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Abstract12

Despite the increasing opportunity to collect large-scale data sets for population genomic analyses,13

the use of high throughput sequencing to study populations of polyploids has seen little application.14

This is due in large part to problems associated with determining allele copy number in the genotypes15

of polyploid individuals (allelic dosage uncertainty–ADU), which complicates the calculation of16

important quantities such as allele frequencies. Here we describe a statistical model to estimate17

biallelic SNP frequencies in a population of autopolyploids using high throughput sequencing data18

in the form of read counts.We bridge the gap from data collection (using restriction enzyme based19

techniques [e.g., GBS, RADseq]) to allele frequency estimation in a unified inferential framework20

using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were21

generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate22

the model’s performance and to help guide the collection of empirical data. We also provide an23

implementation of our model in the R package polyfreqs and demonstrate its use with two example24

analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy.25

Our simulations show that the number of individuals sampled from a population has a greater impact26

on estimation error than sequencing coverage. The example analyses also show that our model and27

software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids28

by providing assessments of model adequacy and estimates of heterozygosity.29
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Introduction32

Biologists have long been fascinated by the occurrence of whole genome duplication (WGD) in33

natural populations and have recognized its role in the generation of biodiversity (Clausen et al.34

1940; Stebbins 1950; Grant 1971; Otto & Whitton 2000). Though WGD is thought to have occurred35

at some point in nearly every major group of eukaryotes, it is a particularly common phenomenon36

in plants and is regarded by many to be an important factor in plant diversification (Wood et al.37

2009; Soltis et al. 2009; Scarpino et al. 2014). The role of polyploidy in plant evolution was originally38

considered by some to be a “dead-end” (Stebbins 1950; Wagner 1970; Soltis et al. 2014) but, since its39

first discovery in the early twentieth century, polyploidy has been continually studied in nearly all40

areas of botany (Winge 1917; Winkler 1916; Clausen et al. 1945; Grant 1971; Stebbins 1950; Soltis41

et al. 2003, 2010; Soltis & Soltis 2009; Ramsey & Ramsey 2014). Though fewer examples of WGD42

are currently known for animal systems, groups such as amphibians, fish, and reptiles all exhibit43

polyploidy (Allendorf & Thorgaard 1984; Gregory & Mable 2005). Ancient genome duplications are44

also thought to have played an important role in the evolution of both plants and animals, occurring45

in the lineages preceeding the seed plants, angiosperms and vertebrates (Ohno 1970; Otto & Whitton46

2000; Furlong & Holland 2001; Jiao et al. 2011). These ancient WGD events during the early history47

of seed plants and angiosperms have been followed by several more WGDs in all major plant groups48

(Cui et al. 2006; Scarpino et al. 2014; Cannon et al. 2014). Recent experimental evidence has also49

demonstrated increased survivorship and adaptability to foreign environments of polyploid taxa when50

compared with their lower ploidy relatives (Ramsey 2011; Selmecki et al. 2015).51

Polyploids are generally divided into two types based on how they are formed: auto- and52

allopolyploids. Autopolyploids form when a WGD event occurs within a single evolutionary lineage53

and typically have polysomic inheritance. Allopolyploids are formed by hybridization between two54

separately evolving lineages followed by WGD and are thought to have mostly disomic inheritance.55

Multivalent chromosome pairing during meiosis can occur in allopolyploids, however, resulting in56

mixed inheritance patterns across loci in the genome [segmental allopolyploids] (Stebbins 1950).57

Autopolyploids can also undergo double reduction, a product of multivalent chromosome pairing58

wherein segments from sister chromatids move together during meiosis—resulting in allelic inheritance59

that breaks away from a strict pattern of polysomy (Haldane 1930). Autopolyploidy was also thought60

to be far less common than allopolyploidy, but recent studies have concluded that autopolyploidy61

occurs much more frequently than originally proposed (Soltis et al. 2007; Parisod et al. 2010).62

The theoretical treatment of population genetic models in polyploids has it origins in the Modern63

Synthesis with Fisher, Haldane and Wright each contributing to the development of some of the64

earliest mathematical models for understanding the genetic patterns of inheritance in polyploids65

(Haldane 1930; Wright 1938; Fisher 1943). Early empirical work on polyploids that influenced Fisher,66

Haldane and Wright include studies on Lythrum salicaria by N. Barlow (1913, 1923), Dahlia by W.67

J. C. Lawrence (1929) and Primula by H. J. Muller (1914). The foundation laid down by these early68

papers has led to the continuing development of population genetic models for polyploids, including69

models for understanding the rate of loss of genetic diversity and extensions of the coalescent in70

autotetraploids, as well as modifications of the multispecies coalescent for the inference of species71
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networks containing allotetraploids (Moody et al. 1993; Arnold et al. 2012; Jones et al. 2013). Much72

of this progress was described in a review by Dufresne et al. (2014), who outlined the current state73

of population genetics in polyploids regarding both molecular techniques and statistical models.74

Not surprisingly, one of the most promising developments for the future of population genetics in75

polyploids is the advancement of sequencing technologies. A particularly common method of gathering76

large data sets for genome scale inferences are restriction enzyme based techniques (e.g., RADseq,77

ddRAD, GBS, etc.), which we will refer to generally as RADseq (Miller et al. 2007; Baird et al.78

