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Abstract

Within populations of cells, fate decisions are controlled by an indeterminate combination
of cell-intrinsic and cell-extrinsic factors. In the case of stem cells, the stem cell niche
is believed to maintain “stemness” through communication and interactions between the
stem cells and one or more other cell-types that contribute to the niche conditions. To
investigate the robustness of cell fate decisions in the stem cell hierarchy and the role that
the niche plays, we introduce simple mathematical models of stem and progenitor cells,
their progeny and their interplay in the niche. These models capture the fundamental
processes of proliferation and differentiation and allow us to consider alternative possi-
bilities regarding how niche-mediated signalling feedback regulates the niche dynamics.
Generalised stability analysis of these stem cell niche systems enables us to describe the
stability properties of each model. We find that although the number of feasible states
depends on the model, their probabilities of stability in general do not: stem cell-niche
models are stable across a wide range of parameters. We demonstrate that niche-mediated
feedback increases the number of stable steady states, and show how distinct cell states
have distinct branching characteristics. The ecological feedback and interactions mediated
by the stem cell niche thus lend (surprisingly) high levels of robustness to the stem and
progenitor cell population dynamics. Furthermore, cell-cell interactions are sufficient for
populations of stem cells and their progeny to achieve stability and maintain homeostasis.
We show that the robustness of the niche — and hence of the stem cell pool in the niche —
depends only weakly, if at all, on the complexity of the niche make-up: simple as well as
complicated niche systems are capable of supporting robust and stable stem cell dynamics.
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Introduction

Stem cells control the essential processes that facilitate multi-cellular life. Their ability
to continue to produce more specialised types of cells in a coordinated manner underlies
developmental processes, tissue regeneration and wound repair. Stem cell function re-
lies crucially on the ability to make robust cell fate choices (Gurtner et al., 2008; Reya
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et al., 2001). These include the choice between self renewal and differentiation, or — once
committed to differentiation — the choice between two or more specialised cell lineages.
Many factors compound the decision-making process, ranging from cell-intrinsic regula-
tion, to cell-extrinsic factors such as intercellular signalling and environmental stresses
(Enver et al., 2009). Failure to make such cell fate choices correctly, by contrast, leads to
disease and interferes with a host of physiological processes, ranging from control of the
immune response to normal and healthy ageing (Brack et al., 2007; Geiger et al., 2013;
Uccelli et al., 2008).

Stem cell function is therefore safeguarded by a number of mechanisms, that include
an apparently delicately balanced interplay with other cells. The concept of the stem cell
niche (Schofield, 1978), has proved vital to our understanding of stem cell function and
maintenance in a variety of cycling tissues including blood, skin and intestine (Reya et al.,
2001; Spradling et al., 2001). Indeed, it can be argued that the ability of a cell to exhibit
stemness cannot be defined in isolation — that is, without considering the influence of
the niche. Conceptually, niches can be treated as domains of influence in which different
cell populations can reside and exert effects on one another though signalling, paracrinal
and juxtacrinal interactions. Using such a description of stem cell niches, we can test
hypotheses regarding their particular extent, form, and constituents. For example, we
can now test if the interactions that maintain stemness (or the niche) are indeed carefully
balanced, or show a level of robustness to external perturbations. Given the overlap
between niches as defined in stem cell biology and population biology (Székely et al., 2014),
the population biological viewpoint lends itself well to analysis of stem cell systems.

Population biology has a rich history of applications to a wide range of systems
from ecological networks to social organisations (May, 1972; MacArthur & Wilson, 1967;
MacLean et al., 2013; Nowell, 1976; Saavedra et al., 2011); the question whether such sys-
tems are robust or fragile has been central to may of these studies. Populations — whether
they are composed of animal species or cell species — obey certain principles that both
determine and are affected by the birth, growth, and death characteristics. These may
be complex functions that depend on interactions with other species, which can be either
positive (mutualistic), negative (competitive), or a mixture of the two. By integrating
these processes we can build up a description of the dynamics of interacting populations.
Stem cells and their progeny are well-suited to such a description and population biological
concepts begin to gain a foothold in stem cell biology (MacLean et al., 2013; Mangel &
Bonsall, 2013).

The stability of a population dynamical system refers to its ability to return to the
same state following some small perturbation away from its point of equilibrium (Strogatz,
1994). This is an important concept: it enables us to measure the robustness of a particular
state, and to investigate which states may be capable of persisting in nature. There has
been much debate over whether increasing the complexity of a system is likely to lead to
an increase in stability. Early work supported this hypothesis (Elton, 1958; MacArthur,
1955); May subsequently proved a theorem stating that, in general, the stability of a
system will decrease as its complexity increases (May, 1972). More recent results have
extended May’s result and suggested that the system stability can change dramatically
when specific types of interaction are considered (Allesina & Tang, 2012; Kirk et al., 2015,
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in press). In particular, Kirk et al. (Kirk et al., 2015, in press) relax the assumption
that species only interact with one another at random, and in doing so move closer to a
description of systems that we might expect to find in the natural world.

