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Abstract12

Despite the ever increasing opportunity to collect large-scale datasets for population genomic analyses,13

the use of high throughput sequencing to study populations of polyploids has seen little application.14

This is due in large part to problems associated with determining allele copy number in the genotypes15

of polyploid individuals (allelic dosage uncertainty–ADU), which complicates the calculation of16

important quantities such as allele frequencies. This well-known problem has hindered population17

genetic studies in polyploids even though various solutions to circumvent the difficulty of estimating18

polyploid genotypes have been proposed. Additional complications arise because of the mixed19

inheritance patterns and variable reproductive modes that are characteristic of many polyploid taxa,20

making the development of population genetic models for polyploids especially difficult. Here we21

describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids22

using high throughput sequencing data in the form of read counts. Uncertainty in the number of23

copies of an allele in an individual’s genotype is accounted for by treating genotypes as a latent24

variable in a hierarchical Bayesian model. In this way, we bridge the gap from data collection (using25

techniques such as restriction-site associated DNA sequencing) to allele frequency estimation in26

a unified inferential framework by summing over genotype uncertainty. Simulated datasets were27
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generated under various conditions for both tetraploid and hexaploid populations to evaluate the28

model’s performance and to help guide the collection of empirical data. We also discuss potential29

extensions to generalize our model and its application to polyploids.30

(Keywords: allelic dosage uncertainty, allele frequencies, hierarchical Bayesian modeling, polyploidy,31

population genomics)32

Introduction33

Biologists have long been fascinated by the occurrence of whole genome duplication (WGD) in34

natural populations and have recognized its role in the generation of biodiversity (Clausen et al. 1940;35

Stebbins 1950; Grant 1971; Otto & Whitton 2000). Though WGD is thought to have occurred at some36

point in nearly every branch of the Tree of Life (plants, animals and fungi), it is a particularly common37

phenomenon in plants and is regarded by many to be an important factor in plant diversification38

(Wood et al. 2009; Soltis et al. 2009; Scarpino et al. 2014). The role of polyploidy in plant evolution39

was originally considered by some to be a “dead-end” (Stebbins 1950; Wagner 1970; Soltis et al.40

2014) but, since its first discovery in the early twentieth century, polyploidy has been continually41

studied in nearly all areas of botany (Winge 1917; Winkler 1916; Clausen et al. 1945; Grant 1971;42

Stebbins 1950; Soltis et al. 2003, 2010; Soltis & Soltis 2009; Ramsey & Ramsey 2014). Though fewer43

examples of WGD are currently known for animal systems, groups such as amphibians, fish, and44

reptiles all exhibit polyploidy (Allendorf & Thorgaard 1984; Gregory & Mable 2005). Ancient genome45

duplications are also thought to have played an important role in the evolution of both plants and46

animals, occurring in the lineages preceeding the seed plants, angiosperms and vertebrates (Ohno47

1970; Otto & Whitton 2000; Furlong & Holland 2001; Jiao et al. 2011). These ancient WGD events48

during the early history of seed plants and angiosperms have been followed by several more WGDs in49

all major plant groups (Cui et al. 2006; Scarpino et al. 2014; Cannon et al. 2014). Recent experimental50

evidence has also demonstrated increased survivorship and adaptability to foreign environments of51

polyploid taxa when compared with their lower ploidy relatives (Ramsey 2011; Selmecki et al. 2015).52

Polyploids are generally divided into two types based on how they are formed: auto- and53

allopolyploids. Autopolyploids form when a WGD event occurs within a single evolutionary lineage54

and typically have polysomic inheritance. Allopolyploids are formed by hybridization between two55

separately evolving lineages followed by WGD and are thought to have mostly disomic inheritance.56

Multivalent chromosome pairing during meiosis can occur in allopolyploids, however, resulting in57

mixed inheritance patterns across loci in the genome [segmental allopolyploids] (Stebbins 1950).58

Autopolyploids can also undergo double reduction, a product of multivalent chromosome pairing59

wherein segments from sister chromatids move together during meiosis—resulting in allelic inheritance60

that breaks away from a strict pattern of polysomy (Haldane 1930). Autopolyploidy was also thought61

to be far less common than allopolyploidy, but recent studies have concluded that autopolyploidy62

occurs much more frequently than originally proposed (Soltis et al. 2007; Parisod et al. 2010).63

The theoretical treatment of population genetic models in polyploids has it origins in the Modern64

