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Summary

Cellular signalling processes can exhibit pronounced cell-to-cell variability in genetically iden-
tical cells. This affects how individual cells respond differentially to the same environmental
stimulus. However, the origins of cell-to-cell variability in cellular signalling systems remain
poorly understood. Here we measure the temporal evolution of phosphorylated MEK and ERK
dynamics across populations of cells and quantify the levels of population heterogeneity over
time using high-throughput image cytometry. We use a statistical modelling framework to show
that upstream noise is the dominant factor causing cell-to-cell variability in ERK phosphoryla-
tion, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. In particular,
the cell-to-cell variability during sustained phosphorylation stems from random fluctuations in
the background upstream signalling processes, while during transient phosphorylation, the het-
erogeneity is primarily due to noise in the intensity of the upstream signal(s). We show that
the core MEK/ERK system uses kinetic proof-reading to faithfully and robustly transmits these
variable inputs. The MAPK cascade thus propagates cell-to-cell variability at the population
level, rather than attenuating or increasing it.

Introduction

The behaviour of eukaryotic cells is determined by the intricate interplay between signalling and
regulatory processes. Within a cell each single molecular reaction occurs randomly (stochasti-
cally) and the expression levels of molecules can vary considerably in individual cells (Bowsher
and Swain, 2012b). These non-genetic differences can and frequently will add up to macroscop-
ically observable phenotypic variation (Balázsi et al., 2011; Spencer et al., 2009; Spiller et al.,
2010). Such variability can have organism-wide consequences, especially when small differences
in the initial cell populations are amplified among their progeny (Pujadas and Feinberg, 2012;
Quaranta and Garbett, 2010). Cancer is the canonical example of a disease caused by a se-
quence of chance events that may be the result of amplifying physiological background levels of
cell-to-cell variability.

Better understanding of the molecular mechanisms behind the initiation, enhancement, at-
tenuation and control of this cellular heterogeneity should help us to address a host of funda-
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mental questions in cell biology and experimental and regenerative medicine. Characterisations
of the origins of cell-to-cell variability in biological systems have so far generally related to
gene expression (Elowitz et al., 2002; Hilfinger and Paulsson, 2011; Swain et al., 2002). How-
ever, cell-to-cell variability can arise without substantial contributions from transcriptional and
translational processes and also characterizes signal transduction at the single cell level (Colman-
Lerner et al., 2005; Jeschke et al., 2013). It has now become possible to track populations of
eukaryotic cells at single cell resolution over time and measure the changes in the abundances
of proteins. For example, rich temporal behaviour of p53 (Batchelor et al., 2011; Geva-Zatorsky
et al., 2006) and Nf–κb (Ashall et al., 2009; Nelson et al., 2004; Paszek et al., 2010) has been
characterized in single-cell time-lapse imaging studies. But because these studies tracked a small
number of cells continuously it is difficult to gauge the causes of cell-to-cell variability, due to
lack of statistical power, but even this is now becoming possible (Selimkhanov et al., 2014).
Alternatively, measurements can be obtained by quantitative flow or image cytometry (Ozaki
et al., 2010) where data are obtained at discrete time points but encompass thousands of cells,
which allows one to investigate the causes of cell-to-cell variability. In the present study, this
latter methodology is applied to mitogen activated protein kinase (MAPK) signalling cascades.

MAPK mediated signaling affects cell fate decision making processes (proliferation, differ-
entiation, apoptosis and cell stasis) and cell motility. The mechanisms of MAPK cascades and
their role in cellular information processing have been investigated extensively (Aoki et al., 2011;
Kiel and Serrano, 2009; Mody et al., 2009; Piala et al., 2014; Sturm et al., 2010; Takahashi et al.,
2010; Voliotis et al., 2014). Our aim is to gauge and characterize sources and effects of vari-
ability in MAPK signalling, focusing on the extracellular-signal-regulated kinase (ERK) and its
response to external stimulation (see Figure 2A). We use quantitative image cytometry to probe
the cellular abundancies of active ERK and its cognate kinase MEK in a large number of PC12
cells collected at different times. This is coupled to a detailed Bayesian analysis of mathematical
models of the MEK-ERK signalling cascade, where we infer the modes of ERK phosphorylation
and dephosphorylation and quantify the temporal effects of different sources of noise on the level
of population heterogeneity in activated ERK and MEK.