2008; Peterson et al. 2012; Puritz et al. 2014). However, despite its popularity for population genetic79

inferences at the diploid level, there are many fewer examples of RADseq experiments conducted on80

polyploid taxa (but see Ogden et al. 2013; Wang et al. 2013; Logan-Young et al. 2015).81

Among the primary reasons for the dearth in applying RADseq to polyploids is the issue of82

allelic dosage uncertainty (ADU), or the inability to fully determine the genotype of a polyploid83

organism when it is partially heterozygous at a given locus. This is the same problem that has84

been encountered by other codominant markers such as microsatellites, which have been commonly85

used for population genetic analyses in polyploids. One way of dealing with allelic dosage that has86

been used for multi-allelic microsatellite markers has been to code alleles as either present or absent87

based on electropherogram readings (allelic phenotypes) and to analyze the resulting dominant88

data using a program such as polysat (Clark & Jasieniuk 2011; Dufresne et al. 2014). de Silva89

et al. (2005) developed a method for inferring allele frequencies using observed allelic phenotype90

data and used an expectation-maximization algorithm to deal with the incomplete genotype data91

resulting from ADU. Attempts to directly infer the genotype of polyploid microsatellite loci have92

also been successfully completed in some cases by using the relative electropherogram peak heights93

of the alleles in the genotypes (Esselink et al. 2004). The estimation problem would be similar for94

biallelic SNP data collected using RADseq, where a partially heterozygous polyploid will have high95

throughput sequencing reads containing both alleles. For a tetraploid, the possible genotypes for a96

partial heterozygote (alleles A and B) would be AAAB, AABB and ABBB. For a hexaploid they97

are AAAAAB, AAAABB, AAABBB, AABBBB and ABBBBB. In general, the number of possible98

genotypes for a biallelic locus of a partially heterozygous K-ploid (K = 3, 4, 5, . . .) is K − 1. A99

possible solution to this problem for SNPs would be to try to use existing genotype callers and to100

rely on the relative number of sequencing reads containing the two alleles (similar to what was done101

for microsatellites). However, this could lead to erroneous inferences when genotypes are simply fixed102

at point estimates based on read proportions without considering estimation error. Furthermore,103

when sequencing coverage is low, the number of genotypes that will appear to be equally probable104

increases with ploidy, making it difficult to distinguish among the possible partially heterozygous105

genotypes.106

In this paper we describe a model that aims to address the problems associated with ADU by107

treating genotypes as a latent variable in a hierarchical Bayesian model and using high throughput108

sequencing read counts as data. In this way we preserve the uncertainty that is inherent in polyploid109

genotypes by inferring a probability distribution across all possible values of the genotype, rather than110

treating them as being directly observed. This approach has been used by Buerkle & Gompert (2013)111

to deal with uncertainty in calling genotypes in diploids and the work we present here builds off of112

their earlier models. Our model assumes that the ploidy level of the population is known and that the113

genotypes of individuals in the population are drawn from a single underlying allele frequency for each114

locus. These assumptions imply that alleles in the population are undergoing polysomic inheritance115

without double reduction, which most closely adheres to the inheritance patterns of an autopolyploid.116
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We acknowledge that the model in its current form is an oversimplification of biological reality and117

realize that it does not apply to a large portion of polyploid taxa. Nevertheless, we believe that118

accounting for ADU by modeling genotype uncertainty has the potential to be applied more broadly119

via modifications of the probability model used for the inheritance of alleles, which could lead to120

more generalized population genetic models for polyploids (see the Extensibility section of the121

Discussion).122

Materials and Methods123

Our goal is to estimate the frequency of a reference allele for each locus sampled from a population124

of known ploidy (ψ), where the reference allele can be chosen arbitrarily between the two alleles at125

a given biallelic SNP. To do this we extend the population genomic models of Buerkle & Gompert126

(2013), which employ a Bayesian framework to model high throughput sequencing reads (T ,R),127

genotypes (G) and allele frequencies (p), to the case of arbitrary ploidy. The idea behind the model128

is to view the sequencing reads gathered for an individual as a random sample from the unobserved129

genotype at each locus. Genotypes can then be treated as a parameter in a probability model that130

governs how likely it is that we see a particular number of sequencing reads carrying the reference131

allele. Similarly, we can treat genotypes as a random sample from the underlying allele frequency132

in the population (assuming Hardy-Weinberg equilibrium). For our model, a genotype is simply a133

count of the number of reference alleles at a locus which can range from 0 (a homozygote with no134

reference alleles in the genotype) to ψ (a homozygote with only reference alleles in the genotype).135

All whole numbers in between 0 and ψ represent partially heterozygous genotypes. This hierarchical136

setup addresses the problems associated with ADU by treating genotypes as a latent variable that137

can be integrated out using Markov chain Monte Carlo (MCMC).138

Model setup139

Here we consider a sample of N individuals from a single population of ploidy level ψ sequenced at L140

unlinked SNPs. The data for the model consist of two matrices containing counts of high throughput141

sequencing reads mapping to each locus for each individual: R and T . The N ×L matrix T contains142

the total number of reads sampled at each locus for each individual. Similarly, R is an N ×L matrix143

containing the number of sampled reads with the reference allele at each locus for each individual.144

