p-value smaller than 0.0001 (3% FDR).

Using information on the genomic location of the CpG sites, we investigated how these

population differences might vary across different genomic regions (Figure 2B-D), correcting

for differences in the number of interrogated CpG sites across regions. We found that population

differences are enriched in CpG islands, which are promoter regions with high CpG content.
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These population-specific sites decrease in frequency in regions flanking the islands, the CpG

Shores and the CpG Shelves. Figure 2 also shows that population-specific sites are enriched in

gene bodies.

We replicated the results for the four CpG sites with K-W p-value smaller than 0.0001 by

pyrosequencing bilsufite-treated DNA. The results show excellent concordance between the K-W

p-values obtained using the Illumina array and those obtained by pyrosequencying (SI, Table

S1). The percentage methylation by array and by pyrosequencing is shown in Figures 2E-F.

The average differences in methylation as well as direction of level of CpG methylation across

the five populations are also conserved between the two measurements.

Structure of epigenetic population variation. We measured epigenetic divergence by com-

puting Pst, the phenotypic differentiation between populations (Pujol et al., 2008; Edelaar et al.,

2011; Leinonen et al., 2013), for methylation and expression sites across the genome. This mea-

sure is analogous to Fst (Weir and Cockerham, 1984), varies from 0 to 1, and estimates population

differentiation for quantitative traits. For a given epigenetic mark, Pst = σ2b/(σ
2
b + 2σ2w), where

σ2b is the between population variance and σ2w is the average within population variance (see SI:

Methods and Materials).

Selecting the top 0.5% of CpG sites that exhibit the highest population divergence in methy-

lation (i.e., the highest Pst values), we performed principal component analyses to assess patterns

of epigenetic variability between the five different populations. We repeated this analysis using

the same number of mRNA expression markers that exhibit the highest population divergence.

Using only the most differentiated markers, the methylation levels cluster individuals by pop-

ulation (Figure 3 left panel), and the clustering patterns are similar to those obtained from

SNP data. The mRNA expression data, presented in Figure 3, right panel, exhibits similar

clustering patterns. The CpG methylation Silhouette cluster score is higher than that for ex-

pression, as also observed from the average Silhouette scores (Silhouette plots are presented in
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Supplementary Figures S4 and S5. The results of an equivalent analysis using the markers

with the smallest K-W p-values are presented in Supplementary Figure S2. The Silhouette

cluster score as a function of number of the top markers used is presented in Supplementary

Figure S6. Using only a small number of population-specific epigenetic marks (CpG methy-

lation and mRNA expression marks) we recapture signatures of human evolutionary history on

world-wide population structures that were previously observed at the genetic level. The epi-

genetic similarity varies with geographic distance and is surprisingly consistent with previously

hypothesized human migration patterns out of Africa.

Drivers of the observed epigenetic population variation. The observed epigenetic dif-

ferences between populations could be caused by genetic or environmental variation, or a com-

bination of both. Since these data are from lymphoblastoid cell lines (LCLs) that were grown

in a controlled laboratory environment, the more likely driver of the observed differences is the

genetic background. For example, both CpG methylation and mRNA levels could be influ-

enced by between-population differences in allele frequencies at genetic variants that control the

epigenome. To investigate how much of the observed population specificity can be explained by

genetic variation, we first identified the local SNP (in a 200kb window from the CpG site, or the

transcription start site (TSS) for mRNA) most strongly associated with each of the top 0.5%

most variable CpGs or mRNA levels across all of our samples. We then performed an analysis of

variance including these single SNP genotypes for each of the epigenetic marks used in Figure

3 to assess whether the SNPs genotype or population was a stronger predictor of methylation

and expression (SI: Materials and Methods). We computed the average variance explained

by genotype versus the population label across all the markers used for the PCA in Figure 3.

We found that the sites with the highest degrees of population specificity were more strongly

associated with the local SNP than with population, and this local SNP explained a much higher

percentage of the variance than the population label (the SNP genotype explained 26% of the
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variance for methylation and 22% for expression, while the population label explained 6% for

methylation and 2% for expression). The higher Silhouette cluster score using CpG methylation

levels compared to mRNA expression levels might therefore be explained by a larger degree of

genetic control (Figure 3). This result also indicates that cell line artifacts are most likely not

responsible for the population specificity we observe since they would be unlikely to correlate

with the SNP genotypes (Fraser et al., 2012).

Discussion.