In order to investigate the stability of stem cell states, we develop models describing
the dynamics of a stem cell lineage and study their equilibrium states — which vary between
models — in order to determine which states can persist in nature. Since the stability of
each state depends upon the values taken by the model’s parameters, it is necessary to
consider a range of biologically feasible parameter values. The stability probability for a
given state is defined to be the proportion of times that the state was found to be stable
after repeatedly sampling parameter values from within this range (Kirk et al., 2015, in
press; Christianou & Kokkoris, 2008; Gilpin, 1975; Pimm, 1984; Roberts, 1974).

The crucial stem cell processes of self renewal, differentiation and lineage choice are of
particular interest in the models developed here. We introduce four population biological
models that share these characteristics but differ in their number of lineages and feedback
characteristics. Structure within these models is identified as a key factor in maintaining
stability. Further analysis of one of the models demonstrates how different stable states can
be reached from different experimental conditions (corresponding to different parameter
values). This provides insight into how stem cells maintain homeostasis and how multiple
states can be accessed, and could explain how, for example, depletion of a particular blood
cell population is remedied at the stem/progenitor cell level by a state shift to one that
repopulates the haematopoietic system.

Results

Fized points in the stem cell hierarchy define stable cell states

In order to assess the stability of cell states, we study the fixed points of model systems.
Fixed points correspond to invariant states that are reached as a system approaches sta-
tionarity (other stationary states — such as oscillations or limit cycles — are also possible).
In Figure 1 we give an illustration of fixed points: these are the minima of the state space
defined by a potential function, and cells lying within a basin of attraction will evolve
towards them. Lower minima may correspond to terminally differentiated cell states, and
higher minima — with higher potential — to stem or progenitor cell states. They can also
be thought of as the local (or global) minima in Waddington’s landscapes (Waddington,
1957) — but here the landscape corresponds to the population dynamics, and not the
intra-cellular dynamics of stem cell behaviour as characterised by (e.g.) stem cell markers
Nanog and Pecam for embryonic stem cells, or CD34 and Scal for haematopoietic stem
cells (Rué & Martinez-Arias, 2015).

We consider typical, albeit simplified, stem cell differentiation hierarchies, consisting
of three cell populations: stem cells (.5), progenitor cells (P), and differentiated cells (D).
Four models are constructed from these cell populations, shown in Figure 2; these differ
in their branching and feedback characteristics (Buzi et al., 2015). The models are, of
course, (vastly) simplified descriptions of more complicated processes, however they serve
our goal to compare characteristics, and as such can provide insight into basic mechanisms
of stem cell function. The details of and assumptions underlying the models are given in
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Figure 1: Fized points in cell state space. Fixed points occur at minima on the landscape of cellular states,
and correspond to persistent phenotypes. Each fixed point has a basin of attraction that defines the extent
of its reach. Here, fixed point A may correspond to a stem or progenitor cell state, and fixed points B and
C (with lower energy minima) to terminally differentiated cell states.

the Methods. For the analysis of fixed points of a system, we have developed methods
of generalised stability analysis that allow us to characterise the fixed points of stem cell
models and assess their stability (Kirk et al., 2015, in press). We provide a description of
these methods and the statistical procedures that we use in Methods. The crucial concept
derived from these methods is the stability probability of a fixed point. This defines the
probability that a fixed point of a model will be stable, given that we know that the model
parameters will lie within some range, but we do not know their values.

Shown in Table are the stability probabilities for each fixed point of the models under
investigation in column a. The number of fixed points differs between models S1 — 54.
Each model has the origin as a fixed point (fixed point 1); this corresponds to a state
where all species go extinct. We do not analyse these points further since they are not of
biological interest (some might still have interesting mathematical properties). In addition
fixed point 2 for models S3 and S4 is not reachable; that is, the system will never end
up in this state starting within the parameter ranges that we study. In previous work,
Roberts (Roberts, 1974) referred to reachable fixed points as feasible. Here we will also
leave aside the unreachable fixed points, and proceed to analyse those fixed points that
are both reachable and nonzero.