Synthesis with Fisher, Haldane and Wright each contributing to the development of some of the65

earliest mathematical models for understanding the genetic patterns of inheritance in polyploids.66

Among the first of these works was Haldane’s 1930 paper on autopolyploid inheritance in 2k-ploid67
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(k = 2, 3, . . . ) organisms. Influenced in part by the works of Hermann J. Muller in tetraploid species of68

Primula (1914) and W. J. C. Lawrence in octoploid species of Dahlia (1929), Haldane generalized the69

combinatorial formulas for determining the frequencies of the different possible gametes formed from70

all genotype combinations for a 2k-ploid. He also considered additional factors influencing gamete71

frequencies such as double reduction and the effects of partial selfing (Haldane 1930). Fisher’s interest72

in polyploidy stemmed largely from observations made in the plant genus Lythrum, which exhibited73

conspicuous patterns of trimorphic heterostyly (Fisher 1941). Empirical works by Nora Barlow (1913,74

1923), as well as initial investigations into the inheritance patterns of the three style types (Short, Mid,75

Long) by E. M. East (1927) formed the basis for Fisher’s formulation of a model for the inheritance76

patterns of the Mid length style form in Lythrum salicaria (Fisher 1941). He later added to this work77

by considering double reduction in the inheritance of the Mid length style and complemented his78

theoretical work through a collaboration with Kenneth Mather to complete crossing experiments79

(Fisher 1943; Fisher & Mather 1943). Wright’s contributions were concerned with the calculation of80

the distribution of allele frequencies in a 2k-ploid and were largely an extension of his classic 193181

paper, Evolution in Mendelian populations, and a previously published manuscript describing similar82

processes in diploids (Wright 1931, 1937, 1938). Wright was among the first to consider mutation,83

migration, selection and inbreeding in his formulation of the distribution of gene frequencies, which84

helped to establish future ideas about modeling allelic diffusion in a population. For example, it was85

noted by Kimura (1964) that much of the work on diffusion equations in population genetics could be86

applied to polyploids in a manner similar to Wright’s derivation of the allele frequency distribution87

in polyploids.88

The foundation laid down by these early papers has led to the continuing development of89

population genetic models for polyploids, including models for understanding the rate of loss of90

genetic diversity and extensions of the coalescent in autotetraploids, as well as modifications of the91

multispecies coalescent for the inference of species networks containing allotetraploids (Moody et al.92

1993; Arnold et al. 2012; Jones et al. 2013). Much of this progress was described in a review by93

Dufresne et al. (2014), who outlined the current state of population genetics in polyploids regarding94

both molecular techniques and statistical models. Not surprisingly, one of the most promising95

developments for the future of population genetics in polyploids is the advancement of sequencing96

technologies. A particularly common method of gathering large datasets for genome scale inferences97

is restriction-site associated DNA sequencing [RADseq] (Miller et al. 2007; Baird et al. 2008; Puritz98

et al. 2014). However, despite its popularity for population genetic inferences at the diploid level,99

there are many fewer examples of RADseq experiments conducted on polyploid taxa (but see Ogden100

et al. 2013; Wang et al. 2013; Logan-Young et al. 2015). Among the primary reasons for the dearth101

in applying RADseq to polyploids is the issue of allelic dosage uncertainty (ADU), or the inability to102

fully determine the genotype of a polyploid organism when it is partially heterozygous at a given103

locus. This is the same problem that has been encountered by other codominant markers such as104

microsatellites, which have been commonly used for population genetic analyses in polyploids. One105

way of dealing with allelic dosage that has been used for multi-allelic microsatellite markers has been106

to code alleles as either present or absent based on electropherogram readings (allelic phenotypes)107

and to analyze the resulting dominant data using a program such as polysat (Clark & Jasieniuk108

2011; Dufresne et al. 2014). de Silva et al. (2005) developed a method for inferring allele frequencies109

using observed allelic phenotype data and used an expectation-maximization algorithm to deal110

with the incomplete genotype data resulting from ADU. Attempts to directly infer the genotype111

of polyploid microsatellite loci have also been successfully completed in some cases by using the112
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relative electropherogram peak heights of the alleles in the genotypes (Esselink et al. 2004). The113

estimation problem would be similar for biallelic SNP data collected using RADseq, where a partially114

heterozygous polyploid will have high throughput sequencing reads containing both alleles. For a115

tetraploid, the possible genotypes for a partial heterozygote (alleles A and B) would be AAAB, AABB116

and ABBB. For a hexaploid they are AAAAAB, AAAABB, AAABBB, AABBBB and ABBBBB. In117

general, the number of possible genotypes for a biallelic locus of a partially heterozygous K-ploid118