The molecular causes underlying population heterogeneity are only poorly understood, but
two notions have come to dominate the literature: intrinsic and extrinsic causes of cell-to-cell
variability (Bowsher and Swain, 2012a; Hilfinger and Paulsson, 2011; Komorowski et al., 2010;
Swain et al., 2002; Toni and Tidor, 2013) (see Figure 1A-D). The former refers to the chance
events governing the molecular collisions in biochemical reactions. Each reaction occurs at a
random time leading to stochastic differences between cells over time. The latter subsumes
all those aspects of the system which are not explicitly modelled. This includes the impact of
stochastic dynamics in any components upstream and/or downstream of the biological system
of interest which may be caused, for example, by the stage of the cell cycle (which will affect
cell sizes, transcription activity, and availability of free ribosomes and proteasomes) and the
multitude of factors deriving from it. To date the most comprehensive characterisations of the
interplay between intrinsic and extrinsic noise in biological systems generally relate to gene
expression (Elowitz et al., 2002; Swain et al., 2002), using, for example, dual reporter assays
which explicitly separate out extrinsic and intrinsic sources of variability (Hilfinger and Paulsson,
2011). These assays, however, cannot be used in all conditions; it is therefore important to
develop alternative approaches that can distinguish between the different noise sources. Here
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we develop an in silico statistical model selection (Kirk et al., 2013) framework for this purpose
and we demonstrate that we can confidently implicate extrinsic noise as the dominant factor
giving rise to cell-to-cell variability in MAPK signalling. Further analysis of the MAPK dynamics
allows us to highlight and attribute the origins of the extrinsic variability to biological processes
upstream. In particular, we will show that the cell-to-cell variability in transient phosphorylation
is derived from noise in the intensity of the upstream signals in reaction to the applied external
stimulus. During sustained, by contrast, variability stems primarily from noise in the background
of the upstream signal as well as in the degradation of the kinase. To further substantiate our
results we propose (Silk et al., 2014) and implement new experimental interventions which have
allowed us to conclusively rule out any non-negligible impact of intrinsic noise. The workflow
adopted in this analysis is summarized in Figure 1E.

Results

Quantifying temporal evolution of cell-to-cell variability

We investigate the causes of cellular heterogeneity in vivo during ERK activation by doubly
phosphorylated MEK in PC12 cells. This cell-to-cell variability study is based on measurements
of the concentration of doubly phosphorylated MEK and ERK at the single cell level obtained
by quantitative image cytometry. Cells are plated in medium containing a fixed amount of
neuronal growth factor (NGF) as the stimulus at time t = 0. Every two minutes cells in one well
are fixed in order to quantify the concentration of the two proteins of interest providing us with
a series of cross sectional snapshots of the joint protein distributions of doubly phosphorylated
MEK and ERK (i.e the sum of free and complex bound forms), see Figure 3A.

The observed distributions of the total amount of doubly phosphorylated MEK and ERK
are illustrated in Figure 3B, and Figure 3C shows the evolution of the variance, the coefficient of
variation and the Fano factor over time for both proteins. The variance over the cell population
of the concentration is of the order of 105 and significantly varies with time. Because both
the coefficient of variation and the variance of the amount of doubly phosphorylated ERK
vary with time we can rule out the possibility that the variability in the protein concentration
measurements has been caused by additive or multiplicative measurement noise, see Figure 1A.
In addition, the experimental noise in QIC has been estimated by Uda et al. (see Figure S2 in
(Uda et al., 2013)) and is found to be negligible compared to the level of cell-to-cell variability

Any analysis of the origins of cell-to-cell variability requires us to determine the modes
of ERK phosphorylation and dephosphorylation. ERK activation involves phosphorylation at
both its tyrosine and threonine phosphorylation sites by its cognate kinase MEK (Ferrell and
Bhatt, 1997; Ferrell et al., 2014). Previous studies (Toni et al., 2012) have shown that in
vivo phosphorylation (as well as dephosphorylation) occurs in two steps where the kinase binds
to the protein twice in order to phosphorylate the two sites successively (see Figure 2B). Us-
ing a Bayesian model selection (Kirk et al., 2013) approach, we confirm that this distributive
mechanism (Ferrell et al., 2014) best captures the observed average behavior in our data (see
Supplemental Information). We therefore base our analysis of the origins of cell-to-cell variability
on this mechanistic model with 20 model parameters including 12 reaction rates (see Figure 2B
Middle and Bottom), 4 parameters describing the impact of the NGF stimulus and upstream
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signals (see Figure 2B Top) and 4 parameters controlling the initial concentrations of the species
involved in the ERK–MEK core system (see Supplemental Information).

Intrinsic noise alone cannot explain the observed variabilities between cells

While it is straightforward to model extrinsic and intrinsic noise, quantifying their relative
contributions to real molecular systems has thus far only been possible for systems where two-
reporter assays are available(Elowitz et al., 2002; Swain et al., 2002). Here we develop a statistical
framework that allows us to obtain quantitative insights into the roles of these two sources of
noise for signalling systems where direct measurements are typically not possible.

Extrinsic sources of variability stem from all those elements of the “real system” that are not
explicitly modelled; these typically include factors such as inherent differences between the cells
in terms of cell-size, stage of cell-cycle, protein concentrations at the start of the experiment,
and other biophysical parameters. To capture such effects we allow model parameters to differ
between cells (Shahrezaei et al., 2008; Toni and Tidor, 2013): the parameters for each cell are
drawn from a log-normal distribution (with “hyper-parameters” (Gelman et al., 2013) for means
and variances that will be inferred from the data). The potential sources of extrinsic noise are:
differences in the reaction rates between cells, different initial concentrations of ERK and MEK,
and differences in the upstream signalling cascades feeding into the MEK dynamics.