The number of biologically meaningful (nonzero and reachable) cell states is two for
models 51,53, and S4, and one for model S2. We see that the number of cell types
modelled does not correspond to the number of possible fixed points. For model S1 (see
Figure 2), fixed point 2 describes a state where progenitor and differentiated cell popu-
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Figure 2: Schematic description of the models S1 — S4. Black arrows denote production by proliferation
or differentiation and red arrows denote inhibition of cell proliferation by negative feedback.

lations co-exist, but the stem cell pool has become completely depleted. The probability
that this fixed point is stable is 0.75. The second fixed point describes a state where all
three cell populations are positive, and this state will always be stable no matter where
one begins in parameter space.

Of the three models that each represent five populations, model S2 has only one
relevant fixed point — even fewer than model S1. This tells us that interactions only
between differentiated and progenitor cells and not with the stem cell compartment limits
the richness of dynamics available. The single biologically relevant state of model S2
is always stable. Model S3 has two reachable fixed points, both of which have positive
population sizes for all five species (we now have branching in the stem cell compartment
into two progenitor cell species). Each of these fixed points is stable for all parameter
values: the system, by virtue of the nature of the cell—cell interactions is robust. For the
final model, S4, we see that its stability properties closely reflect those of model S3: both
biological fixed points (3 and 4) are always stable. Thus, the presence or absence of a
direct signal from differentiated cells onto stem cells does not have great effect on cell
state stability.

Structure in the stem cell hierarchy maintains stability

In addition to the true stability probabilities obtained for each model state (Table
, column a), we also calculate the stability probabilities under models that ignore the
statistical dependencies inherent to real dynamical systems; this perspective has been
very popular in population biology, where it was often (Allesina & Tang, 2012; May,
1972) (but not always (Kirk et al., 2015, in press; Roberts, 1974)) seen as a valid attempt
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Model | Fixed Point | (a) (b) (c)
S1 1 0.25 0.25 0.034
2 0.75 0.75  0.13
3 1.0 0.94 0.19
52 1 0.83 0.83 0.0038
2 1.0 1.0 0.011
S3 1 0.83 0.83 0.0038
2 _ _ _
3 1.0 1.0 0.018
4 1.0 1.0 0.018
S4 1 0.83 0.83 0.0036
2 _ _ _
3 1.0 0.96 0.023
4 1.0 0.96 0.023

Table 1: The stability probabilities for each fixed point of models S1— S4. For each fixed point: (a) is the
true stability probability; (b) is the stability probability under an independent null distribution; (c) is the
stability probability under an i.i.d. null distribution.

at assessing the stability of ecological systems. There the surprising result has been that
large and complex ecological systems tend to be less stable than simple systems; the results
in columns b and ¢ in Table correspond to the stability probabilities obtained for such
models. See Methods for a description of how each of these distributions was calculated.

Upon comparison of columns a — ¢ in Table , two main observations can be made.
First, there are no significant differences between the stability probabilities given by the
true and the independent distributions. This suggests that the dependencies between
parameters of the system are not directly responsible for the stability of its cell state;
rather it is the (feedback) structure of a differentiation cascade imposed by the niche
microenvironment that confers stability. Second, there are striking differences between the
stability probabilities for the true/independent and the i.i.d. distributions (see (Kirk et al.,
2015, in press) for further details). In most cases, the i.i.d. probability of stability is close
to zero: so the structure of the stem cell ecology is far from random. While the structure
alone suffices to determine stability, the detailed parameters (e.g. those determining the
rates of asymmetric division) will be under the influence of natural selection and will
reflect, for example, the physiological requirements for certain numbers/volumes of cells
of each given type in a healthy (generally homeostatic) system.

Detailed analysis of the stable states of model S3

More can be learned about the ecology of stem cells and their progeny by investigating
the dynamics of these models more closely. In particular it allows us to start to understand
the roles of individual parameters on the behaviour of such systems. Here we consider in
more detail the possible stable states of model S3 (the other models exhibit qualitatively
the same behaviour) and investigate what initial states lead to the behaviours associated
with each of its biologically relevant fixed points. We find that although two states can be
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Figure 3: Branching characteristics of distinct lineages. Production rates of progenitor and differentiated
cells affect the steady state reached. Histograms of parameter values that lead to one of two fixed points
for model S3. The first fixed point is characterised by a higher proportion of progenitor cells (prog. cell
bias) and the second fixed point is characterised by a higher proportion of differentiated cells (diff. cell
bias). ‘A’ and ‘B’ denote the two possible lineages that stem cells give rise to. To reach the progenitor
cell-biased state, lineage A is favoured, whereas to reach the differentiated cell-biased state, lineage B is
favoured.
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reached that yield positive population sizes for all species, bistability was not observed.
This means that there do not exist any experimental conditions within the observed range
from which both of the stable states can be reached; rather depending on the system
parameters either one or the other will be attained.