Then for individual i at locus `, we model the number of sequencing reads containing the reference145

allele (ri`) as a Binomial random variable conditional on the total number of sequencing reads (ti`),146

the underlying genotype (gi`) and a constant level of sequencing error (ε)147

P (ri`|ti`, gi`, ε) =
(
ti`
ri`

)
gri`ε (1− gε)ti`−ri` . (1)

Here gε is the probability of observing a read containing the reference allele corrected for sequencing148

error149

gε =

(
gi`
ψ

)
(1− ε) +

(
1− gi`

ψ

)
ε . (2)

The intuition behind including error is that we want to calculate the probability that we observe a150

read containing the reference allele. There are two ways that this can happen. (1) Reads are drawn151

from the reference allele(s) in the genotype with probability gi`
ψ but are only observed as reference152
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reads if they are not errors (probability 1− ε). (2) Similarly, reads from the non-reference allele(s)153

in the genotype are drawn with probability 1− gi`
ψ but can be mistakenly read as a coming from a154

reference allele if an error occurs (probability ε). The sum across these two possibilities gives the155

overall probability of observing a read containing the reference allele. If we also assume conditional156

independence of the sequencing reads given the genotypes, the joint probability distribution for157

sequencing reads is given by158

P (R|T ,G, ε) =
L∏
`=1

N∏
i=1

P (ri`|ti`, gi`, ε) . (3)

Since the ri`’s are the data that we observe, the product of P (ri`|ti`, gi`, ε) across loci and individuals159

will form the likelihood in the model.160

The next level in the hierarchy is the conditional prior for genotypes. We model each gi` as a161

Binomial random variable conditional on the ploidy level of the population and the frequency of the162

reference allele for locus ` (p`):163

P (gi`|ψ, p`) =
(
ψ

gi`

)
p gi`` (1− p`)ψ−gi` .

We also assume that the genotypes of the sampled individuals are conditionally independent given the164

allele frequencies, which is equivalent to taking a random sample from a population in Hardy-Weinberg165

equilibrium. Factoring the distribution for genotypes and taking the product across loci and individuals166

gives us the joint probability distribution of genotypes given the ploidy level of the population and167

the vector of allele frequencies at each locus (p = {p1, . . . , pL}):168

P (G|ψ,p) =
L∏
`=1

N∏
i=1

P (gi`|ψ, p`) . (4)

We choose here to ignore other factors that may be influencing the distribution of genotypes such169

as double reduction. In general, double reduction will act to increase homozygosity (Hardy 2015).170

However, it is more prevalent for loci that are farther away from the centromere, which makes171

the estimation of a global double reduction parameter (typically denoted α) inappropriate for the172

thousands of loci gathered from across the genome using techniques such as RADseq. It might be173

possible to estimate a per locus rate of double reduction (α`) but this would add an additional174

parameter that would need to be estimated for each locus, perhaps unnecessarily if the majority end175

up being equal, or close, to 0.176

The final level of the model is the prior distribution on allele frequencies. Assuming a priori177

independence across loci, we use a Beta distribution with parameters α and β both equal to 1 as our178

prior distribution for each locus. A Beta(1,1) is equivalent to a Uniform distribution over the interval179

[0, 1], making our choice of prior uninformative. The joint posterior distribution of allele frequencies180

and genotypes is then equal to the product across all loci and all individuals of the likelihood, the181

conditional prior on genotypes and the prior distribution on allele frequencies up to a constant of182

proportionality183
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P (p,G|T ,R, ε) ∝ P (R|T ,G, ε)P (G|ψ,p)P (p)

=
L∏
`=1

N∏
i=1

P (ri`|ti`, gi`, ε)P (gi`|ψ, p`)P (p`) . (5)

The marginal posterior distribution for allele frequencies can be obtained by summing over genotypes184

P (p|T ,R, ε) ∝
∑
G

P (p,G|T ,R, ε) . (6)

It would also be possible to examine the marginal posterior distribution of genotypes but here we185

will focus primarily on allele frequencies.186

Full conditionals and MCMC using Gibbs sampling187

We estimate the joint posterior distribution for allele frequencies and genotypes in Eq. 5 using MCMC.188

This is done using Gibbs sampling of the states (p,G) in a Markov chain by alternating samples189

from the full conditional distributions of p and G. Given the setup for our model using Binomial190

and Beta distributions (which form a conjugate family), analytical solutions for these distributions191

can be readily acquired (Gelman et al. 2014). The full conditional distribution for allele frequencies192

is Beta distributed and is given by Eq. 7 below:193

p` | gi`, ri`, ε ∼ Beta

(
α =

N∑
i=1

gi` + 1, β =
N∑
i=1

(ψ − gi`) + 1

)
, for ` = 1, . . . , L. (7)