Using the Bayesian framework developed in Experimental procedures and Supplemental
Information we analyze the roles of intrinsic and extrinsic noise in the single cell data. The
resulting statistical model-evidence indicates that the extrinsic noise best explains the data.
The evolution of the obtained distributions for MEK and ERK are shown and compared to
the data in Figure 4A: only the extrinsic noise model can explain the observed high levels of
cell-to-cell variability.

To substantiate this further (and to explore the parameter space more widely) we use Latin
hyper-cube sampling to generate a set of 106 parameter vectors and systematically analyse the
evolution of the molecular concentrations of MEK and ERK for each of these parameters. Only
20 parameter vectors out of the 106 lead to stable solutions for which the obtained variances
of doubly phosphorylated ERK and MEK is higher than 105 (at either 6 or 8 minutes after
stimulation; but for none of these parameters do we observe a variance of doubly phosphorylated
ERK that is anywhere close to the experimental observations (where the variance is ≈ 3.105).

Variation in initial conditions is also not sufficient to generate the observed cell-to-cell vari-
ability; this is easily seen by sampling different values for the the initial concentration of the
species involved in the ERK-MEK system according to a log-normal distribution with mean and
variance (given by the inferred hyper-parameters for the extrinsic noise case) and simulating
the model with intrinsic noise for each of these initial conditions. The total variance, which is
the sum of (a) the mean over the different initial conditions of the variance due to the intrinsic
noise, and (b) the variance over the different initial conditions of the mean over the intrinsic
variability, is shown in Figure 4B. This shows that the variance including variation in initial
conditions does not differ appreciably from the variance of intrinsic noise alone.

In a biological system we expect extrinsic and intrinsic sources of noise: the cells are likely
to be different in terms of initial molecular concentrations and stage of cell-cycle, and the bio-
chemical reactions occur at random times (Komorowski et al., 2013). We therefore compare the
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variances of the observed molecular species under extrinsic noise alone with the total variances
under both extrinsic and intrinsic noise. From Figure 4B it is apparent that the contribution of
intrinsic noise to the total variation is negligible.

An immediate prediction that follows from the above analysis is that the core MEK-ERK
system as described here is a reliable and faithful information processing unit: little noise is in-
troduced here, and different signals are mapped onto distinct outcomes in a predictable manner.
As a corollary of this we know that the MAPK system does not introduce cell-to-cell variability
into the down-stream cellular pathways.

In order to test this prediction and validate the model further we consider the response of
the MEK-ERK system to different stimuli; if cell-to-cell variability is due to MEK and ERK
dynamics, then the parameterized model developed above should not be able to describe the
dynamics. On the contrary, we find that extrinsic noise model can explain the response of the
MEK-ERK system to stimulation by EGF, Figure 5A, and different NGF stimulus intensities,
Figure 5B (see also also Supplemental Information for a more extensive analysis). Here we have
used the hyper-parameters inferred previously except for those that correspond to the upstream
dynamics (which are known to depend on the stimulus strength and temporal pattern, see
(Fujita et al., 2010)); these and only these were inferred directly from the EGF and NGF time-
courses. The model with extrinsic noise shows good qualitative and quantitative agreement
between model predictions and the new data obtained for different NGF stimulus levels. Thus
our extrinsic noise MEK-ERK model is capable of predicting the response to other stimuli than
those used in the model development.

Fluctuations in the upstream reactions and in the degradation rate of the
kinase explain most of the cell-to-cell variability

Our Bayesian analysis allows us to assess directly which parameters differ most between cells. For
each parameter we have estimates of the coefficient of variation across cells, and the parameters
that contribute most to the observed cell-to-cell variability are those for which the inferred
coefficient of variation is consistently and significantly different from zero (see Supplemental
Information). We find five strongly contributing factors: three model parameters (k1, k2 and
k10) and the two initial conditions that describe the level of background activity present in the
cell at the point of stimulation. The pulse height, k1, and the background upstream signal, k10,
jointly characterise the impact of the NGF stimulus and the upstream reactions on the evolution
of active MEK (see Figure 2B) Top. The degradation rate of active MEK (k2) affects the steady
state levels of cell-to-cell variability and the role of degradation reactions in determining levels of
noise (and thus cell-to-cell variability) has been well documented (Komorowski et al., 2013). In
Figures 6A we illustrate the predominant role that the upstream parameters have on the extent
of cell-to-cell variability in this system.

