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ABSTRACT 
Quantitative relations in protein and RNA folding are deduced from the quantum folding theory of 
macromolecules. It includes: deduction of the law on the temperature-dependence of folding rate 
and its tests on protein dataset; study on the chain-length dependence of the folding rate for a large 
class of biomolecules; deduction of the statistical relation of folding free energy versus 
chain-length; and deduction of the statistical relation between folding rate and chain length and its 
test on protein and RNA dataset. In the above quantum approach the influence of the solvent 
environment factor on folding rate has been taken into account automatically. The successes of the 
deduction of these new relations from the first principle and their successful comparison with 
experimental data afford strong evidence on the possible existence of a common quantum 
mechanism in the conformational change of biomolecules.   
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1  INTRODUCTION 
There are huge numbers of variables in a biological system. What are the fundamental variables in 
the life processes at the molecular level? Since the classical works of B. Pullman and A. Pullman 
on nucleic acids [1], it is generally accepted that the mobile π electrons play an important role in 
the biological activities of macromolecules. However，the quantum biochemistry cannot treat a 
large class problems relating to the conformational variation of biological macromolecules such as 
protein folding, RNA folding, signal transduction and gene expression regulation, etc. In fact, for a 
macromolecule consisting of n atoms there are 3n coordinates if each atom is looked as a point. 
Apart from 6 translational and rotational degrees of freedom there are 3n-6 coordinates describing 
molecular shape. It has been proved that the bond lengths, bond angles and torsion (dihedral) 
angles form a complete set to describe the molecular shape. The molecular shape is the main 
variables responsible for conformational change. However, to our knowledge, there is no 
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successful approach to the quantum motion of molecular shape.  
 For a complex system consisting of many dynamical variables the separation of slow/fast 
variables is the first key step in the investigation. In his synergetics Haken proposed that the 
long-living systems slave the short-living ones, or briefly, the slow variables slave the fast ones. 
He indicated that the fast variables can be adiabatically eliminated in classical statistical 
mechanics [2]. However, what is the slow variable for a molecular biological system? The typical 
chemical bond energy is several electron volts (for example, 3.80 ev for C-H bond, 3.03 ev for 
C-N bond, 6.30 ev for C=O dissociation). The CG hydrogen bond energy is 0.2 ev and the TA 
hydrogen bond energy is 0.05 ev in nucleic acids. The energy related to the variation of bond 
length and bond angle is in the range of 0.4-0.03 ev. While the torsion vibration energy is 
0.03-0.003 ev, the lowest in all forms of biological energies. In terms of frequency, the stretching 
and bending frequency is 1014-1013 Hz while that for torsion is 7.5×1012-7.5×1011 Hz. Interestingly, 
the torsion energy is even lower than the average thermal energy per atom at room temperature 
(0.04 ev in 25 C); the torsion angles are easily changed even at physiological temperature. 
Therefore, the torsion motion can be looked as the slow variable and others including mobile π 
electron, chemical binding, stretching and bending etc are fast variables. Moreover, different from 
stretching and bending the torsion potential generally has several minima that correspond to 
several stable conformations. Therefore, it is reasonable to assume that the torsions are slaving 
slow variables for the biomolecule system, the molecular conformations can be defined by torsion 
states and the conformational change is essentially a quantum transition between them [3,4]. 
 Although the knowledge of protein structure is in a phase of remarkably growth the 
dynamical mechanism of protein folding is still unclear. The molecular dynamics (MD) provides a 
computer method to simulate the mechanism only at the coarse grained level since it is mainly 
based on the classical mechanics. Simultaneously, due to the large computational cost the limited 
results currently obtained by atomic-level MD simulations (such as on massively parallel 
supercomputer Anton [5]) are still inadequate for giving an answer on the basic folding 
mechanism. A noted problem is why the protein folding rate always exhibits the curious 
non-Arrhenius temperature dependence (the logarithm folding rate is not a decreasing linear 
function of 1/T）[6]. The non-Arrhenius peculiarity was conventionally interpreted by the 
nonlinear temperature dependence of the configurational diffusion constant on rough energy 
landscapes [7], by the temperature dependence of hydrophobic interaction [8,9] or by introducing 
the number of denatured conformation depending on temperature to interpret the difference 
between folding and unfolding [6]. All these explanations are inconclusive. Recent experimental 
data indicated very different and unusual temperature dependencies of the folding rates existing in 
the system of λ6-85 mutants [10] and in some de novo designed ultrafast folding protein [11]. These 
unusual Arrhenius plots of ultrafast folders provide an additional kinetic signature for protein 
folding, indicating the necessity of searching for a new folding mechanism.  Another problem is 
related to the Levinthal’s paradox. In a recent work Garbuzynskiy et al reported that the measured 
protein folding rates fall within a narrow triangle (called Golden triangle)[12]. Why protein 
folding rates are confined in such a narrow kinetic region? To explain these longstanding problems 
it seems that a novel physical model on the folding mechanism is required. Based on the idea that 
the molecular conformation is defined by torsion state and the folding/unfolding is essentially a 
quantum transition between them, through adiabatically elimination of fast variables we are able 
to obtain a set of fundamental equations to describe the rate of conformational transition of 
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macromolecule [3,4].  Our experience shows that the adiabatically elimination is an effective tool 
to deal with the multi-scale problems such as protein folding. By use of these equations we have 
successfully explained the non-Arrhenius temperature dependence of the folding rate for each 
protein. Moreover, the statistical investigation of 65 two-state protein folding rates (which were 
studied by Garbuzynskiy et al) shows these fundamental equations are consistent with 
experimental data [13][14]. 
 Apart from protein folding, conformation transition occurs in many other molecular 
biological processes. Both RNA and protein are biological macromolecules. Common themes of 
RNA and protein folding were indicated [15]. It is expected that both obey the same dynamical 
laws and have a unifying folding mechanism. In a recent work Hyeon et al reported that RNA 
folding rates are determined by chain length [16]. Then, a more general view on the self-assembly 
of proteins and RNA and some universal relations were proposed [17]. However, Hyeon’s relation 
of RNA folding rates vs chain length is obtained empirically and its generalization to protein is 
problematic. Based on quantum folding theory [4] we can make comparative studies on protein 
and RNA folding and deduce a theoretical formula on RNA folding rate. Our results show that the 
quantum theory serves a logic foundation for understanding this universality between protein and 
RNA folding. Moreover, the conformational quantum transition of biological molecules may 
provide a clue to searching for some expected quantitative unifying theory in living systems [18]. 
 In the article we shall sketch the deduction of the general rate equation from quantum 
transition theory at first (in Method section). Then, main results in developing quantum folding 
theory to the protein and RNA folding problems will be given. It includes: deduction of the law on 
the temperature-dependence of folding rate and tests of the law on protein dataset; deduction of 
the relation of folding and unfolding parameters; study on the chain-length dependence of the 
fast-variable factor of the folding rate; deduction of the statistical relation of folding free energy 
versus chain-length; and deduction of the statistical relation between folding rate and chain length 
and test of the relation on protein and RNA dataset.  