This full conditional distribution for p` has a natural interpretation as it is roughly centered at the194

proportion of sampled alleles carrying the reference allele divided by the total number of alleles195

sampled. The “+1” comes from the prior distribution and will not have a strong influence on the196

posterior when the sample size is large.197

The full conditional distribution for genotypes is a discrete categorical distribution over the198

possible values for the genotypes (0, . . . , ψ). The distribution for individual i at locus ` is199

P (gi`|g(-i)`, p`, ri`, ε) =
(
ti`
ri`

)
gri`ε (1− gε)ti`−ri`

(
ψ

gi`

)
p gi`` (1− p`)ψ−gi` , (8)

where g(-i)` is the value of the genotypes for all sampled individuals excluding individual i and gε200

is the same as Eq. 2. The full conditional distribution for genotypes can be seen as the product of201

two quantities: (1) the probability of each of the possible genotypes based on the observed reference202

reads and (2) the probability of drawing each genotype given the allele frequency for that locus in203

the population.204

We begin our Gibbs sampling algorithm in a random position in parameter space through the205

use of uniform probability distributions. The genotype matrix is initialized with random draws from206

a Discrete Uniform distribution ranging from 0 to ψ and the initial allele frequencies are drawn from207

a Uniform distribution on the interval [0,1].208
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Simulation study209

Simulations were performed to assess error rates in allele frequency estimation for tetraploid, hexaploid210

and octoploid populations (ψ = 4, 6 and 8, respectively). Data were generated under the model211

by sampling genotypes from a Binomial distribution conditional on a fixed, known allele frequency212

( p` = 0.01, 0.05, 0.1, 0.2, 0.4). Total read counts were simulated for a single locus using a Poisson213

distribution with mean coverage equal to 5, 10, 20, 50 or 100 reads per individual. We then sampled214

the number of sequencing reads containing the reference allele from a Binomial distribution conditional215

on the number of total reads, the genotype and sequencing error (Eq. 1; ε fixed to 0.01). Finally,216

we varied the number of individuals sampled per population (N = 5, 10, 20, 30) and ran all possible217

combinations of the simulation settings. Our choice for the number of individuals to simulate was218

intended to reflect sampling within a single population/locality and not that of an entire population219

genetics study. Furthermore, RAD sequencing is used at various taxonomic levels from population220

genetics to phylogenetics (e.g., Rheindt et al. 2014; Eaton et al. 2015), and we wanted our simulations221

to be informative across these applications. Each combination of sequencing coverage, individuals222

sampled and allele frequency was analyzed using 100 replicates for tetraploid, hexaploid and octoploid223

populations for a total of 30,000 simulation runs. MCMC analyses using Gibbs sampling were run224

for 100,000 generations with parameter values stored every 100th generation. The first 25% of the225

sample was discarded as burn-in, resulting in 750 posterior samples for each replicate. Convergence226

on the stationary distribution, P (p,G|R, ε), was assessed by examining trace plots for a subset of227

runs for each combination of settings and ensuring that the effective sample sizes (ESS) were greater228

than 200. Deviations from the known underlying allele frequency used to simulate each data set were229

assessed by taking the posterior mean of each replicate and calculating the root mean squared error230

(RMSE) based on the true underlying value. We also compared the posterior mean as an estimate of231

the allele frequency at a locus to a more simple estimate calculated directly from the read counts232

(mean read ratio): 1
N

∑
i
ri`
ti`

. Comparisons between estimates were again made using the RMSE.233

All simulations were performed using the R statistical programming language (R Core Team 2014)234

on the Oakley cluster at the Ohio Supercomputer Center (https://osc.edu). Figures were generated235

using the R packages ggplot2 (Wickham 2009) and reshape (Wickham 2007), with additional236

figure manipulation completed using Inkscape (https://inkscape.org). MCMC diagnostics were237

done using the coda package (Plummer et al. 2006). All scripts are available on GitHub (https:238

//github.com/pblischak/polyfreqs-ms-data) in the ‘code/’ folder and all simulated data sets239

are in the ‘raw_data/’ folder.240

Example analyses of autotetraploid potato (Solanum tuberosum)241

To further evaluate the model and to demonstrate its use we present an example analysis using242

an empirical data set collected for autotetraploid potato (Solanum tuberosum) using the Illumina243

GoldenGate platform (Anithakumari et al. 2010; Voorrips et al. 2011). Though these data aren’t the244

typical reads returned by RADseq experiments, they still represent the same type of binary response245

data that our model uses to get a probability distribution for biallelic SNP genotypes. A detailed246

walkthrough with the code used for each step is provided as Supplemental Material. The data set and247

output are also available on GitHub (https://github.com/pblischak/polyfreqs-ms-data) in the248

‘example/’ folder.249
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Calculating expected and observed heterozygosity250

One advantage of using a Bayesian framework for our model is that we can approximate a posterior251

distribution for any quantity that is a functional transformation of the parameters that we are252

estimating without doing any additional MCMC simulation (Gelman et al. 2014). Two such quantities253

that are often used in population genetics are the observed and expected heterozygosity, which are in254

turn used for calculating the various fixation indices (FIS , FIT , FST ) introduced by Wright (1951).255