In Figure 6B we further show that that other factors — measurements for cell-size and vol-
ume, and Hoechst level, (the dye used to quantify nucleic acid levels) — make only negligible
contributions to observed levels of cell-to-cell variability. The total amounts of doubly phospho-
rylated ERK and MEK have the highest partial correlation and we can thus rule out cell-cycle
etc. as explanations for, or cause the temporal variability in the amount of active ERK.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2015. ; https://doi.org/10.1101/021790doi: bioRxiv preprint 

https://doi.org/10.1101/021790


6

Impact of cell-to-cell variability on Cellular Information Processing

We conclude our analysis by investigating the role that noise plays in mediating the response of
MAPK signalling cascades to external stimuli. We analyse the level of cell-to-cell variability in
the system’s output (i.e. the total amount of doubly phosphorylated ERK) as a function of how
variable the inputs (captured by the transient and sustained upstream intensities, k1 and k10,
and their respective variances over the cell population σ2k1 and σ2k10) are. We simulate system
output for given values of σ2k1 and σ2k10 and compute the ratio

λ(σk1 , σk10 , t) =
std(ppERKt)

std(ppERK∗t )
,

where std(ppERKt) is the standard deviation of the output at time t, and std(ppERK∗t ) is
the standard deviation of the system’s output at time t if the variance of the input is maximal
(σ2k1 = µk1 and σ2k10 = µk10 where µk1 and µk10 are the means over the cell population for,
respectively, k1 and k10). This ratio quantifies the change in the level of cell-to-cell variability
in the system’s output as the input noise is decreased.

In the first instance we assume that only the input signal strengths (k1 and k10) vary between
cells — all other model parameters are fixed to the inferred posterior mean values. The evolution
of λ(σk1 , σk10 , t) over time when varying the variances σ2k1 and σ2k10 is shown in Figure 6C (left
column). Before t = 8 minutes, λ(σk1 , σk10 , t) increases with σ2k1 whereas σ2k10 has no impact
on λ(σk1 , σk10 , t). Conversely, after t = 24 minutes, λ(σk1 , σk10 , t) increases with σ2k10 but σ2k1
no longer affects output variability. Thus variability in active ERK abundance across the cell
population is initially strongly influenced by the variability in pulse height, and subsequently by
the variability in the sustained or background signal.

To investigate the effect of the variability in all model parameters on cellular information
processing, we also simulate the system under extrinsic noise (varying all model parameters
between cells), and compute once more λ(σk1 , σk10 , t) for different signal variabilities. It is
apparent from Figure 6C (right column) that, under the extrinsic noise model, the level of cell-
to-cell variability in the system’s output remains substantially high even when the variability
in the system’s input has been decreased considerably (λ ' 0.45 when σk1 and σk10 are divided
by 20). Therefore, the presence of extrinsic noise weakens the influence of the variability in the
upstream signal upon the cell-to-cell variability in the system’s output.

To follow on from this, we compute the mutual information between the total amount of
ppMEK and the total amount of ppERK at different time points, simulating the system under
extrinsic noise or varying only the parameters that seems to be related to most of the cellular
variability (k1, k2 and k10). We observe in Figure 6D (Left) that the presence of extrinsic noise
decreases the level of transfer of information between the two species of interest. This difference
can be easily explained by comparing the joint distribution of the concentration of ppERK and
ppMEK when the system is simulated under the full extrinsic noise model or only varying the
’driving’ parameters (see Figure 6D Right). Even though only varying the ’driving’ parameters
explain the evolution of the variance and correlation between the two proteins, only the full
extrinsic noise model captures the shape of the joint distribution.
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Discussion

We have used quantitative image cytometry to elucidate the causes of population heterogeneity
in the MAPK signaling cascade and presented a comprehensive analysis of cell-to-cell variability
in the activation dynamics of the MEK–ERK system to environmental stimuli. Our analysis
shows that the in vivo modes of ERK phosphorylation and dephosphorylation are distributive.
With a reliable model for the (de–)phosphorylation mechanisms(Toni et al., 2012) in hand, we
were then able to dissect the nature of the cell-to-cell variability inherent in the data. Recent
MAPK models proposed in the literature (Ferrell et al., 2014; Harrington et al., 2013; Ortega
et al., 2006; Sturm et al., 2010; Voliotis et al., 2014) allow for very rich dynamics and a priori it is
therefore impossible to make an appeal to the large number of MEK, ERK and other molecules
present in the eukaryotic cell, in order to rule out a role for intrinsic noise.

The detailed analysis of these alternative mechanisms gives a clear verdict in favour of
extrinsic noise as the dominant factor for the observed cell-to-cell variability in the MEK–ERK
system. Few, if any parameters appear to be tightly constrained across the populations of cells
considered here. For some parameters we do, in fact, find strong evidence that they vary quite
considerably between cells; but the MEK–ERK core system itself adds little to the observed
levels of cell-to-cell variability, and is capable of transmitting upstream information faithfully.
Thus differences in reactions upstream from the MEK–ERK core are passed on by the cascade
to the downstream machinery. We propose that cells employ temporal selection of different noise
sources for their intra-cellular information processing. In particular, we show that the cell-to-cell
variability during sustained phosphorylation stems from random fluctuations in the background
or base-line upstream signalling processes, while during transient phosphorylation, the cellular
heterogeneity in ERK activity is primarily due to noise in the intensity of the upstream signal(s).
The stage at which a cell is in its cell cycle is an obvious potential cause for cell-to-cell variability,
but here we find that this can explain only a fraction of the overall extent of heterogeneity in
the abundance of active ERK.