2  MATERIALS AND METHODS 

2.1 Datasets  Recently Garbuzynskiy and coworkers collected folding rate data for 69 
two-state proteins [12]. Of the 69 proteins, the folding rates of 65 two-state proteins are obtained 
at around 25 °C. They constitute a dataset used by us to compare the theoretical vs. experimental 
results [13].  Hyeon and Thirumalai collected the folding rates of 27 RNA molecules [16]. They 
constitute the second dataset we shall use.  In addition, the temperature dependence data of the 
folding rate for 16 proteins are collected in Table 2 of ref [13]. 

2.2 Theoretical model  Suppose the quantum state of a macromolecule is described by a 
wave function M(θ, x), where {θ} the torsion angles of the molecule and {x} the set of fast 
variables including the stretching-bending coordinates and the frontier electrons of the molecule, 
etc.  The wave function M(θ,x) satisfies  
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θ θ θ θ
θ

∂ ∂
+ =

∂ ∂
                  (1) 

2 2

2 ( )
2tor tor

j j

H U
I

θ
θ
∂

= − +
∂∑ h

                          (2) 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 8, 2016. ; https://doi.org/10.1101/021782doi: bioRxiv preprint 

https://doi.org/10.1101/021782
http://creativecommons.org/licenses/by/4.0/


where Ij denotes the inertial moment of the j-th torsion and the torsion potential Utor is a function 
of a set of torsion angles { }jθ θ= . Its form is dependent of solvent environment of the molecule. 