We proceed to look at what differences there are in the distributions of parameters
leading to each stationary state. From a total sample of 100,000 parameter sets, we
find that approximately 8000 lead to fixed point 1 and another approximately 8000 lead
to fixed point 2. It is interesting to note that only for this small proportion (16%) of
possible parameter combinations states is it possible to reach biologically relevant states;
the majority of parameters lead to extinction of species.

In order to ascribe significance to the results we obtain, we need to understand what
state each of the fixed points corresponds to. Recall Figure 2 for a graphical depiction of
model S3: a stem cell gives rise to two progenitor cell populations, which here we call A
and B. Each progenitor cell population can proliferate or differentiate into a corresponding
differentiated cell population.

Fixed point 3 corresponds to higher population sizes for progenitor cells by a factor
of 10 — for both lineages — compared with the differentiated cell populations. Fixed point
4, in contrast, is characterised by higher levels of differentiated cell populations, again by
approximately a factor of 10, relative to the progenitor cell populations. In Figure 3 the
distributions of parameters that give rise to these two different states are plotted, along
with a description of their meaning.

By studying Figure 3 we can describe the differences that lead to one fixed point or the
other. To reach the state dominated by progenitor cells requires higher production rates
of lineage A progenitors than lineage B. It also requires lower production and death rates
of differentiated cells of lineage A compared to lineage B. We observe symmetries between
the distributions that lead to each state: to reach the state dominated by differentiated
cells requires, conversely, a higher production rate for progenitor cells of lineage B than
lineage A, and lower production and death rates for the differentiated cells of lineage B
than lineage A.

Describing how lineage bias influences the proportions of different cell species at steady
state is especially interesting given the importance of branching fates in stem cell hierar-
chies, for example in the haematopoietic lineage between myeloid and lymphoid cell fates.
The analysis performed here on fixed points 1 and 2 extends the concept of mapping a
model’s basin of attraction in parameter space. We can find what regions in parameter
space lead to one, or another, fixed point and begin to delineate a boundary between
them. Characterising the behaviour of a model with respect to a broad area in parameter
space, rather than only at some specific values, enhances our understanding of a model
and its potential use.

Discussion

The ability to make robust fate decisions in a stochastic environment, and the abil-
ity to remain a homeostatic population of differentiated, differentiating and stem cells,
despite frequently low numbers of stem cells, is a characteristic feature of multi-cellular
organisms (Garcia-Ojalvo & Martinez-Arias, 2012; Pauklin & Vallier, 2013; Philpott &
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Winton, 2014). Such a system can be disrupted, for example, by introducing cells with
uncontrolled differentiation and proliferation patterns, i.e. cancer (akin here to an inva-
sive species in classical ecology); then a set of new population dynamics takes over and
determines the fate of the cell population. Quite generally, stem cells and their progeny
represent populations of interacting cell species, analogous to populations of interacting
species in ecology, and are thus amenable to being modelled using concepts from pop-
ulation biology. Substantial research has already been undertaken in ecology and has
considered, in particular, the relationship between complexity and stability (Allesina &
Tang, 2012; Elton, 1958; MacArthur, 1955; May, 1972; Ives & Carpenter, 2007; Roberts,
1974; Saavedra et al., 2011).

Mathematical analyses allow us to address questions that are inaccessible experimen-
tally. Here we have developed and applied mathematical methods that characterise the
stability properties of stem cell population models, focussing on the effects of heterogeneity
and of dependencies between species in a hierarchy; while we have increasing experimental
power, for example, to do in vivo imaging of the haematopoietic stem cell niche in bone
marrow (Lo Celso et al., 2009), or to study stem cells in intestinal crypts (Drost et al.,
2015), most processes are not directly accessible to observation, and mathematical models
can be used to link observables to underlying processes in a rational and hypothesis-driven
way. Here the structure of the cell population — stem cells and their progeny — is found
to be crucial in enabling stem cell systems (i.e. stem cells, progenitors and their descen-
dants) to reach stable states; homogeneous (randomly interacting) cell populations are
not stable. Parametric dependencies affect the stability to a much lesser extent, and we
still find stable conditions for stem cells and their progeny to exist in homeostasis when
the detailed parameters are ignored.

We analysed the fixed points of one system (model S3) in more detail, as we found that
multiple cell states could be reached by varying the in silico experimental conditions. The
balance of progenitor and differentiated cells in model S3 is controlled by the propensity of
stem cells to favour production of progenitor and differentiated cells in one of two possible
lineages. Given the number of possible branching points in adult stem cell hierarchies,
characterised by (for example) the multiplicity of haematopoietic progenitor cell species
and the possible interactions between them (Wang & Wagers, 2011; Wilson & Trumpp,
2006), such asymmetries are very interesting to identify, and could exert key control over
cell fate choice. To analyse this branching process further, comparison of this model to cell
species data is required; this will allow us to distinguish between the model’s two lineages.