To analyze levels of heterozygosity in this way, we used the estimators of Hardy (2015) to calculate256

the per locus observed (Ho) and expected (He) heterozygosity for each stored sample of the joint257

posterior distribution in Eq. 5. This procedure is especially useful because it estimates heterozygosity258

while taking into account ADU by utilizing the marginal posterior distribution of genotypes. Given a259

total of M posterior samples of genotypes and allele frequencies, we calculate the mth (m = 1, . . . ,M)260

estimate of the observed heterozygosity using Eq. 9 [numerator of Eq. 7 in Hardy (2015)]:261

H[m]
o =

1

N

∑
i

h
[m]
i =

1

N

∑
i

g
[m]
i` (ψ − g[m]

i` )(
ψ
2

) . (9)

Similarly, the mth estimate of the expected heterozygosity is calculated using Eq. 10 [denominator of262

Eq. 8 in Hardy (2015)]:263

H[m]
e =

N

N − 1

[
1− (p

[m]
` )2 − (1− p[m]

` )2 − ψ − 1

ψN2

∑
i

h
[m]
i

]
. (10)

The posterior distribution of a multi-locus estimate of heterozygosity can then be approximated by264

taking the average across loci for each of the per locus posterior samples.265

To evaluate levels of heterozygosity in autotetraploid potato, we obtained biallelic count data266

for 224 accessions collected at 384 loci using the Illumina GoldenGate platform from the R package267

fitTetra (Voorrips et al. 2011), which provides the data set as part of the package. We chose the ‘X’268

reading to be the count data for the reference allele and added the ‘X’ and ‘Y’ readings together to get269

the total read counts (‘X’ and ‘Y’ represent the counts of the two alternative alleles). Initial attempts270

to analyze the data set using our Gibbs sampling algorithm were unsuccessful due to arithmetic271

underflow. This was due to the fact that the counts/intensities returned by the Illumina GoldenGate272

platform are on a different scale (∼10,000-20,000+) than the read counts that would be expected273

from a RADseq experiment. To alleviate this problem, we rescaled the data set while preserving the274

relative dosage information by dividing the GoldenGate count readings by 100 and rounding to the275

nearest whole number. We then analyzed the rescaled count data using 100,000 MCMC generations,276

sampling every 100 generations and using the stored samples of the allele frequencies and genotypes277

to calculate the observed and expected heterozygosity for a total of 1,000 posterior samples of the per278

locus observed and expected heterozygosity. We also compared post burn-in (25%) allele frequency279

estimates based on the posterior mean to the simple allele frequency estimate based directly on read280

counts used previously (mean read ratio). Posterior distributions for multi-locus estimates of observed281

and expected heterozygosity were obtained by taking the average across loci for each posterior sample282

of the per locus estimates using a burn-in of 25%.283
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Evaluating model adequacy284

As noted earlier, the probability model that we use for the inheritance of alleles is one of polysomy285

without double reduction. In some cases, this model may be inappropriate. Therefore, it can be286

informative to check for loci that do not follow the model that we assume. Below we describe a287

procedure for rejecting our model of inheritance on a per locus basis using comparisons with the288

posterior predictive distribution of sequencing reads. Model checking is an important part of making289

statistical inferences and can play a role in understanding when a model adequately describes the290

data being analyzed. In the case of our model, it can serve as a basis for understanding the inheritance291

patterns of the organism being studied by determining which loci adhere to a simple pattern of292

polysomic inheritance. Other sources of disequilibrium that could indicate poor model fit include293

inbreeding, null alleles and allele drop out (sensu Arnold et al. 2013), making this posterior predictive294

model check more broadly applicable for RADseq data.295

Given M posterior samples for the allele frequencies at locus `,
{
p
[1]
` , p

[2]
` , . . . , p

[M ]
`

}
, we simulate296

new values for the genotypes (g̃i`) and reference read counts (r̃i`) for all individuals and use the ratio297

of simulated reference read counts to observed total read counts
(
r̃i`
ti`

)
as a summary statistic for298

comparing the observed read count ratios to the distribution of the predicted read count ratios. The299

use of the likelihood (or similar quantities) as a summary statistic has been a common practice in300

posterior predictive comparisons of nucleotide substitution models, and more recently for comparative301

phylogenetics (Ripplinger & Sullivan 2010; Reid et al. 2014; Pennell et al. 2015). We use the ratio of302

reference to total read counts here because it is the maximum likelihood estimate of the probability303

of success for a Binomial random variable and because it is a simple quantity to calculate. The use of304

other summary statistics, or a combination of multiple summary statistics, would also possible. The305

procedure for our posterior predictive model check is as follows:306

1. For locus ` = 1, . . . , L:307

1.1. For posterior sample m = 1, . . . ,M :308

1.1.1. Simulate new genotype values
(
g̃
[m]
i`

)
for all individuals (i = 1, . . . , N) by drawing309

from a Binomial
(
ψ, p

[m]
`

)
.310

1.1.2. Simulate new reference read counts
(
r̃
[m]
i`

)
from each new genotype for all individuals311

by drawing from Eq. 1.312

1.1.3. Calculate the reference read ratio for the simulated data for sample m and sum across313

individuals: S̃ [m]
` =

∑N
i=1

(
r̃
[m]
i`
ti`

)
.314

1.1.4. Calculate the reference read ratio for the observed data and sum across individuals:315

S` =
∑N

i=1

(
ri`
ti`

)
.316

1.2. Calculate the difference between the observed reference read ratio and the M simulated317

reference read ratios:
{
S` − S̃

[1]
` , . . . ,S` − S̃

[M ]
`

}
.318

2. Determine if the 95% highest posterior density (HPD) interval of the distribution of re-centered319

reference read ratios contains 0.320
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When the distribution of the differences in ratios between the observed and simulated data sets321