(K = 3, 4, 5, . . .) is K − 1. A possible solution to this problem for SNPs would be to try to use119

existing genotype callers and to rely on the relative number of sequencing reads containing the two120

alleles (similar to what was done for microsatellites). However, this could lead to erroneous inferences121

when genotypes are simply fixed at point estimates based on read proportions without considering122

estimation error. Furthermore, when sequencing coverage is low, the number of genotypes that will123

appear to be equally probable increases with ploidy, making it difficult to distinguish among the124

possible partially heterozygous genotypes.125

In this paper we describe a model that aims to address the problems associated with ADU by126

treating genotypes as a latent variable in a hierarchical Bayesian model and using high throughput127

sequencing read counts as data (Figure 1). In this way we preserve the uncertainty that is inherent128

in the genotypes of partially heterozygous polyploids by inferring a probability distribution across all129

possible values of the genotype, rather than treating the genotypes as being directly observed. This130

approach has been used by Buerkle & Gompert (2013) to deal with uncertainty in calling genotypes131

in diploids and the work we present here builds off of their earlier models. Our model assumes that132

the ploidy level of the population is known and that the genotypes of individuals in the population133

are drawn from a single underlying allele frequency for each locus. These assumptions imply that134

alleles in the population are undergoing polysomic inheritance without double reduction, which most135

closely adheres to the inheritance patterns of an autopolyploid. We acknowledge that the model in its136

current form is an oversimplification of biological reality and realize that it does not apply to a large137

portion of polyploid taxa. Nevertheless, we believe that accounting for ADU by modeling genotype138

uncertainty has the potential to be applied more broadly via modifications of the probability model139

used for the inheritance of alleles, which could lead to more generalized population genetic models140

for polyploids (see the Extensibility section of the Discussion).141

Materials and Methods142

Our goal is to estimate the frequency of a reference allele for each locus sampled from a population143

of known ploidy (ψ), where the reference allele can be chosen arbitrarily between the two alleles at144

a given biallelic SNP. To do this we extend the population genomic models of Buerkle & Gompert145

(2013), which employ a Bayesian framework to model high throughput sequencing reads (T ,R),146

genotypes (G) and allele frequencies (p), to the case of arbitrary ploidy. The idea behind the model147

is to view the sequencing reads gathered for an individual as a random sample from the unobserved148

genotype at each locus. Genotypes can then be treated as a parameter in a probability model that149

governs how likely it is that we see a particular number of sequencing reads carrying the reference150

allele. Similarly, we can treat genotypes as a random sample from the underlying allele frequency151

in the population (assuming Hardy-Weinberg equilibrium). For our model, a genotype is simply a152

count of the number of reference alleles at a locus which can range from 0 (a homozygote with no153

reference alleles in the genotype) to ψ (a homozygote with only reference alleles in the genotype).154

All whole numbers in between 0 and ψ represent partially heterozygous genotypes. This hierarchical155
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setup addresses the problems associated with ADU by treating genotypes as a latent variable that156

can be integrated out using Markov chain Monte Carlo (MCMC).157

Model setup158

Here we consider a sample of N individuals from a single population of ploidy level ψ sequenced at L159

unlinked SNPs. The data for the model consist of two matrices containing counts of high throughput160

sequencing reads mapping to each locus for each individual: R and T . The N ×L matrix T contains161

the total number of reads sampled at each locus for each individual. Similarly, R is an N ×L matrix162

containing the number of sampled reads with the reference allele at each locus for each individual.163

Then for individual i at locus `, we model the number of sequencing reads containing the reference164

allele (ri`) as a Binomial random variable conditional on the total number of sequencing reads (ti`),165

the underlying genotype (gi`) and a constant level of sequencing error (ε)166

P (ri`|ti`, gi`, ε) =
(
ti`
ri`

)
εri`(1− ε)ti`−ri` if gi` = 0,(
gi`
ψ

)ri` (
1− gi`

ψ

)ti`−ri`
if gi` = 1, . . . , ψ − 1,

(1− ε)ri`εti`−ri` if gi` = ψ .