We found that extrinsic noise in the MAPK system considered here tends to attenuate
variability in the up-stream signal prior to it arriving at MEK. The distributively operating
MEK–ERK systems is furthermore capable of kinetic proof-reading (Hlavacek et al., 2001; Mu-
rugan et al., 2012), and the combination of this mechanism with the behaviour observed for
the extrinsic noise, makes this a very effective filter for noisy upstream signals, especially at the
population-level. Given the importance of MAPK systems in different cell-fate decision making
processes such robustness to noise is clearly important. But while kinetic proof-reading confers
robustness to all cells similarly, the extrinsic variability will mean that some cells may be better
poised to process environmental signals subject to noise than others, which would lend robust-
ness at the population-level, similar to bet-hedging behaviour in evolutionary biology (Kussell
and Leibler, 2005; Stumpf et al., 2002). In development and tissue homeostasis (Rué and Arias-
Martinez, 2015) (and in regenerative medicine) it may be important to find ways to regulate
population-level behaviour further and here other, inter- and intra-cellular feedback mechanisms
that control cell-to-cell variability further (Michailovici et al., 2014).

The study presented here is based on experiments carried out in PC12 cell lines(Greene and
Tischler, 1976), which unlike in vitro set-ups, provide the cell physiological context. The activity
of up-stream and down-stream processes affecting ERK may depend on cell-type; this has, for
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example, been shown for nuclear shuttling, where even subtle differences between different cell
lines can affect e.g. the activity of nuclear ERK (Harrington et al., 2012). Our deliberate focus on
the core MEK–ERK dynamics is less prone to such strong cell-type specificity over the time-scales
considered, whereas the potential of feedback from either ERK or any of its many down-stream
targets onto the MAPK cascade or proteins further upstream should be carefully considered
in different cell-types. The additional richness in behaviour that such feedback (Ortega et al.,
2006; Sturm et al., 2010) or explicit consideration of nuclear shuttling (Harrington et al., 2013;
Mugler et al., 2013) of ERK and MEK can induce warrants further investigation (Ozaki et al.,
2010); here over the time-course considered, and in light of the data available such effects are
marginal, but this may change as other or longer stimuli, or more complex temporal stimulation
patterns are considered. At single cell level both feedback and shuttling — the latter especially if
it induces multi-stability — are therefore clearly worth of further investigation; there, however,
we may also have to consider differences between cell-lines or cell types (Harrington et al., 2012).

It is important to keep in mind that no model will ever be able to contain all the constituent
parts of any biological system of any real-world relevance (Babtie et al., 2014). Therefore
extrinsic noise — variation due to factors not explicitly included in the model — will always be
an issue for modelling molecular and cellular systems. The present work shows that this need
not necessarily limit the usefulness or usability of mechanistic, mathematical models of biological
systems. By pinpointing the sources of extrinsic noise, which are typically not obvious a priori,
sound statistical modelling is able to provide deeper mechanistic insights and highlight where a
model ought to be extended, or whether this is indeed necessary.

Experimental procedures

Experimental data collecting process

The concentrations of molecular species were measured using quantitative image cytometry
(QIC) (Ozaki et al., 2010; Saito et al., 2013). PC12 cells were seeded at a density of 104 cells per
well in 96-well poly-L-lysinecoated glass-bottomed plates (Thermo Fisher Scientific, Pittsburgh,
PA). 24 hours after seeding, the medium was replaced with DMEM containing 25mM HEPES
and 0.1 percent of bovine serum albumin. 18 hours after serum starvation, the stimulus is
applied by replacing the starvation serum with a medium containing the stimulant (5 or 0.5 or
0.1ng/mL). Our setup carries out stimulation in an incubator and achieved 1-minute interval
stimulation at 37◦C under 5% CO2 in saturated air humidity. The cells are then fixed with
4 percent paraformaldehyde for 10 minutes and immunostained. Cells were subjected to QIC
analysis with mouse anti- ppERK Sigma Aldrich M8159 antibody and rabbit anti–pMEK Cell
Signaling Technology 9121. Note that anti–pMEK antibody detects both singly and doubly
phosphorylated MEK.