does not contain 0 in the 95% HPD interval, it provides evidence that the locus being examined322

does not follow a pattern of strict polysomic inheritance. A similar approach could be used on an323

individual basis by comparing the observed ratio of reference reads to the predicted ratios for each324

individual at each locus. We used this posterior predictive model checking procedure to assess model325

adequacy in the potato data set using the posterior distribution of allele frequencies estimated in the326

previous section with 25% of the samples discarded as burn-in.327

Results328

Our Gibbs sampling algorithm was able to accurately estimate allele frequencies for a number of329

simulation settings while simultaneously allowing for genotype uncertainty. There were no indications330

of a lack of convergence (ESS values > 200) for any of the simulation replicates and all trace plots331

examined also indicated that the Markov chain had reached stationarity. Running the MCMC for332

100,000 generations and sampling every 100th generation appeared to be suitable for our analyses and333

we recommend it as a starting point for running most data sets. Reducing the number of generations334

and sampling more frequently (e.g., 50,000 generations sampled every 50 generations) could be a335

potential work around for larger data sets. When doing test runs we went as low as 20,000 generations336

sampled every 20th generation, which still passed our diagnostic tests for convergence. This is likely337

because the parameter space of our model is not overly difficult to navigate so stationarity is reached338

rather quickly. Ultimately, the deciding factor on how long to run the analysis and how frequently to339

sample the chain will come down to assessing convergence.340

Simulation study341

Increasing the number of individuals sampled had the largest effect on the accuracy of allele frequency342

estimation (Figure 1). Since allele frequencies are population parameters, it is not surprising that343

sampling more individuals from the population leads to better estimates. This appears to be the case344

even when sequencing coverage is quite low (5x, 10x), which corroborates the observations made345

by Buerkle & Gompert (2013). This is not to say, however, that sequencing coverage has no effect346

on the posterior distribution of allele frequencies. Lower sequencing coverage affects the posterior347

distribution by increasing the posterior standard deviation (Figure 2). An interesting pattern that348

emerged during the simulation study is the observation that the allele frequencies closer to 0.5 tend to349

have higher error rates, which is to be expected given that the variance of a Binomial random variable350

is highest when the probability of success is 0.5. We also observed small differences in the RMSE351

between ploidy levels, with estimates increasing in accuracy with increasing ploidy. Comparisons352

between the posterior mean and mean read ratio estimates of allele frequencies (Figure S1) show353

that the estimate based on read ratios has a lower RMSE than the posterior mean when the true354

allele frequency is low (p` = 0.01, 0.05) but has higher error rates than the posterior mean for allele355

frequencies closer to 0.5. When sequencing coverage is greater than 10x and the number of individuals356

sampled is greater than 20, the two estimates are almost indistinguishable.357

Example analyses358

Our analyses of Solanum tuberosum tetraploids showed levels of heterozygosity consistent with a359

pattern of excess outbreeding (Ho > He). In fact, the posterior distributions of the multi-locus360

estimates of observed and expected heterozygosity do not overlap at all (Figure 3). The assessment361
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of model adequacy also showed that 49 out of the 384 loci (∼13%) were a poor fit to the model of362

polysomic inheritance that we assume. The allele frequency estimates using the posterior mean and363

the mean read ratio provided similar estimates and were comparable for most loci. For loci in which364

the frequency of the reference allele is very low, the read ratio estimate tends to be higher than the365

posterior mean. However, the overall pattern does not indicate over or under estimation for most366

allele frequencies (Figure S2). When we took the difference between the estimates at each locus, the367

distribution was centered near 0 (Figure S3).368

Discussion369

The inference of population genetic parameters and the demographic history of non-model polyploid370

organisms has consistently lagged behind that of diploids. The difficulties associated with these371

inferences present themselves at two levels. The first of these is the widely known inability to determine372

the genotypes of polyploids due to ADU. Even though there have been theoretical developments in373

the description of models for polyploid taxa as early as the 1930s, a large portion of this population374

genetic theory relies on knowledge about individuals’ genotypes (e.g., Haldane 1930; Wright 1938).375

The second complicating factor is the complexity of inheritance patterns and changes in mating376

systems that often accompany WGD events. Polyploid organisms can sometimes mate by both377

outcrossing or selfing, and can display mixed inheritance patterns at different loci in the genome378