(1)

If we assume conditional independence of the sequencing reads given the genotypes, the joint167

probability distribution for sequencing reads is given by168

P (R|T ,G, ε) =
L∏
`=1

N∏
i=1

P (ri`|ti`, gi`, ε) . (2)

Since the ri`’s are the data that we observe, the product of P (ri`|ti`, gi`, ε) across loci and individuals169

will form the likelihood in the model. An important consideration here is that when gi` is equal to170

0 or ψ (i.e., when the genotype is homozygous) but the sequence data collected for the individual171

contain both alleles, the likelihood will be 0. To correct for this, we include error (ε) into the model.172

The intuition behind including error is that reads sampled from a locus that is truly homozygous173

can still contain more than one allele due to sequencing errors, giving the false impression that the174

individual may be a partial heterozygote. If we assume that the probability of a sequencing error is175

smaller than the probability of being truly heterozygous (i.e., containing at least one reference allele176

in the genotype), then the probability model we use for reference reads should be able to distinguish177

between homozygotes with reads containing sequencing errors and partial heterozygotes. When we178

do this, the probability distribution for ri` given gi` and ε is split into ψ + 1 cases as above in Eq. 1.179

The next level in the hierarchy is the conditional prior for genotypes. We model each gi` as a180

Binomial random variable conditional on the ploidy level of the population and the frequency of the181

reference allele for locus ` (p`):182

P (gi`|ψ, p`) =
(
ψ

gi`

)
pgi`` (1− p`)ψ−gi` .

We also assume that the genotypes of the sampled individuals are conditionally independent given the183

allele frequencies, which is equivalent to taking a random sample from a population in Hardy-Weinberg184

equilibrium. Factoring the distribution for genotypes and taking the product across loci and individuals185
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gives us the joint probability distribution of genotypes given the ploidy level of the population and186

the vector of allele frequencies at each locus (p = {p1, . . . , pL}):187

P (G|ψ,p) =
L∏
`=1

N∏
i=1

P (gi`|ψ, p`) . (3)

The final level of the model is the prior distribution on allele frequencies. Assuming a priori188

independence across loci, we use a Beta distribution with parameters α and β both equal to 1 as our189

prior distribution for each locus. A Beta(1,1) is equivalent to a Uniform distribution over the interval190

[0, 1], making our choice of prior uninformative. The joint posterior distribution of allele frequencies191

and genotypes is then equal to the product across all loci and all individuals of the likelihood, the192

conditional prior on genotypes and the prior distribution on allele frequencies up to a constant of193

proportionality194

P (p,G|R, ε) ∝ P (R|T ,G, ε)P (G|ψ,p)P (p)

=

L∏
`=1

N∏
i=1

P (ri`|ti`, gi`, ε)P (gi`|ψ, p`)P (p`) . (4)

The marginal posterior distribution for allele frequencies can be obtained by summing over genotypes195

P (p|R, ε) ∝
∑
G

P (p,G|R, ε) . (5)

It would also be possible to examine the marginal posterior distribution of genotypes but here we will196

only focus on allele frequencies (see Discussion for potential applications of the marginal distribution197

of genotypes).198

Full conditionals and MCMC using Gibbs sampling199

We estimate the joint posterior distribution for allele frequencies and genotypes in Eq. 4 using MCMC.200

This is done using Gibbs sampling of the states (p,G) in a Markov chain by alternating samples201

from the full conditional distributions of p and G. Given the setup for our model using Binomial202

and Beta distributions (which form a conjugate family), analytical solutions for these distributions203

can be readily acquired (Gelman et al. 2014). The full conditional distribution for allele frequencies204

is Beta distributed and is given by Eq. 6 below:205

p` | gi`, ri`, ε ∼ Beta

(
α =

N∑
i=1

gi` + 1, β =

N∑
i=1

(ψ − gi`) + 1

)
, for ` = 1, . . . , L. (6)

This full conditional distribution for p` has a natural interpretation as it is roughly centered at the206

proportion of sampled alleles carrying the reference allele divided by the total number of alleles207

sampled given the current state of G in the Markov chain. The “+1” comes from the prior distribution208

and will not have a strong influence on the posterior when the sample size is large.209
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The full conditional distribution for genotypes is split into ψ + 1 cases (similar to the conditional210

prior), making it a discrete categorical distribution over the possible values for the genotypes (0, . . . , ψ).211