Characterization of the variability of the human epigenome is essential for investigating the

mapping from genotype to phenotype as well as the role of the epigenome in diseases. The es-

tablishment and maintenance of CpG methylation is controlled by many factors and the relative

importance of stable genetic control (Bell et al., 2011; Fraser et al., 2012; Gibbs et al., 2010;

Schalkwyk et al., 2010) versus plastic environmental influence (Breitling et al., 2011; Jirtle and

Skinner, 2007; Feil and Fraga, 2012) remains unclear. Similarly, transcriptional diversity reveals

both stable gene expression levels regulated by genetic variation (Zhang et al., 2008), as well as

associations with numerous environmental exposures (Jaenisch and Bird, 2003).

Using high resolution maps of genome-wide CpG methylation and RNA sequencing, we have

analyzed worldwide patterns of methylation and expression level variation across five populations

selected for their geographic diversity (Cavalli-Sforza and Feldman, 2003; Ramachandran et al.,

2005). Our data allow a characterization of human epigenetic variation and its comparison to

human genetic variation. While cell culture can induce epigenetic changes in LCLs, existing

variation between different individuals is typically preserved (Caliskan et al., 2011).

We used Principal Component Analysis (PCA) to explore the relative patterns of methyla-

tion and transcription diversity and compare them with genetic patterns of variation. Despite

their limitations for inferring the underlying causal processes that give rise to the PCA plot
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(Novembre and Stephens, 2008), they remain a useful tool for exploring and describing popu-

lation substructure in analyses of population genetic variation. The Silhouette scores for the

clustering of individuals in PC space is much higher for genetic data than those for epigenetic

data, however the patterns of variation across the five populations are preserved.

Epigenetic divergence across populations reveals higher population specificity of CpG methy-

lation than mRNA expression. Our results demonstrate stronger genetic control of inter-

population CpG methylation levels than of corresponding mRNA expression levels, with likely

downstream consequences. Because of the small sample size, we cannot provide an accurate

estimate of how much of the population-specific DNA methylation we observed is due to global

mSNPS (SNPs that control methylation levels (Bell et al., 2011; Fraser et al., 2012)), population

specific mSNPs, or differences in environment, including genotype-by-environment interactions.

Through the accumulation of small allele-frequency differences across many loci, previous

studies have identified geographic patterns from allele frequency variation among human popu-

lations (Rosenberg et al., 2005; Ramachandran et al., 2005). Understanding patterns of world-

wide human epigenetic diversity is also essential for understanding how population substructure

can shape the architecture of phenotypic traits. This epi-structure of human populations could

be particularly relevant in various medical contexts. Variation in both genetic and epigenetic

disease phenotypes, risk factors for different environmental exposures or differences in drug re-

sponse may depend on ancestry and be population specific (Jirtle and Skinner, 2007; Feinberg,

2007). Further thorough characterizations of worldwide human epigenetic variation will likely

prove to be informative for understanding the origins of human phenotypic variation.
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List of Figures

Figure 1. Context of genome-wide population structure. Panel A: the geographic lo-

cations of populations in the dataset. Panel B: PCA on SNP IBS matrix . The first

and second PCs explain 26% and 24% of the IBS variation, respectively, and clearly

differentiate the individuals into five well-separated clusters that correspond to the

five populations sampled. Panel C: A Hierarchical clustering tree also captures the

genetic relationships between the individuals and their populations.

Figure 2. Population specificity of CpG methylation. Panel A: Graph of Kruskal-

Wallis p-values for all CpG markers across all individuals in the five different pop-

ulations. The black horizontal line corresponds to the uniform p-value distribution

expected by chance. Differences based on different types of CpG regions are plotted

in Panels B, C and D. The CpG sites that exhibit population differentiation are

enriched in regions that are gene-associated, outside of genomic islands, and inside

gene bodies. Panels E and F: Comparison of percentage methylation by array

(E) and by pyrosequencing (F) for the top four CpG sites with highest population

specificity.

Figure 3. Structure of epigenome-wide population differences. Left: PCA using top

200 CpG sites with highest Pst values. Right: PCA using top 200 mRNA expression

sites with highest Pst values. Silhouette cluster scores and percentage of variance

explained by the genome versus the population tag are as presented.

Figure S1. Silhouette plots using SNPs. Average Silhouette score is 0.82.

Figure S2. PCA plots and hierarchical clustering trees using top 200 smallest Kruskal-

Wallis p-values for CpG methylation and mRNA expression markers.

Panel A: PCA plot using CpG methylation levels. Panel B: Hierarchical cluster-

ing tree using CpG methylation levels. Panel C: PCA plot using mRNA expression
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levels. Panel D: Hierarchical clustering tree using mRNA expression levels.