All images were analyzed with Cell Profiler (Kamentsky et al., 2011). The nuclear region was
identified based on Hoechst imaging, and the cellular region was identified based on CellMask
stained images going out from from the nuclear region. Total cellular signal intensity in nuclear
regions and cellular regions were measured for ppERK and pMEK, respectively. We used the
cellular region in pixels as the cell size and the intensity of CellMask in the cellular region as a
measure of cell volume.
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Parameter inference and model evidence

We use a Bayesian approach in order to infer the parameters of the system (see Supplemental
Information for a detailed list of the model parameters) and rank the candidate mechanistic
models. Bayesian parameter inference is centred around the posterior probability distribution,
p(θ|x∗), which strikes a compromise between prior knowledge, p(θ), about parameter vectors, θ,
and the capacity of a parameter to explain the observed data, x∗, measured by the likelihood
p(x∗|θ), via

p(θ|x∗) =
p(θ)p(x∗|θ)∫
p(θ̃)p(x∗|θ̃)dθ̃

. (1)

Here we evaluate the posterior using a sequential Monte Carlo (SMC) sampler proposed by
(Del Moral et al., 2006), which is easily parallelized. The output of the algorithm is a set of
weighted parameter vectors {θ(i), ω(i)}1≤i≤N . Here the parameter vector associated to the high-
est weight is called the inferred parameter vector. Technical details about our implementation
of the SMC sampler algorithm are given in the Supplemental Information.

The SMC sampler algorithm also enables us to compute the model evidence (Kirk et al.,
2013), which is the probability to observe the data x∗ under the modelM (given the alternative
models considered),

p(x∗|M) =

∫
p(θ|x∗,M)p(θ|M)dθ . (2)

The model evidence allows us to rank candidate models in terms of their ability to explain the
observed data x∗: the best model is the one with the highest model evidence. In addition, the
Bayes factor assesses the plausibility of two candidate models M1 and M2:

BF1,2 =
p(x∗|M1)

p(x∗|M2)
.

Whenever BF1,2 is larger than 30, the evidence in favour of model M1 is considered very
strong (Jeffreys, 1961). We use our own implementation of the SMC sampler algorithm in Python
as well as an interface to simulate the models in a computational efficient manner using a GPU
accelerated ODE solver (Zhou et al., 2011) and a C++ ODE solver for stiff models (Hindmarsh
et al., 2005).

Likelihood functions

At each time point t ∈ T = {0, 2, 4, . . . 50} the concentrations of the pMEK and ppERK are
measured in Nt different cells. We denote by x∗i,t and y∗i,t the concentration of the two proteins
in the i-th cell, 1 ≤ i ≤ Nt, and by {x̄∗t }t∈T and {ȳ∗t }t∈T the observed average trajectories. In
addition we denote by xt(θ) and yt(θ) the solution of the system of ODE given the parameter
vector θ at time t.

Assuming an independent Gaussian measurement error for each time point with constant
variance v, the likelihood function for the average data measurements is

p({x̄∗t , ȳ∗t }t∈T|θ) =
∏
t∈T

Φ(x̄∗t ;xt(θ), v)Φ(x̄∗t ;xt(θ), v),
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where Φ(·;m, v) is the probability density function of a normal distribution of mean m and
variance v. The variance v is inferred simultaneously with the other parameters.

In order to derive the likelihood function in the intrinsic noise model we use the linear noise
approximation (LNA). The LNA provides a system of ODEs which describe how the means and
the variances of the molecular species vary over time. These equations are produced using the
StochSens package (Komorowski et al., 2012). With mx

t (θ), my
t (θ), v

x
t (θ) and vyt (θ) denoting the

solutions of the ODEs describing the means and variances for the parameter θ at time t, the
likelihood p({x∗i,t, y∗i,t}i,t|θ) is equal to

∏
t∈T

Nt∏
i=1

Φ(x∗i,t;m
x
t (θ), vx(θ))Φ(y∗i,t;m

y
t (θ), v

y(θ)) .

Extrinsic noise is modelled by considering that each cell has a different set of parameters.
The distribution of each parameter across the cell population is assumed to be log-normal. We
assume that these distributions are independent and denote by µθ and σ2θ the vector of the
means and variances of these distribution, respectively. There is no closed-form expression for
the probability p({x∗i,t, y∗i,t}i,t|µθ, σ2θ) and we use the so-called Unscented Transform (UT), which,

given the first two moments µθ and σ2θ of the distribution in the parameter space, provides an
approximation of the evolution of the means and variances of the two species of interest. We
denote by mx

t (µθ, σ
2
θ) and my

t (µθ, σ
2
θ) the resulting mean behaviours of the two species at time

t, and by vxt (µθ, σ
2
θ) and vyt (µθ, σ

2
θ) the associated variances. Assuming that the concentration

of the doubly phosphorylated ERK and MEK proteins are log-normally distributed we obtain
that the likelihood p({x∗i,t, y∗i,t}i,t|µθ, σ2θ) is

∏
t∈T

Nt∏
i=1

Ψ
(
x∗i,t;m

x
t (µθ, σ

2
θ), v

x
t (µθ, σ

2
θ)
)

Ψ
(
y∗i,t;m

y
t (µθ, σ

2
θ), v

y
t (µθ, σ

2
θ)
)
.

Here Ψ(·;m, v) is the probability density function of a log–normal distribution with mean m
and variance v. The Supplemental Information contains additional technical details on the
computation and the UT algorithm.

Latin Hypercube sampling

We use Latin Hypercube sampling (LHS) (McKay et al., 1979) to generate 106 parameter
vectors in a 20-dimensional space using the Matlab function lhsdesign.