Using k as a generic index, the distribution for individual i at locus ` is212

P (gi`|g(-i)`, p`, ri`, ε) =
1

Ci`


εri`(1− ε)ti`−ri`(1− p`)ψ for k = 0,(
k
ψ

)ri` (
1− k

ψ

)ti`−ri` (ψ
k

)
pk` (1− p`)ψ−k for k = 1, . . . , ψ − 1,

(1− ε)ri`εti`−ri`pψ` for k = ψ ,

(7)

where g(-i)` is the value of the genotypes for all sampled individuals excluding individual i and Ci` is213

a normalizing constant equal to the sum of all of the terms:214

Ci` = εri`(1−ε)ti`−ri`(1−p`)ψ+(1−ε)ri`εti`−ri`pψ` +
ψ−1∑
k=1

((
k

ψ

)ri` (
1− k

ψ

)ti`−ri` (ψ
k

)
pk` (1− p`)ψ−k

)
.

The full conditional distribution for genotypes can be seen as the product of two quantities: (1)215

the probability of each of the possible genotypes based on the observed reference reads and (2)216

the probability of drawing each genotype value based on the current value for the frequency of the217

reference allele for locus ` in the population.218

We begin our Gibbs sampling algorithm in a random position in parameter space through the use219

of uniform probability distributions. The genotype matrix is initialized with random draws from a220

Discrete Uniform distribution from 0 to ψ and the initial allele frequencies are drawn from a Uniform221

distribution on the interval [0,1].222

Simulation study223

Simulations were performed to assess error rates in allele frequency estimation for tetraploid and224

hexaploid populations (ψ = 4 and 6, respectively). Data were generated under the model by225

sampling genotypes from a Binomial distribution conditional on a fixed, known allele frequency226

( p` = 0.01, 0.05, 0.1, 0.2, 0.4). Total read counts were simulated for a single locus using a Poisson227

distribution with mean coverage equal to 5, 10, 20, 50 or 100 reads per individual. We then sampled228

the number of sequencing reads containing the reference allele from a Binomial distribution conditional229

on the number of total reads, the genotype and sequencing error (Eq. 1; ε fixed to 0.01). Finally,230

we varied the number of individuals sampled per population (N = 5, 10, 20, 30) and ran all possible231

combinations of the simulation settings. Each combination of sequencing coverage, individuals sampled232

and allele frequency was analyzed using 100 replicates for both tetraploid and hexaploid populations233

for a total of 20,000 simulation runs. MCMC analyses using Gibbs sampling were run for 100,000234

generations with parameter values stored every 100 samples. The first 25% of the posterior was235

discarded as burn-in, resulting in 750 posterior samples for each replicate. Convergence on the236

stationary distribution, P (p,G|R, ε), was assessed by examining trace plots for a subset of runs for237

each combination of settings and ensuring that the effective sample sizes (ESS) were greater than 200.238

Deviations from the known underlying allele frequency used to simulate each data set were assessed239

by calculating the posterior mean of each replicate, followed by subtracting the known value from240

the calculated means and then calculating their overall standard deviation.241
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All simulations were performed using the R statistical package (R Core Team 2014) on the242

Oakley cluster at the Ohio Supercomputer Center (https://osc.edu). Figures were generated using243

the R packages ggplot2 (Wickham 2009), reshape (Wickham 2011) and plyr (Wickham 2007)244

with additional figure manipulation completed using Inkscape (https://inkscape.org). MCMC245

diagnostics were done using the coda package (Plummer et al. 2006). All code is available on GitHub246

(https://github.com/pblischak/polyfreqs-ms-data).247

Results248

Gibbs sampler249

Our Gibbs sampling algorithm was able to accurately estimate allele frequencies for a number of250

simulation settings while simultaneously allowing for genotype uncertainty. There were no indications251

of a lack of convergence (ESS values > 200) for any of the simulation replicates and all trace plots252

examined also indicated that the Markov chain had reached stationarity. We have aggregated the253

scripts for our Gibbs sampler as a developmental R package—polyfreqs—which is available on254

GitHub (https://github.com/pblischak/polyfreqs). Though polyfreqs is written in R, it deals255

with the large datasets that are generated by high throughput sequencing platforms in two ways.256

First, it takes advantage of R’s ability to incorporate C++ code via the Rcpp and RcppArmadillo257

packages, allowing for a faster implementation of our MCMC algorithm (Eddelbuettel & François 2011;258