The number of states and stability properties given by models 52 and S3 differ, however
model S4 shares very similar fixed point characteristics to model S3. This suggests that
whereas niche-mediated feedback onto stem cells is a key factor in state determination,
whether the signal comes from the progenitor or the differentiated cell pool (the distinction
between models S3 and S4) is much less important. The fact that structurally different
(though related) models share qualitative features is encouraging as this suggests that
such feedback might be a generic design feature shared across stem cell systems (Babtie
et al., 2014). In light of the results and taken against the background of a vast body of
work in population biology, it is certainly hard to propose other mechanisms that would
confer such stability.
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The definition of stability used throughout this work — that a system at a fixed point
will return to the same fixed point following a small perturbation — at times may not
match the biologically ‘stable’ properties that we aim to describe. One example of such
a mismatch is that of oscillating systems, which can be stable in the sense of persistence.
Another example is more subtle: if we compare two bistable systems, one where both
fixed points have positive values for all species, and the other where for one fixed point at
least one (or more species) goes to 0, we might wish to distinguish between them. That
is, we might wish to call the perturbation from one state to another that causes at least
one species to vanish greater (in the sense of being destabilising) that the perturbation
that causes a state change that is not associated with the extinction of any species. This
is an interesting avenue for future work where perhaps different criteria for stability could
be used that reflect other aspects of biological homeostasis, such as species’ extinction
(Saavedra et al., 2011) or the effects of neutral mutations (Traulsen et al., 2012).

Recent theoretical and experimental studies suggest that multistability plays an im-
portant role in cell fate determination, demonstrated via studies of the Wnt signalling
pathway (MacLean et al., 2015; Schuijers et al., 2015). While the bistable model of
(MacLean et al., 2015) was proved to have two stable states for certain parameter values,
similar analysis has not yet to our knowledge been performed for the feedback mechanism
proposed in (Schuijers et al., 2015). Generalised stability analysis could shed light on the
bistable regime controlled by the Ascl2 gene that is activated by Wnt; a system amenable
to modelling. Here, the ecological perspective is perhaps most intimately coupled with
cellular and molecular processes, and we can begin to study the multi-level and multi-scale
interplay between these different levels in vitro, in vivo an in silico.

Conclusions

Here we have seen that structure (in the sense of either an underlying interaction net-
work) bestows stability on such systems. We have shown how the stability dramatically
decreases when structure is removed. We found this to be the case for all of the stem
cell models that we studied here. For models with multiple biological steady states, we
identified how each could be reached and in doing so mapped out the basins of attrac-
tion in parameter space. This provides insight into how branching decisions in stem cell
hierarchies can be made. What emerges from this analysis is the remarkable robustness
of stem-cell systems: their stability following a perturbation is a result of cell-cell inter-
actions. This robustness has two consequences: (i) it provides stem cells with a stable
ecosystem in which they can fulfill their function in e.g. maintaining tissue homeostasis;
(ii) the flip-side is that malfunctioning stem-cell systems — such as systems with additional
competition with cancer (stem) cells — may also be robust to a similar extent (MacLean
et al., 2015; Youssefpour et al., 2012). Note, however, that the robustness we discuss
here in no way limits the ability of stem cells and their progeny to exhibit considerable
levels of heterogeneity — this is possible independently of the population dynamics(Rué
& Martinez-Arias, 2015). But as our understanding of the structure of stem cell ecosys-
tems (as well as ecosystems more generally) increases we also learn how to shape their
fate: being aware that cancer is an evolutionary/ecological disease (Frank, 2007) is now
opening up promising new therapeutic interventions.
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Methods

Model development

Four models are introduced, each consisting of stem (.5), progenitor (P), and differen-
tiated (D) cell populations. The first of the models (S1) has three cell populations; the
remaining three (52 —S4) have five. These extra two populations correspond to a branch-
ing point in the differentiation hierarchy (for example, in haematopoiesis, into myeloid
and lymphoid lineages).

We make the assumptions that (i) renewal is restricted to S and P; (ii) only D are de-
pleted through death/migration; (iii) differentiation is irreversible; (iv) a cell can influence
its parent/grandparent population via intercellular signalling. The models are depicted
in Figure 2, and full description of their composition including the equations that govern
them is given in Appendix A.