As is well known, the influence of solvent is a serious problem in molecular dynamics approach to 
any real biological problem. Suppose the interaction between water (or other solvent, ion and 
denaturant) molecules (their coordinates denoted by r ) and macromolecule is ( , , )V r xθ . Its 

average over r  in a given set of experimental conditions (including chemical denaturants, 
solvent conditions etc.) can be expressed by 1 2( , , ) ( ) ( , )avV r x V V xθ θ θ= +  where 1( )V θ is 

x-independent part of the average interaction.  Then we define , 1( ) ( ) ( )tor tor vacU U Vθ θ θ= +

and , 2( , ; ) ( , ; ) ( , )fv fv vacH x H x V
x x

xθ θ θ
∂ ∂

= +
∂ ∂

 with ,tor vacU  the torsion potential in vacuum 

and ,fv vacH  the fast-variable Hamiltonian in vacuum. By inserting them into (1) and (2) the basic 

equations for the macromolecule are obtained. Thus, in the present theory the influence of the 
solvent environment factors has been taken into account automatically by introducing torsion 
potential Utor and fast-variable Hamiltonian Hfv in the basic equations.  

 Because the fast variables change more quickly than the variation of torsion angles, the 
adiabatic approximation can be used. In adiabatic approximation the wave function is expressed as  

( , ) ( ) ( , )M x xθ ψ θ ϕ θ=                              (3) 

and these two factors satisfy 

( , ; ) ( , ) ( ) ( , )fvH x x x
x αα αθ ϕ θ ε θ ϕ θ

∂
=

∂
                   (4) 
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θ
∂
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∂

                 (5) 

where α denotes the quantum number of fast-variable wave function ϕ , and (k, n) refer to the 

conformational (indicating which minimum the wave function is localized around) and the 
vibrational state of torsion wave function ψ , respectively.  

      Because M ( x,θ ) is not a rigorous eigenstate of Hamiltonian Htor + Hfv, there exists a 

transition between adiabatic states that results from the off–diagonal elements 
22
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Here H ′  is a Hamiltonian describing conformational transition. The nonadiabatic matrix element 
(6) can be calculated under the perturbation approximation.  Through tedious calculation we 
obtain the rate of conformational transition [4] 
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where W means the rate of conformational transition at given temperature T and solvent condition, 

VI ′  is slow-variable factor and EI ′  fast-variable factor, N is the number of torsion modes 

participating in a quantum transition coherently, jI  denotes the inertial moment of the atomic 

group of the j-th torsion mode (I0 denotes its average hereafter), ω  and ω′  are the initial and 

final frequency parameters jω  and jω′  of torsion potential averaged over N torsion modes, 

respectively, δθ  is the averaged angular shift between initial and final torsion potential.  ζ  

in Eq（7）is a function of 2
2

B
j j

k Tz ( ) Iδθ=
h

(j=1,…,N) and torsion potential parameters, and is 

defined through a complicated combination of Bessel functions.  As z>>1 ζ can be expressed 

as Eq (8), namely ζ ε= .  The condition z>>1 is generally satisfied for most biomolecules in 
the following discussion. G∆  is the free energy decrease per molecule between initial and final 
states,  
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where 
1

N

j
j

E Eδ
=

∆ = ∑ , jEδ  the energy gap between initial and final states for the j-th mode, M is 

the number of torsion angles correlated to fast variables, 2a  is the square of the matrix element 

of the fast-variable Hamiltonian operator, or, more accurately, its change with torsion angle, 
averaged over M modes,  
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Above equations are deduced under the adiabatic approximation. The decoherence effect  
due to the quantum entanglement with environment can be easier to estimate because of the 
multiplicational form of the wave function (Eq (3)).  By calculating decoherence time it was 
proved that the decoherence effect on molecular torsion is in the mid of electron and atom [4]. So, 
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even if the quantum coherence for the macromolecule as a single particle may have been 
destroyed the coherence in the torsional degree of freedom still works. This means the quantum 
picture of the torsional transition for protein and RNA folding remains to be effective and the 
quantum calculation based on this picture is reasonable. 

Eqs (7)-(10) are basic equations for conformational transition. To obtain quantitative result 
one should calculate the number of torsion modes N in advance. N describes the coherence 
degree of multi-torsion transition in the folding. For two-state protein folding we assume that N 
can be obtained by numeration of all main-chain and side-chain dihedral angles on the 
polypeptide chain except those residues on its tail which does not belong to any contact. A 
contact is defined by a pair of residues at least four residues apart in their primary sequence and 
with their spatial distance no greater than 0.65 nm. Each residue in such contact fragment 
contributes 2 main-chain dihedral angles and, for non-alanine and -glycine, it contributes 1 - 4 
additional side-chain dihedral angles [19] (Table S1 in the Supplementary material). For RNA 
folding, we assume the quantum transition occurs between compact (yet disordered) intermediate 
and folding state [20] or between primary and secondary structures of the molecule [21]. The 
torsion number can be estimated by chain length. Following IUB/IUPAC there are 7 torsion 
angles for each nucleotide, namely  