Figure S3. PCA plots and hierarchical clustering trees using top 200 largest Pst

values for CpG methylation and mRNA expression markers. Panel A:

PCA plot using CpG methylation levels. Panel B: Hierarchical clustering tree

using CpG methylation levels. Panel C: PCA plot using mRNA expression levels.

Panel D: Hierarchical clustering tree using mRNA expression levels.

Figure S4. Silhouette plots using the top methylation markers.

Figure S5. Silhouette plots using the top mRNA expression markers.

Figure S6. Silhouette cluster score as a function of number of markers used.

Figure S7. Clustering not due to a gender effect. PCA using top 200 CpG sites with

highest Pst values (same as Figure 3). Individuals are no longer labeled by popu-

lation, but by gender. The clustering patterns observed are therefore not driven by

a gender effect.
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Figure 2. Population specificity of CpG methylation. Panel A: Graph of
Kruskal-Wallis p-values for all CpG markers across all individuals in the five different
populations. The black horizontal line corresponds to the uniform p-value distribution
expected by chance. Differences based on different types of CpG regions are plotted in Panels
B, C and D. The CpG sites that exhibit population differentiation are enriched in regions that
are gene-associated, outside of genomic islands, and inside gene bodies. Panels E and F:
Comparison of percentage methylation by array (E) and by pyrosequencing (F) for the top
four CpG sites with highest population specificity.
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Figure S2. PCA plots and hierarchical clustering trees using top 200 smallest
Kruskal-Wallis p-values for CpG methylation and mRNA expression markers.
Panel A: PCA plot using CpG methylation levels. Panel B: Hierarchical clustering tree
using CpG methylation levels. Panel C: PCA plot using mRNA expression levels. Panel D:
Hierarchical clustering tree using mRNA expression levels.
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Figure S3. PCA plots and hierarchical clustering trees using top 200 largest Pst

values for CpG methylation and mRNA expression markers. Panel A: PCA plot
using CpG methylation levels. Panel B: Hierarchical clustering tree using CpG methylation
levels. Panel C: PCA plot using mRNA expression levels. Panel D: Hierarchical clustering
tree using mRNA expression levels.
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SI: Materials and Methods.

Samples. Individuals were selected from the HGDP-CEPH Human Genome Diversity Cell Line

Panel: 6 Yakut individuals, 7 Cambodian individuals, 7 Pathan individuals, 7 Mozabite indi-

viduals, and 7 Maya individuals. The geographic locations of these populations were previously

reported in Cann et al. (2002).

Silhouette scores. The Silhouette value for each point is a measure of how similar that

point is to points in its own cluster, when compared to points in other clusters. In our case,

the clusters are the populations. The Silhouette value for the i-th point, Si, is defined as

Si = (bi − ai)/max{ai, bi}, where ai is the average distance from the i-th point to the other

points in the same cluster as i, and bi is the minimum average distance from the i-th point to

points in a different cluster, minimized over clusters. The silhouette value ranges from −1 to 1

and a high Silhouette value indicates that i is well-matched to its own population, and poorly-

matched to neighboring populations. If most individuals have a high Silhouette value, then the

clustering solution is appropriate. If many individuals have a low or negative Silhouette value,

then the clustering solution may have either too many or too few populations. The Silhouette

clustering evaluation criterion was used with the Euclidean distance, but can be used with any

distance metric.

Genome-wide human DNA methylation data. DNA methylation measurements of bisulfite-

treated genomic DNA were performed with the HumanMethylation450 BeadChip assay (Illu-

mina, San Diego, CA, USA), quantifying methylation at 485,000 sites per sample at single-

nucleotide resolution, using experimental procedures recommended by the manufacturer. The

bisulfite-converted DNA is subjected to a whole-genome amplification step, followed by fragmen-

tation and hybridization to probes on the microarray. Following hybridization, allele-specific
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single-base extension of the probes incorporates a fluorescent label (ddNTP) for detection. Us-

ing the Illumina GenomeStudio software provided by the manufacturer, methylation levels (β

values) were then computed by dividing the methylated probe signal intensity by the sum of

methylated and unmethylated probe signal intensities. These β values range from 0 (completely

unmethylated) to 1 (completely methylated) and provide a quantitative readout of relative DNA

methylation for each CpG site within the whole cell population. Samples from the five popula-

tions were run together in a randomized order to avoid confounding batch effects with population

differences. Technical replicates across different runs had correlation r > 0.99. All our samples

passed internal controls included on the HumanMethylation450 array, including controls for ar-

ray background, hybridization quality, target specificity and bisulfite conversion. Furthermore,

all samples passed quality control check of having detection P-value > 0.05. Subsequent cluster

analysis indicated the absence of any outlier samples.