Generalised stability analysis

In order to assess the stability of cell states, we calculate the Jacobian/community
matriz, for a given state of the system (set of parameter values). This allows us to
determine whether or not the system is stable in this state. We repeat this procedure
for a large number of parameter sets, sampled in the parameter space in an attempt
to capture the global behaviour characteristics of the system. From this analysis, we
determine the probability that each fixed point of a given model is stable. We compare
these probabilities with those derived from a null distribution, obtained by permuting
the connections between cell populations at random. To calculate the independent null
distribution we sample with replacement the distribution over each entry in the Jacobian,
maintaining the entry position. To calculate the i.i.d. distribution we again sample with
replacement from the Jacobian, but we now pool entries from all positions, thus the
distribution from which we are sampling is now i.i.d. (Kirk et al., 2015, in press). Further
details of the methods of statistical analysis are given in Appendix B.
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Appendix A. Mathematical Models of niche-mediated stem cell feedback

We develop four ordinary differential equation (ODE) models that describe stem cell
differentiation dynamics. They all share common features and differ in those parts that we
wish to compare and contrast. In each model we have a three-layer hierarchy, consisting
of stem, progenitor and differentiated cells. Each model is built from a set of shared rules
that describe cellular growth, death and differentiation. These rules also define how one
species can regulate the growth of another through feedback.

The models differ in the number of species that exert and experience the effects of
feedback. Model S1 has three species, whereas models S2 — S4 each have five. The
extra two species result from a branching point that represents branching cell fates: when
the stem cell divides it is able to differentiate into one of two progenitor species, each of
which produces differentiated cell progeny. For example in the haematopoietic hierarchy,
the myeloid /lymphoid branching point from a multipotent progenitor represents an early
cell fate choice. Further down the myeloid lineage we might reach, for example, the
monocyte/granulocyte branching point from a granulocyte monocyte progenitor. All of
the S-models share a common set of assumptions. Namely, that

e stem and progenitor cells can self renew, but differentiated cells cannot;
e differentiation is irreversible (dedifferentiation is not allowed);
e stem and progenitor species cannot die or migrate out of the niche;

e feedback enters the model through linear growth inhibition of one species on either
itself or its parents/grandparents.

The models are parameterised by terms representing growth, differentiation and death
rates. We are going to investigate the region of parameter space p € [0, 1] for each model
parameter p. Parameters are assigned biological meaning, thus should never be negative,
and we set the upper limit to be 1 so that each p is interpreted as a rate parameter. This
limit can be set without loss of generality: different parameter ranges could be studied
with a rescaling parameter that would not alter the results beyond a rescaling of time
(here given in arbitrary units).

Appendiz A.1. Model S1
This model describes the dynamics of the following species in the haematopoietic hier-
archy: stem cells (z); progenitor cells (x1); and differentiated cells (z2). Their dynamics
are given by
.Z:() = aa:o(l — Xy — I1 — xg) — blxo (Al)
1 = bixg + ngl(l —Xg— X1 — .1‘2) —dx;
Zo = dx1 — fao
where the parameters (a, by, bo,d, f) characterise the phenotypes of the species and are
described in Table A.2. Here, populations zg and z7 self-renew at rates a and by, re-
spectively. They differentiate into daughter species at rates by and d, respectively, and

x9 dies/migrates out of the niche at rate f. There is also feedback onto the self renewal
terms of xy and z1: these are affected by all species in the model.
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Symbol | Definition

a Rate of self renewal of xg

by Rate of differentiation of xy — x1
by Rate of self renewal of x1

d Rate of differentiation of z1 — 29
f Rate of death of xo

Table A.2: Description of parameters that characterise models S1.

Appendiz A.2. Model S2

Here we include a branching point in the hierarchy and consider feedback from differ-
entiated cells onto progenitor cells, but not onto the parent stem cell population. We now
have two progenitor cell populations, x1 and x2, that differentiate into two differentiated
cell populations, x3 and x4, respectively. The equations that specify this model are

2o = axo(l — zg) — (c1 + c2)xo (A.2)
¥ =cxo(l —x1 —x3) — €111

g = coxo(l — 29 — x4) — €272

T3 = €11 — g173

Ty = €2T2 — ga4
where the parameters (a, 1, c2, €1, €2, g1, g2) are defined in Table A.3.

Appendiz A.3. Model S3

This model extends model S2 by including a separate level of feedback: from differenti-
ated cells onto progenitor cells, in addition to the feedback exhibited by S2. The equations
for model S& are given by

2o = axo(l — xog — 1 — 22) — (c1 + ¢c2) 70 (A.3)
X1 =crxo(l —x1 —x3) — €111

X9 = coxo(l — 29 — x4) — €272

T3 = €11 — g123

Ty = eaT9 — galy

where the same parameter set as for model S2 describes the model.