Correlation analysis

In addition to the experimental measurements for the total amount of doubly phosphorylated
ERK and MEK our assay also obtained measurements for cell-size, cell volume and Hoechst
intensity in each cell. We computed the correlation and partial correlations between these 5
measurements using the R package GeneNet (Schäfer et al., 2001).
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Mutual information

The mutual information between two species (ppERK and ppMEK) is computed based on
measurements of the protein concentrations in single-cells at different time points. For each
time point, we estimate the mutual information using a kernel density estimate of the joint
distribution. We use a gaussian kernel with a diagonal covariance matrix and marginal variances
equal to 1.06σN−1/5 where σ is the marginal variance of the data and N is the number of data
points (Silverman, 1986).
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Komorowski, M., Žurauskienė, J. and Stumpf, M. P. (2012). StochSensmatlab package for
sensitivity analysis of stochastic chemical systems. Bioinformatics 28, 731–733.

Kussell, E. and Leibler, S. (2005). Phenotypic diversity, population growth, and information in
fluctuating environments. Science 309, 2075–2078.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). Comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code. Technometrics
21, 239–245.

Michailovici, I., Harrington, H. A., Azogui, H. H., Yahalom-Ronen, Y., Plotnikov, A., Ching,
S., Stumpf, M. P., Stumpf, M. P. H., Klein, O. D., Seger, R. and Tzahor, E. (2014). Nuclear
to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells.
Development 141, 2611–2620.

Mody, A., Weiner, J. and Ramanathan, S. (2009). Modularity of MAP kinases allows deforma-
tion of their signalling pathways. Nature cell biology 11, 484–491.

Mugler, A., Tostevin, F. and ten Wolde, P. R. (2013). Spatial partitioning improves the reliability
of biochemical signaling. Proceedings of the National Academy of Sciences, USA 110, 5927–
5932.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2015. ; https://doi.org/10.1101/021790doi: bioRxiv preprint 

https://doi.org/10.1101/021790


14

Murugan, A., Huse, D. A. and Leibler, S. (2012). Speed, dissipation, and error in kinetic
proofreading. Proceedings of the National Academy of Sciences 109, 12034–12039.

Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E.,
Nelson, G., See, V., Horton, C. A., Spiller, D. G., Edwards, S. W., McDowell, H. P., Unitt,
J. F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D. B. and White, M. R. H.
(2004). Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science
306, 704–708.

Ortega, F., Garcés, J. L., Mas, F., Kholodenko, B. N. and Cascante, M. (2006). Bistability from
double phosphorylation in signal transduction. Kinetic and structural requirements. The
FEBS journal 273, 3915–3926.

Ozaki, Y.-i., Uda, S., Saito, T. H., Chung, J., Kubota, H. and Kuroda, S. (2010). A quantitative
image cytometry technique for time series or population analyses of signaling networks. PloS
one 5, e9955.

Paszek, P., Ryan, S., Ashall, L., Sillitoe, K., Harper, C. V., Spiller, D. G., Rand, D. A. and
White, M. R. H. (2010). Population robustness arising from cellular heterogeneity. Proceedings
of the National Academy of Sciences, USA 107, 11644–11649.

Piala, A. T., Humphreys, J. M. and Goldsmith, E. J. (2014). MAP Kinase Modules: The
Excursion Model and the Steps that Count. Biophysical journal 107, 2006–2015.

Pujadas, E. and Feinberg, A. P. (2012). Regulated noise in the epigenetic landscape of develop-
ment and disease. Cell 148, 1123–1131.