Normalization of β values across individuals. The data were color corrected, back-

ground corrected, quantile normalized and SWAN normalized to correct for type I and type II

difference (Maksimovic et al., 2012). To perform the background normalization, background

intensity, as measured by negative background probes present on the array, was subtracted

from the raw intensities to adjust for varying background signals across different samples. This

background adjustment was done separately for raw data from the green and red channels to

adjust for Cy3 and Cy5 differences. All negative intensities were assigned values of zero before

further normalizations were performed. To minimize batch effects across different sets of arrays,

background adjusted raw data from both channels were quantile-normalized separately. The

quantile normalization is done at the intensity level, whereas the SWAN normalization is done

at the m-value level and includes a step which randomly chooses a subset of type II probes to

normalize to type I probes and then normalizes the rest of the type II probes to the normalized

type II probes. This randomization step results in slightly different result every time SWAN
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normalization is done, so in comparing β values created from one normalization run to those

in another, it is usual to see slight differences. Theβ values were obtained after obtaining the

m-values, using the formula β = 2m/(1 + 2m). In all of our analyses, we used β values since we

saw no differences in the genome-wide trends or the top sites when using m-values. We prefer

β values because they seem easier to interpret.

After quality control check, normalization and filtering out markers overlapping known SNPs

in the 1, 000 Genome database and markers on the sex chromosomes, the CpG methylation data

consists of β values for 317, 109 CpG sites.

Calculation of false discovery rates (FDRs). The FDRs were computed by permutation,

which preserves aspects of the data that might affect the results of the analyses. For the

population-specific methylation analysis, the FDRs were estimated using 1000 randomizations

where the population tags were assigned randomly to every individual and the Kruskal-Wallis

p-values were recomputed on this randomized data.

Validation of population specific CpG sites through bisulfite pyrosequencing. Bisul-

fite PCR-pyrosequencing assays were designed with PyroMark Assay Design 2.0 (Qiagen). The

regions of interest were amplified by PCR using the HotstarTaq DNA polymerase kit (Qiagen)

as follows: 15 minutes at 95C (to activate the Taq polymerase), 45 cycles of 95C for 30s, 58C for

30s, and 72C for 30s, and a 5 minute 72C extension step. For pyrosequencing, a single-stranded

DNA was prepared from the PCR product with the Pyromark Vacuum Prep Workstation (Qi-

agen) and the sequencing was performed using sequencing primers on a Pyromark Q96 MD

pyrosequencer (Qiagen). The quantitative levels of methylation for each CpG dinucleotide were

calculated with Pyro Q-CpG software (Qiagen). Primer sequences are available upon request.
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Concordance between array and pyrosequencing percentage methylation. For the

four most differentiated sites, the K-W p-values using the Illumina array and the ones obtained

by pyrosequencying are presented in table S1 below.

Site Array K-W p-value Pyrosequencing K-W p-value

cg13962846 5.065e-05 5.216e-05
cg19400238 7.736e-05 0.0005818
cg23629393 8.958e-05 9.736e-05
cg23724489 8.688e-05 0.0005995

Table S1. Comparing K-W p-values between array and pyrosequencing.

The Pst values. Pst is a measure of the proportion of variance explained by between-population

divergence. It is the phenotypic analog of the population genetics parameter Fst (Leinonen et al.,

2013; Pujol et al., 2008). For a single probe, Pst was calculated as: σ2b/(σ
2
b + 2σ2w), where σ2b is

the between population variance and σ2w is the average within population variance. Pst values

range from 0 to 1, with values near 1 signifying that the majority of epigenetic variance for a

probe is between populations rather than within populations.

Analysis of variance using local SNPs. For every CpG and mRNA marker, the local SNP

was defined as the SNP within a 200kb window from the CpG site or the transcription start site

(TSS) of the mRNA marker with the largest correlation with the marker levels across all individ-

uals. We restricted our analysis to the 200 CpG and mRNA markers used in Figure 3. We per-

formed an analysis of variance to obtain the variance explained by the population tag and the ge-

netic marker for every population-specific epigenetic marker: markerlevel ∼ Population+SNP ,

where markerlevel denotes the methylation opt expression level of that marker, Population de-

notes the population tag of the individual and SNP denotes the genotype of the individual.

We then averaged the variances across the markers to obtain the average variance presented in

Figure 3.
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