    

(O3' P O5' C5'),
(P O5' C5' 4 '),
(O5' C5' 4 ' C3'),
(C5' 4 ' C3' O3'),
( 4 ' C3' O3' P),
(C3' O3' P O5')

C
C

C
C

α
β
γ
δ
ε
ς

− − −
− − −

− − −
− − −
− − −
− − −

 

and  
(O4 ' C1' N1 C2)χ − − − (for Pyrimidine) or (O4 ' C1' N9 C2)χ − − − (for Purine),  

of which many have more than one advantageous conformations (potential minima). If each 
nucleotide has q torsion angles with multi-minima in potential then the torsion number N=qL, 
where L is chain length of RNA. 

3  RESULTS AND DISCUSSIONS 

 3.1  Law on the temperature dependence of folding rate  
 3.1.1  Deduction of the temperature dependence law  By using the relation of ΔG 
with E∆  (Eq (9)) and by the expansion of E∆  at melting temperature Tc , 

( ) ( ) ( )c cE T E T m T T∆ = ∆ + − ,  we obtain a linear relation between free energy change ΔG and 

temperature. This linearity can be tested rigorously by experiments (Fig S1 in the Supplementary 

material).  Set ( )
( )

c c

c

E T mT
E T

η
∆ −

=
∆

. Assuming that 1) the measured value of folding free energy 

decrease is denoted by ΔGf  and 2) the measurement is carried out at temperature Tf, then one 
has [13][14] 

1f c f c B fG E T T T k Tη η λ∆ = ∆ + − +( ){ ( ) / }                          (11) 

Inserting above equations into (9) and using Eqs (7) and (8) we obtain the temperature dependence 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 8, 2016. ; https://doi.org/10.1101/021782doi: bioRxiv preprint 

https://doi.org/10.1101/021782
http://creativecommons.org/licenses/by/4.0/


of logarithm rate  
1ln ( ) ln .
2

SW T RT T const
T

= − + +                           (12)
 

where const  means temperature-independent term and  
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= −                            

2 2 2
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E Tk kmR G E T
k k T k T
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λ λ η

ε ε ε
− ∆

= + = + = ∆ − ∆     (13) 

with 2 2
0jI NIε ω δθ ω δθ= =∑2 2( ) ( ) .

 
Finally we have 

2ln 1
1 2( )

d W S T RT
d

T

= − +                             (14) 

It means the non-Arrhenius behavior of the rate–temperature relationships. The relation was 
tested for 16 two-state proteins whose temperature dependence data were available.  The 
statistical analyses were made in [13] [14]. 

Figure 1 gives two examples. The comprehensive comparisons of the theoretical prediction 
with experimental folding/unfolding rate versus temperature can be found in [13]. The strong 
curvature of folding rate on Arrhenius plot is due to the R term in Eq (12) which comes from the 
square free energy (ΔG)2 in lnW. The good agreement between theory and experiments affords 
support to the concept of quantum folding. Moreover, in this model the universal non-Arrhenius 
characteristics of folding rate are described by only two slope parameters S and R and these 
parameters are related to the known folding dynamics. All parameters related to torsion potential 
defined in this theory (such as torsion frequency ω  and ω′ , averaged angular shift δθ  and 
energy gap ΔE between initial and final torsion potential minima, etc) can be determined, 
calculated consistently with each other for all studied proteins [13]. Furthermore，in this theory the 
folding and unfolding rates are correlated with each other, needless of introducing any further 
assumption [6]. 
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Figure 1  Model fits to overall folding rate kf and unfolding rate ku  vs temperature 1000/T for 
protein En-HD (PDB code 1ENH) and Trp-cage(WT) (PDB code 1L2Y).  Experimental logarithm 

folding rates are shown by “o”, and solid lines are theoretical model fits to the folding rate (kf in unit s-1, T in unit 

Kelvin). Experimental rates are taken from [22, 23]. 
 