Quaranta, V. and Garbett, S. P. (2010). Not all noise is waste. Nature methods 7, 269–272.
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Figure 1: Noise and cell-to-cell variability. (A) Effect of additive (top) and multiplicative
(bottom) measurement noise. Protein concentrations are shown by the red lines, and samples of
100 noisy data measurements every five minutes are represented by blue dots. In the embedded
figures we show the evolution of the variance (solid line) and the coefficient of variation (dotted
line). The variance of data with additive measurement noise is constant over time, whereas
the variance of data with multiplicative measurement noise varies with time. The opposite
behaviour is observed for the coefficient of variation. (B-D) Within-cell variability can be
caused by intrinsic noise (B), resulting from the stochastic nature of biochemical reactions, or
extrinsic noise (C), arising from inherent differences between the cells. The average evolution
of the protein concentration across the heterogeneous cell population is identical whether the
cells are subject to intrinsic or extrinsic noise (D). (E) Flow chart of the analysis of origin of
cell-to-cell variability as performed in this paper, highlighting which data are used at each steps.
The symbols R1 to R4 refer to each of the 4 result subsections and Fig 2 to Fig 6 denotes the
figures..
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Figure 2: MAPK Signalling. (A) The RAS-RAF-ERK signal transduction cascade in re-
sponse to a neural growth factor (NGF), which activates the membrane-bound GTPase (RAS);
this leads to the activation of the RAF kinase and subsequently to the phosphorylation of MEK;
active MEK in turn phosphorylates ERK. (B Top) The impact of the NGF stimulus and the
upstream reactions on the evolution of the concentration of active MEK are modelled using a
time dependent function which depends on three parameters: k1 describes the pulse height, k10
the background signal and T the time at which the influence of the upstream reactions drops
down. In addition active MEK is degraded with rate k2. (Middle and Bottom) Mechanistic
model describing the phosphorylation and dephosphorylation processes of ERK . Pt denotes the
cognate ERK phosphatase. The reaction rates are shown next to their associated reactions.
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in a medium and stimulated with NGF at t = 0. Every two minutes, thousands of cells are fixed
and the amount of total doubly phosphorylated MEK and ERK (i.e. the sum of free and complex
bound forms) is measured at single-cell level using quantitative image cytometry, providing a
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Figure 4: Intrinsic noise alone cannot explain the observed variabilities between
cells. (A) Evolution of the inferred distributions over the cell population for the two noise
models and comparison to the single-cell data distributions (box plots). The lines represent
the median of the distributions, while the shaded regions indicate the regions delimited by 5th
and 95th percentiles (lighter regions) and the one delimited by 25th and 75th percentiles (darker
regions). The medians and percentiles shown here are the average of the medians and percentiles
computed for 1000 sets of parameters sampled from the posterior distribution. The logarithm
of the evidence is shown for both noise models; these are strongly supportive of the extrinsic
noise models. (B) Temporal evolution of the predicted variances over the cell population for the
intrinsic noise model alone (dotted lines), the intrinsic noise model combined with a variation
in initial conditions between cells (dashed lines), the intrinsic noise together with extrinsic noise
(dash-dot lines) and the extrinsic noise alone (grey continuous line), show that the contribution
of intrinsic noise is negligible. The dots represent the measured variance of the concentration of
the two proteins over the cell populations.
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Figure 5: Prediction of the impact of growth factor on cell-to-cell variability. (A)
Evolution of the inferred distributions of the total amount of doubly phosphorylated ERK and
MEK in response to stimulation by EGF with two levels of intensity. The hyper-parameters for
the initial conditions and the reaction rates are fixed to the previously estimated values (using
the single-cell data in response to NGF stimulus) whereas the hyper-parameters describing the
impact of the stimulus and upstream signals on the kinase are inferred here separately. The
single-cell data distributions (box plots) are compared to the inferred distributions (the lines
represent the median of the distributions, while the shaded regions indicate the regions delimited
by 5th and 95th percentiles for the lighter regions and the one delimited by 25th and 75th
percentiles for thedarker regions) (B) The predictions for the behaviour of the total amount
of doubly phosphorylated ERK and MEK under the extrinsic noise model (left columns) are
compared to experimental measurements (right columns) for different level of NGF intensity.
The solid lines indicate the median value, while the shaded regions indicate the regions delimited
by 5th and 95th percentiles (lighter zones) and by 25th and 75th percentiles (darker zones).
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Figure 6: Factors contributing to cell-to-cell variability and its impact on Cellular
Information Processing. (A) Evolution of the predicted variances when only some of the
model parameters vary from one cell to another: either the parameters that describe the effect of
the upstream signals (continuous lines), the parameters controlling the initial conditions (dashed
lines) or the reaction rates (dotted lines). The light grey continuous line is the predicted variance
when all model parameters differ between cells. The dots represent the measured variance of
the concentration of the two proteins over the cell populations. (B) Correlation and partial
correlation between the measurements of the amount of ppERK and ppMEK, the cell size, the
cell volume and the Hoechst intensity (both plots are on the same scale, see colour bar). (C)
Impact of the variability of the input (i.e. the upstream reactions), described by the variances
σ2k1 and σ2k10 , on the level of cell-to-cell variability of the system’s output (i.e. ppERK) which
is quantified by the function λ(σk1 , σk10 , t). λ(σk1 , σk10 , t) is close to 1 (resp. 0) if the level of
cell-to-cell variability in the system’s output is equal (resp. very different) to the level of cell-
to-cell variability when σk1 and σk10 are maximal (i.e equal to σ∗k1 and σ∗k10). This subfigure is
divided in two parts: in the left column, only parameters k1 and k10 vary between cells (all other
model parameters are fixed to their mean value), whereas in the right column the full extrinsic
noise model is considered where all model parameters differ between cells. For each column, the
behaviour of λ(σk1 , σk10 , t) with time is illustrated for decreasing values of σk1 and σk10 . Each
panel corresponds to a fixed value of σk1 while each line corresponds to a fixed value of σk10 ,
the red corresponding to the smallest and the yellow to the maximum standard deviation. (D)
Mutual information between ppERK and ppMEK (Left) when the system is simulated under
the full extrinsic noise model (red) or only varying the parameters k1 and k10 between cells
(blue). Comparison of the joint distribution of the concentration of ppERK and ppMEK when
the system is simulated under both models (blue and red) as well as the joint distribution of the
data (black dots).
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