Eddelbuettel 2013; Eddelbuettel & Sanderson 2014). Second, since the model assumes independence259

among loci, polyfreqs can facilitate the process of parallelizing analyses by splitting the total read260

count and reference read count matrices into subsets of loci which can be analyzed at the same time261

on separate nodes of a computing cluster.262

Simulation study263

Increasing the number of individuals sampled had the largest effect on the accuracy of allele frequency264

estimation (Figures 2 & 3). Since allele frequencies are population level parameters, it is not surprising265

that sampling more individuals from the population leads to better estimates. This appears to be the266

case even when sequencing coverage is quite low (5x, 10x), which corroborates the observations made267

by Buerkle & Gompert (2013). Lower sequence coverage does affect the posterior distribution for268

allele frequencies even when the number of individuals sequenced is large however, by increasing the269

posterior standard deviation (Figure 4). An interesting pattern that emerged during the simulation270

study is the observation that the allele frequencies closer to 0.5 tend to have higher error rates,271

which is to be expected given that the variance of a Binomial random variable is highest when the272

probability of success is 0.5.273

Discussion274

The inference of population genetic parameters and the demographic history of non-model polyploid275

organisms has consistently lagged behind that of diploids. The difficulties associated with these276

inferences present themselves at two levels. The first of these is the widely known inability to determine277

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2015. ; https://doi.org/10.1101/021907doi: bioRxiv preprint 

https://osc.edu
https://inkscape.org
https://github.com/pblischak/polyfreqs-ms-data
https://github.com/pblischak/polyfreqs
https://doi.org/10.1101/021907
http://creativecommons.org/licenses/by/4.0/


the genotypes of polyploids due to ADU. Even though there have been theoretical developments in278

the description of models for polyploid taxa as early as the 1930s, a large portion of this population279

genetic theory relies on knowledge about individuals’ genotypes (e.g., Haldane 1930; Wright 1938).280

The second complicating factor is the complexity of inheritance patterns and changes in mating281

systems that often accompany WGD events. Polyploid organisms can sometimes mate by both282

outcrossing or selfing, and can display mixed inheritance patterns at different loci in the genome283

(Dufresne et al. 2014). If genotypes were known, then it might be easier to develop and test models284

for dealing with and inferring rates of selfing versus outcrossing, as well as understanding inheritance285

patterns across the genome. However, ADU only compounds the problems associated with these286

inferences, making the development and application of appropriate models far more difficult (but287

see list of software in Dufresne et al. 2014). The model we have presented here deals with the first288

of these two issues by not treating genotypes as observed quantities. Almost all other methods of289

genotype estimation for polyploids treat the genotype as the primary parameter of interest. Our290

model is different in that we still use the read counts generated by high throughput sequencing291

platforms as our observed data but instead integrate across genotype uncertainty when inferring292

other parameters, thus bypassing the problems caused by ADU.293

Despite our focus on bypassing ADU, an important consideration for the model we present here294

is that, because it approximates the joint posterior distribution of allele frequencies and genotypes, it295

would also be possible to use the marginal posterior distribution of genotypes to make inferences296

using existing methods. This could be done using the posterior mode as a maximum a posteriori297

(MAP) estimate of the genotype for downstream analyses, followed by analyzing random samples298

from the posterior distribution of genotypes. The resulting set of estimates would not constitute a299

“true” posterior distribution of downstream parameters but would allow researchers to interpret their300

results based on the MAP estimate of the genotypes while still getting a sense for the amount of301

variation in their estimates. Using the posterior distribution of genotypes in this way could technically302

be applied to any type of polyploid, but is only really appropriate for autopolyploids due to the303

model of inheritance that is used. Other methods for estimating SNP genotypes from high throughput304

sequencing data include the program SuperMASSA, which models the relative intensity of the two305

alternative alleles using Normal densities (Serang et al. 2012).306

A second important factor for using our model is that, although estimates of allele frequencies can307

be accurate when sequencing coverage is low and sample sizes are large, the distribution for genotypes308

is likely going to be quite diffuse. For analyses that treat genotypes as a nuisance parameter, this is309

not an issue since we can integrate across genotype uncertainty. However, if the genotype is of primary310

interest, then the experimental design of the study will need to change to acquire higher coverage311

at each locus for more accurate genotype estimation. Therefore, the decision between sequencing312

more individuals with lower average coverage versus sequencing fewer individuals with higher average313