(Dufresne et al. 2014). If genotypes were known, then it might be easier to develop and test models379

for dealing with and inferring rates of selfing versus outcrossing, as well as understanding inheritance380

patterns across the genome. However, ADU only compounds the problems associated with these381

inferences, making the development and application of appropriate models far more difficult (but382

see list of software in Dufresne et al. 2014). The model we have presented here deals with the first383

of these two issues by not treating genotypes as observed quantities. Almost all other methods of384

genotype estimation for polyploids treat the genotype as the primary parameter of interest. Our385

model is different in that we still use the read counts generated by high throughput sequencing386

platforms as our observed data but instead integrate across genotype uncertainty when inferring387

other parameters, thus bypassing the problems caused by ADU.388

Despite our focus on bypassing ADU, an important consideration for the model we present here389

is that, because it approximates the joint posterior distribution of allele frequencies and genotypes, it390

would also be possible to use the marginal posterior distribution of genotypes to make inferences391

using existing methods. This could be done using the posterior mode as a maximum a posteriori392

(MAP) estimate of the genotype for downstream analyses, followed by analyzing the samples taken393

from the marginal posterior distribution of genotypes. The resulting set of estimates would not394

constitute a “true” posterior distribution of downstream parameters but would allow researchers to395

interpret their results based on the MAP estimate of the genotypes while still getting a sense for396

the amount of variation in their estimates. Using the marginal posterior distribution of genotypes397

in this way could technically be applied to any type of polyploid, but is only really appropriate for398

autopolyploids due to the model of inheritance that is used. Other methods for estimating SNP399

genotypes from high throughput sequencing data include the program SuperMASSA, which models400

the relative intensity of the two alternative alleles using Normal densities (Serang et al. 2012).401

A second important factor for using our model is that, although estimates of allele frequencies402

can be accurate when sequencing coverage is low and sample sizes are large (see Figure S4 for a403

direct comparison between sample size and coverage), the resulting distribution for genotypes is404

likely going to be quite diffuse. For analyses that treat genotypes as a nuisance parameter, this is not405
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an issue since we can integrate across genotype uncertainty. However, if the genotype is of primary406

interest, then the experimental design of the study will need to change to acquire higher coverage407

at each locus for more accurate genotype estimation. Therefore, the decision between sequencing408

more individuals with lower average coverage versus sequencing fewer individuals with higher average409

coverage depends primarily on whether the genotypes will be used or not.410

Extensibility411

The modular nature of our hierarchical model can allow for the addition and modification of levels in412

the hierarchy. One of the simplest extensions to the model that can build directly on the current413

setup would be to consider loci with more than two alleles. This can be done using Multinomial414

distributions for sequencing reads and genotypes and a Dirichlet prior on allele frequencies (the415

Multinomial and Dirichlet distributions form a conjugate family; Gelman et al. 2014). We could also416

model populations of mixed ploidy by using a vector of individually assigned ploidy levels instead of417

assuming a single value for the whole population (ψ = {ψ1, . . . , ψN}). However, this would assume418

random mating among ploidy levels.419

Double reduction420

The inclusion of double reduction into the model is a difficult consideration for genome wide data421

collected using high throughput sequencing platforms. The number of parameters estimated by our422

model is L× (N +1) and including double reduction would add an additional L parameters, bringing423

the total to L× (N + 2). Though the addition of these parameters would not prohibit an analysis424

using Gibbs sampling, we chose to implement the simpler equilibrium model. We hope to include425

double reduction in future models but feel that our posterior predictive model checking procedure426

will prove sufficient for identifying loci in disequilibrium with our current implementation. Another427

concern that we had regarding double reduction is that it can be confounded with the overall signal428

of inbreeding, making it especially difficult to tease apart the specific effects of double reduction429

alone (Hardy 2015). However, because the probability of double reduction at a locus (α`) depends430

on its distance from the centromere (call it x`), a potential way to estimate α` would be to use the431

x`’s as predictor variables in a linear model: α` = β0 + β1x`. This would only add two additional432

parameters (β0 and β1) that would need to be estimated and would be completely independent of433

the number of loci analyzed. The downside to this approach is that it would only be applicable for434

polyploid organisms with sequenced genomes (or the genome of a diploid progenitor), making the435

use of such a model impractical for the time being.436

Additional levels in the hierarchical model437

The place where we believe our model could have the greatest impact is through modifications438

and extensions of the probability model used for the inheritance of alleles. These models have been439

difficult to apply in the past as a result of genotype uncertainty. However, using our model as a440

starting point, it could be possible to infer patterns of inheritance (polysomy, disomy, heterosomy)441

and other demographic parameters (e.g., effective population size, population differentiation) without442

requiring direct knowledge about the genotypes of the individuals in the population. For example,443

Haldane’s (1930) model of genotype frequencies for autopolyploids that are partially selfing could444

be used to infer the prevalence of self-fertilization within a population. Another possible approach445

would be to use general disequilibrium coefficients (DA) to model departures from Hardy-Weinberg446
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equilibrium (Hernández & Weir 1989; Weir 1996). A more recent model described by Stift et al. (2008)447

used microsatellites to infer the different inheritance patterns (disomic, tetrasomic, intermediate) for448

tetraploids in the genus Rorippa (Brassicaceae) following crossing experiments. The reformulation of449

such a model for biallelic SNPs gathered using high throughput sequencing could provide a suitable450

framework for understanding inheritance patterns across the genome. An ideal model would be one451

that could help to understand genome-wide inheritance patterns for a polyploid of arbitrary formation452

pathway (autopolyploid ↔ allopolyploid) without the need conduct additional experiments. However,453

to our knowledge, such a model does not currently exist.454

Conclusions455

The recent emergence of models for genotype uncertainty in diploids has introduced a theoretical456

framework for dealing with the fact that genotypes are unobserved quantities (Gompert & Buerkle457