Appendiz A.4. Model S4

This model considers additional feedback from differentiated cells onto stem cells. So
we consider the joint effects of (differentiated — progenitor cell) feedback and (progenitor
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Symbol | Definition

a Rate of self renewal of z

c1/2 Rate of differentiation of zo — /9
e1 Rate of differentiation of 1 — 3
es Rate of differentiation of z9 — x4
g1 Rate of death of x3

g9 Rate of death of x4

D12 Rate of self renewal of z;

Table A.3: Description of parameters that characterise models S2 — S4.

— stem cell) feedback. The equations that specify S8 are

Zo = axo(l —xg— 21 — 29 — 23 — 14) — (1 + C2) 70 (A4)
71 =cxo(l —x — x3) — e1y

Zo = coxo(l — xo — x4) — €22

T3 = €171 — g173

T4 = €2T2 — GoT4

where the parameters are, as above, specified in Table A.3. This completes the family of
models that we study here, exhibiting a range of behaviour targeting mechanisms of cell
fate decision-making and the role that niche-mediated feedback plays.

Appendix B. Extended methods for linear stability analysis

Linear stability analysis describes a method to assess how a dynamical system responds
to small perturbations about its equilibria. Here we introduce linear stability analysis and
describe how we use generalised stability analysis to study the stability properties of fixed
points (Kirk et al., 2015, in press).

Appendiz B.1. Background

We begin with some definitions. A system is a set of interacting dynamic variables.
Since here we are considering systems such as those found in an ecological setting, we refer
to the variables as species. We consider (eco)systems whose dynamics can be described
by ODEs, so we can write down the system dynamics in general form as

() = F(x(t)) (B.1)

where x(t) is a vector of size n (n is the total number of species) that gives the abundance of
each species at time ¢ (we will use x(t) = x i.e. time dependence implicit). The abundance
could be represented by whole numbers of species or by their concentration, given by the
fraction of a species occupying a certain space. F(x(t)) = [F1(x(t)), Fa(x(t)), ..., Fn(x(t))]
are non-linear functions that define the rates of change of the species and include the
model’s parameter dependencies.
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Since we are interested in the behaviour of the model close to steady state, we consider
a Taylor expansion of F'(x(t)) about the point xg, where x¢ defines a fixed point of the
system. In doing so we aim to learn about how the model responds to perturbations from
this steady state. Discarding terms of order z2 or higher from a Taylor expansion we have

OF (x0)

x = F(x9) + (x — x9) B

. (B.2)

Since xg is a fixed point of the system, F(xg9) = 0. Substituting y = x — xo we have the
linearised system

y = Ay (B.3)

where A is called the Jacobian matrix in a mathematical context or the community matrix
in an ecological one (Levins, 1968). We can study A to determine properties of the system
at hand. Specifically, we can find the eigenvalues of A (\; where i € (1,2, ...,n)) by solving

det(A— ) =0 (B.4)

for A, where I is the n xn identity matrix. We can then use the A to define stability criteria:
if Re{\;} < 0 Vi then the system is stable about the point xq: if the system is perturbed
slightly from state xq, it will return to the same state following some time delay. If this
condition does not hold, the fixed point is unstable. See, for example, Strogatz (1994)
for further discussion of linear stability analysis. This definition of stability is used in a
broad variety of applications in dynamical systems; we are interested particularly in its
ecological applications, by May (1973) and others.

In 1972, Robert May proved a theorem that demonstrated that as the complexity of a
system increases, its stability will in general decrease and for large enough systems tends
towards zero (May, 1972). Complexity here is quantified either by the total number of
species in the system or by the number of links between them. For a randomly connected
system of n species, with connectance — the number of actual links over the number of all
possible links — C and average link strength (or variance) «, then, for large n, a system
will almost certainly be stable when

1
vnC

(May, 1972). This result contradicted current opinion of the time which stated that in gen-
eral as systems grow in complexity their stability should increase (Elton, 1958; MacArthur,
1955). The implications and uses of this theorem have been wide and varied; outside of
ecology it has found application in fields including molecular biology and economics.

Given this theorem, a question arises, namely, how do large systems persist in nature?
As their size and complexity increases, Equation B.5 states that their probability of sta-
bility will eventually approach zero. To begin to answer this, note that Equation B.5 gives
a statement about the behaviour of systems where links between species are placed at
random. Of course in the real world interactions are not completely random but guided
by evolution.

a < (B.5)
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Imaginary part

Real part

Figure B.4: [llustration of the circular law for a random matriz distribution. Jacobian entries for 5 x 5
matrices are drawn from an empirical i.5.d. distribution. The eigenvalues for each Jacobian are calculated
and can be plotted on the complex plane, as shown here.