coverage depends primarily on whether the genotypes will be used or not.314

Model adequacy315

As noted earlier, the probability model that we use for the inheritance of alleles is one of polysomy316

without double reduction. In some cases, this model may be inappropriate but it can still be317

informative to check for loci that do or do not follow the model that we assume. Below we describe a318

simple procedure for rejecting our model of inheritance on a per locus basis using comparisons with319

the posterior predictive distribution of sequencing reads. Model checking is an important part of320
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making statistical inferences and can play a role in understanding when a model adequately describes321

the data being analyzed. In the case of our model, it can serve as a basis for understanding the322

inheritance patterns of the organism being studied by determining which loci adhere to a simple323

pattern of polysomic inheritance.324

Given M posterior samples for the allele frequencies at locus `,
{
p
[1]
` , p

[2]
` , . . . , p

[M ]
`

}
, we will325

simulate new values for the genotypes (g̃i`) and reference read counts (r̃i`) for all individuals and326

use the ratio of simulated reference read counts to observed total read counts
(
r̃i`
ti`

)
as a summary327

statistic for comparing the observed read count ratios to the distribution of the predicted read count328

ratios. The use of the likelihood (or similar quantities) as a summary statistic has been a common329

practice in posterior predictive comparisons of nucleotide substitution models, and more recently for330

comparative phylogenetics (Ripplinger & Sullivan 2010; Reid et al. 2014; Pennell et al. 2015). We use331

the ratio of reference to total read counts here because it is the maximum likelihood estimate of the332

probability of success for a Binomial random variable and because it is a simple quantity to calculate.333

The use of other summary statistics, or a combination of multiple summary statistics, would also334

possible. The procedure for our posterior predictive model check is as follows:335

1. For locus ` = 1, . . . , L:336

1.1. For posterior sample m = 1, . . . ,M :337

1.1.1. Simulate new genotype values
(
g̃
[m]
i`

)
for all individuals (i = 1, . . . , N) by drawing338

from a Binomial
(
ψ, p

[m]
`

)
.339

1.1.2. Simulate new reference read counts
(
r̃
[m]
i`

)
from each new genotype for all individuals340

by drawing from Eq. 1.341

1.1.3. Calculate the reference read ratio for the simulated data for sample m and sum across342

individuals: S̃ [m]
` =

∑N
i=1

(
r̃
[m]
i`
ti`

)
.343

1.1.4. Calculate the reference read ratio for the observed data and sum across individuals:344

S` =
∑N

i=1

(
ri`
ti`

)
.345

1.2. Calculate the difference between the observed reference read ratio and the M simulated346

reference read ratios:
{
S` − S̃

[1]
` , . . . ,S` − S̃

[M ]
`

}
.347

2. Determine if the 95% highest posterior density (HPD) interval of the distribution of re-centered348

reference read ratios contains 0.349

When the distribution of the differences in ratios between the observed and simulated datasets350

does not contain 0 in the 95% HPD interval, it provides evidence that the locus being examined351

does not follow a pattern of strict polysomic inheritance. A similar approach could be used on an352

individual basis by comparing the observed ratio of reference reads to the predicted ratios for each353

individual at each locus. We implement the per locus version of this posterior predictive model354

checking procedure in the polyfreqs package with the function polyfreqs_pps.355
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Extensibility356

The modular nature of our hierarchical model allows for the addition and modification of nodes in the357

model graph (Figure 1). One of the simplest extensions to the model that can build directly on the358

current setup would be to consider loci with more than two alleles. This can be done using Multinomial359

distributions for sequencing reads and genotypes and a Dirichlet prior on allele frequencies (the360

Multinomial and Dirichlet distributions form a conjugate family; Gelman et al. 2014). We could also361

model populations of mixed ploidy by using a vector of individually assigned ploidy levels instead of362

assuming a single value for the whole population (ψ = {ψ1, . . . , ψN}). However, this would assume363

random mating among ploidy levels.364

The place where we believe our model could have the greatest impact is through modifications365

and extensions of the probability model used for the inheritance of alleles. These models have been366

difficult to apply in the past as a result of genotype uncertainty. However, using our model as a367

starting point, it could be possible to infer patterns of inheritance (polysomy, disomy, heterosomy)368

and other demographic parameters (e.g., effective population size, population differentiation) without369

requiring direct knowledge about the genotypes of the individuals in the population. For example,370