2012; Buerkle & Gompert 2013). Our extension of this theory to cases of higher ploidy (specifically458

to autopolyploids) progresses naturally from the original work but also serves to alleviate the deeper459

issue of ADU. The power and flexibility of these models as applied at the diploid level has the460

potential to be replicated for polyploid organisms with the addition of suitable models for allelic461

inheritance. The construction of hierarchical models containing probability models for ADU, allelic462

inheritance and perhaps even additional levels for important parameters such as F-statistics or the463

allele frequency spectrum also have the potential to provide key insights into the population genetics464

of polyploids (Gompert & Buerkle 2011; Buerkle & Gompert 2013). Future work on such models will465

help to progress the study of polyploid taxa and could eventually lead to more generalized models466

for understanding the processes that have shaped their evolutionary histories.467

Software note468

We have combined the scripts for our Gibbs sampler as an R package—polyfreqs—which is available469

on GitHub (https://github.com/pblischak/polyfreqs). Though polyfreqs is written in R, it470

deals with the large data sets that are generated by high throughput sequencing platforms in two ways.471

First, it takes advantage of R’s ability to incorporate C++ code via the Rcpp and RcppArmadillo472

packages, allowing for a faster implementation of our MCMC algorithm (Eddelbuettel & François 2011;473

Eddelbuettel 2013; Eddelbuettel & Sanderson 2014). Second, since the model assumes independence474

between loci, polyfreqs can facilitate the process of parallelizing analyses by splitting the total475

read count and reference read count matrices into subsets of loci which can be analyzed at the same476

time on separate nodes of a computing cluster. Additional features of the program include:477

• Estimation of posterior distributions of per locus observed and expected heterozygosity (het_obs478

and het_exp, respectively).479

• Maximum a posteriori (posterior mode) estimation of genotypes using the get_map_genotypes()480

function.481

• Posterior predictive model checking using the polyfreqs_pps() function.482

• Simulation of high throughput sequencing read counts and genotypes from user specified allele483

frequencies using the sim_reads() function.484

• Options for controlling program output such as writing genotype samples to file, printing485

MCMC updates to the R console, etc.486
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• Simple input format using tab delimited text files that can be directly imported into R using487

the read.table() function. The format is as follows:488

1. An optional row of locus names (use header=TRUE to specify this in read.table()).489

2. One row for each individual.490

3. First column contains individual names (use row.names=1 to specify this in read.table()).491

4. One column for each locus.492
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Table 1: Notation and symbols used in the description of the model for estimating allele frequencies
in polyploids. Vector and matrix forms of the variables are also provided when appropriate.

Symbol Description

L The number of loci.

` Index for loci (` ∈ {1, . . . , L}).

N Total number of individuals sequenced.

i Index for individuals (i ∈ {1, . . . , N}).

ψ The ploidy level of individuals in the population (e.g., tetraploid: ψ=4).

p` Frequency of the reference allele at locus `. [p]

gi` The number of copies of the reference allele for individual i at locus `. [G]

g̃i` Simulated genotype for posterior predictive model checking.

gε The probability of observing a reference read corrected for sequencing error.

ti` The total number of reads for individual i at locus `. [T ]

ri` The number of reads with the reference allele for individual i at locus `. [R]

r̃i` Simulated reference read count for posterior predictive model checking.

ε Sequencing error.

He,Ho Expected and observed heterozygosity.
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Figure 1: Error in allele frequency estimation as measured by the RMSE of posterior means. Columns
represent the different allele frequencies used to simulate read data (0.01, 0.05, 0.1, 0.2, 0.4), rows
represent the number of individuals samples from the population (5, 10, 20, 30). Each individual plot
shows the RMSE of the estimates for each ploidy level (tetra, hex, octo) across the different levels
of coverage (5x, 10x, 20x, 50x 100x). The best scenario is in the bottom left with 30 individuals
sampled and an allele frequency of 0.01. The worst scenario is in the upper right corner with 5
individuals sampled and an allele frequency of 0.4. Looking across rows shows that error increases as
allele frequencies get closer to 0.5. Looking up and down columns shows that error increases as the
number of individuals decreases. Within each plot, increasing sequence coverage does not have as
large of an effect on error, and differences in ploidy show that error decreases as ploidy increases.
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Figure 2: The posterior standard deviation for allele frequencies decreases compared across levels of
sequencing coverage. This plot provides a comparison of the distribution of the posterior standard
deviations of the 100 replicates performed for each level of sequencing coverage (5x, 10x, 20x, 50x,
100x) for the hexaploid simulation with 30 individuals sampled from the population and an allele
frequency of 0.2.
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Figure 3: Posterior distributions of the multi-locus estimates of expected and observed heterozygosity
in Solanum tuberosum. The observed heterozygosity is higher than the expected, consistent with a
pattern of excess outbreeding.
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