Results regarding the stability of biological systems by May, and recent extensions
to his work by Allesina & Tang (2012), rely on interactions between species being i.i.d.
because they appeal to a theorem known as the circular law, and its extensions (Girko,
1984; Tao et al., 2010). This states that, given a system of n species with interactions
between them drawn according to an i.i.d. distribution, then in the limit n — oo, the
eigenvalues of the system lie on a circle in the complex plane. In the case of finite n,
the spectral distribution of eigenvalues still approaches a circular distribution, with some
“bleeding” at the edges, especially along the real axis. As an example, shown in Figure
B.4 are the eigenvalues of 100,000 5 x 5 matrices with 4.i.d. entries. Illustration of the
circular law is useful as a point of comparison with numerical results.

Appendixz B.2. Generalised stability analysis

In order to conduct stability analyses for each of the models we evaluate the Jacobian
matrix at each fixed point for a given parameter vector. We sample the parameter space
randomly, keeping only those points that give rise to fixed points in the positive quadrant,
i.e. we discard parameters giving rise to fixed points that are not feasible in the sense of
being biologically relevant or reachable, from some initial conditions.

We follow these steps to determine the stability probability for a given model around
a fixed point:

1. Solve x = 0 to find symbolic expressions for the values of each species (total number
n) at each fixed point in terms of the parameters.

2. Sample a 1 x d parameter vector p (model contains d free parameters) and evaluate
the fixed point for these values. Check reachability: if the fixed point lies within the
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Imaginary part

0

Real part

Figure B.5: Eigenvalue distributions for the true, independent and i.i.d. distributions of Model S4. The
independent distribution (dark blue) deviates considerably from the near-circular i.i.d. distribution (light
blue); the true distribution (purple) is even more tightly constrained.

positive orthant, i.e. all species > 0, proceed. If not, resample.

3. For p, find the eigenvalues A\;, i € (1,2,...,n) of the Jacobian, J. Recall that
J = % where F' is given by the model equations, x = F(x) and evaluated at
fixed point xg.

4. Repeat steps (2) and (3) until a total of N reachable points are found.

5. Construct s, where s; = 1 if max(Re{\;}) < 0 for A; of p; € p, and s; = 0 otherwise.

i.e. s; indicates whether or not the model is stable around the fixed point for p;.

N
6. Calculate the stability probability: P(stable) = % > Sk
k=1

Note that the stability probability P(stable) = P(stable|reachable). That is, we cal-
culate the probability that a given fixed point is stable given that it is reachable from the
starting point (parameter values and initial conditions).

Aside from calculating P(stable), given the distribution of Jacobian matrices that this
analysis gives us, we can also investigate the fixed points of a model in other ways, such as
by quantifying the basins of attraction of a model and looking at their intersection. We can
also look at basins of attraction in parameter space: the effects that varying parameters
(rather than initial conditions) have on the reachability of the fixed points.

Appendiz B.3. Null distributions to describe the stability of a model

In this work we set out to study the stability properties of stem cell models and in
particular to determine which properties of the models confer to them more or less stability
around a certain fixed point. So, in addition to comparison between models, for a single
model we would like to compare its stability properties with those of a permuted version
of the same model. In doing so we essentially create a null distribution for the stability
properties of a model around a given fixed point.
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In fact, we consider two null distributions for each model. First, we sample with
replacement from the empirical distributions that we have for each entry in the model
Jacobian, maintaining the entry place in the matrix — denote this distribution ¢; ;. For
example, to sample from ¢ 1 is to sample from the N values we have for the first entry in
the Jacobian: Jy1. This we call the independent null distribution: it removes dependencies
between entries in the Jacobian. Second, we sample again from the distribution over all
Jacobian entries but now we combine the values for all entries so that, for each entry in
our new Jacobian, we sample with replacement from the empirical distribution containing
the n xn x N values — we denote this distribution 6. This is an empirical 4.i.d. distribution
since we are now sampling independently from the same distribution for each entry in the
Jacobian.

To construct these two null distributions we follow steps (1)-(6) as above but replace
(3) by, for the independent null distribution:

e Construct a new Jacobian by sampling with replacement from ¢(i, j) for each entry
J(i,7) and find its eigenvalues

and for the 7.7.d. null distribution:

e Construct a new Jacobian by sampling with replacement from 6 for each entry in J
and find its eigenvalues.

Given these distributions, which define independent and 4.i.d. permutations of the
original eigenvalue distribution of a model, we can investigate the impact that the struc-
ture of a model has on the eigenvalue distribution. Shown in Figure B.5 are the true,
independent and i.i.d. eigenvalue distributions for fixed point 4 of model S4. Here we
see that the eigenvalues of both the true and independent distributions are more tightly
constrained in the complex plane than the eigenvalues of the i.i.d. distribution, and that
the 4.i.d. distribution approaches a circular distribution conforming with the circular law
(Girko, 1984), and in similarity with Figure B.4.
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