Haldane’s (1930) model of genotype frequencies for autopolyploids that are partially selfing could371

be used to infer the prevalence of self-fertilization within a population. Similarly, Fisher’s (1943)372

model for double reduction in the inheritance of style lengths for Lythrum could be generalized and373

used alone or together with a model for partial selfing to better understand how these processes374

affect the genetic diversity of a population. A more recent model described by Stift et al. (2008)375

used microsatellites to infer the different inheritance patterns (disomic, tetrasomic, intermediate) for376

tetraploids in the genus Rorippa (Brassicaceae) following crossing experiments. The reformulation of377

such a model for biallelic SNPs gathered using high throughput sequencing could provide a suitable378

framework for understanding inheritance patterns across the genome. An ideal model would be one379

that could help to understand inheritance patterns without the need conduct additional experiments.380

However, to our knowledge, such a model does not currently exist and may not even be possible to381

implement due to the complexity of possible inheritance patterns that might need to be considered382

without the addition of information from crosses.383

Conclusions384

The recent emergence of models for genotype uncertainty in diploids has introduced a theoretical385

framework for dealing with the fact that genotypes are unobserved quantities (Gompert & Buerkle386

2012; Buerkle & Gompert 2013). Our extension of this theory to cases of higher ploidy (specifically387

to autopolyploids) progresses naturally from the original work but also serves to alleviate the deeper388

issue of ADU. The power and flexibility of these models as applied at the diploid level has the389

potential to be replicated for polyploid organisms with the addition of suitable models for allelic390

inheritance. The construction of hierarchical models containing suitable probability models for ADU,391

allelic inheritance and perhaps even additional levels for important parameters such as F statistics392

or the allele frequency spectrum also have the potential to provide key insights into the population393

genetics of polyploids (Gompert & Buerkle 2011; Buerkle & Gompert 2013). Future work on such394

models will help to progress the study of polyploid taxa and could eventually lead to more generalized395

models for understanding the processes that have shaped their evolutionary histories.396
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Table 1: Notation and symbols used in the description of the model for estimating allele frequencies
in polyploids. Vector and matrix forms of the variables are also provided when appropriate.

Symbol Description

L The number of loci.

` Index for loci (` ∈ {1, . . . , L}).

N Total number of individuals sequenced.

i Index for individuals (i ∈ {1, . . . , N}).

ψ The ploidy level of individuals in the population (e.g., tetraploid: ψ=4).

p` Frequency of the reference allele at locus `. [p]

gi` The number of copies of the reference allele for individual i at locus `. [G]

g̃i` Simulated genotype for posterior predictive model checking.

ti` The total number of reads for individual i at locus `. [T ]

ri` The number of reads with the reference allele for individual i at locus `. [R]

r̃i` Simulated reference read count for posterior predictive model checking. [R̃]

ε Sequencing error.

Figure 1: Graphical representation of a hierarchical Bayesian model for estimating allele frequencies.
The two levels (allelic dosage and inheritance) represent the probability models that are used for
inference from one graph node to another. The model we present here focuses primarily on allelic
dosage.

Model for inheritance
pattern

Model for allelic dosage
uncertainty
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Figure 2: Heat maps of error rates (standard deviation from the true value) for allele frequency
estimation in tetraploids. The x-axis shows the number of individuals (i5, i10, i20, i30) and the y-axis
represents the sequencing coverage (c5, c10, c20, c50, c100) for each simulation. Note that the scales
for each heat map are not the same, but the overall pattern of increased accuracy as the number of
individuals and sequencing coverage increases for all allele frequencies.

p=0.01 p=0.05

p=0.1

p=0.4

Tetraploid

p=0.2
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Figure 3: Heat maps of error rates (standard deviation from the true value) for allele frequency
estimation in hexaploids. The x-axis shows the number of individuals (i5, i10, i20, i30) and the y-axis
represents the sequencing coverage (c5, c10, c20, c50, c100) for each simulation. Note that the scales
for each heat map are not the same, but the overall pattern of increased accuracy as the number of
individuals and sequencing coverage increases is the same for all allele frequencies.

p=0.01 p=0.05

p=0.1 p=0.2

p=0.4

Hexaploid
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Figure 4: The posterior standard deviation for allele frequencies decreases with increased sequencing
coverage. This plot provides a comparison of the distribution of posterior standard deviations of the
100 replicates performed for each level of sequencing coverage for the hexaploid simulation with 30
individuals and an allele frequency of 0.2.
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