3.1.2  Temperature dependence of free energy and relations among folding parameters  

The temperature dependence of free energy change ΔG plays an important role in the deduction of  
temperature dependence law for protein folding. We shall make deeper analysis on this point and, 
based on this analysis, deduce more relations among folding and unfolding parameters on 
Arrhenius plot. Assuming the free energy changes ΔG in a temperature interval lower than Tc have 
been measured and expressed as 

0 1( )cG G G T T∆ = ∆ + ∆ −  

= Tα β+                                                 (15) 

0 1 cG G Tα = ∆ − ∆ ,   1Gβ = ∆  

The linear relations are tested by experiments for many proteins (Figure S1). By using α  and 

β  given from experiments we can re-deduce the temperature dependence of folding rate. In fact, 

by inserting Eq (15) into Eq (7) one easily obtains Eq (12) and in the equation the slope and 
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curvature parameters are given by 

                  0 1 0 1( ) (1 ) (1 )
2 2

c c

B B

G G T G G TS
k k

α α
ζ ζ

∆ − ∆ ∆ − ∆
= − = −  

2 2
1( )

2 2B B

GR
k k

β
ζ ζ

∆
= =                                          (16) 

Eliminating ζ  in Eq (16) a universal relation between R and S is deduced,  

2

2( )
2 B

R S
k
α β

α
= −                                            (17) 

The temperature dependence of unfolding rate Wu is easily obtained by the replacement of 
G∆  by G−∆  and 'ω (ω ) by ω  ( 'ω ) in folding rate W. As Eq (12) for folding rate the 

unfolding rate can be expressed as 
1ln ln .
2u

SW T R T const
T

′
′= + − +                                  (18) 

Following the similar deduction of Eq (16) and (17) the slope and the curvature parameters of 
unfolding rate are obtained, 

          (1 )
2 B

S
k '
α α

ζ
−′ = +  

2

2 B

R
' k

β
ζ

′ =                                                   (19) 

and, by eliminating 'ζ ,  

        
2

2( )
2 B

R S
k
α β

α
′ ′= − +                                        (20) 

With the aid of known α  and β  from the free energy temperature dependence Eqs (17) and 

(20) give constraints on slope and curvature parameters for folding/unfolding rate. This provides a 
new checkpoint for the present quantum folding theory.  

In addition to Eqs (17) and (20), by use of the temperature dependence of free energy, Eq 
(15), one can deduce relationship between folding and unfolding rates. In fact, Eqs (7)-(10) can be 
used for unfolding as well as for folding. By the replacement of G∆  by G−∆  and 'ω (ω ) by 
ω  ( 'ω ) in W we obtain unfolding rate Wu.  We have 

      
2 2 2

2

( ) 'ln{ } ( ) ln
2 ' 'u B B

W G G
W k T k T

ω ω ω
ε ω ω

∆ ∆ −
= + +                        (21) 

Eq (21) means the condition of dynamical balance W = uW  for protein folding is slightly 

different from the usual equilibrium condition G∆ =0 for chemical reaction due to the unequal 

bias samplings in frequency space, 'ω ω≠ . cT  is defined by W = uW . Eq (21) means cT  
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and 0G∆  satisfying  

2
0 0( ) ' 1 '( 1) ln 0

2 2B c B c

G G R R
k T k T R Rε
∆ ∆

+ − + =                            (22) 

In deducing above equation 2 2
N

j
j

( ) Iζ ε ω δθ= ≡ ∑  in (16) and 2 2
N

j
j

' ' ( ) Iζ ω δθ= ∑  in (19) 

have been used. As ΔG0 has been known the ratio Rʹ/R can be solved from Eq (22). The result can 
be compared with the experimental R and Rʹ obtained from quadratic fits to experimental rates of 
folding and unfolding rates. This provides another checkpoint for the quantum folding theory.  

The free energy parameters α,β, ΔG0, and the calculating results from Eqs (17) and (22) are 
listed in Table 1.  

 
Table 1  Temperature-dependence parameters about free energy and folding rate for 15 

proteins 
PDB code α(10-20 J) β(10-20 J/K) ΔG0/kBTc

 ε/kBTc log(Rʹ/R)pred log(Rʹ/R) Rpred/R 

1bdd 20.10 -0.05579 0.03140 9.30 -0.027 -0.025 1.01 
1divn 15.77 -0.04299 0.94765 4.63 -0.75 -0.019 0.96 
1e0l 17.05 -0.05216 -0.01401 12.67 0.012 -0.034 1.19 
1enh 20.79 -0.06406 -0.06577 10.46 0.057 -0.016 1.16 

1l2y(p12w) 10.54 -0.03196 -0.08485 4.00 0.073 -0.038 1.04 
1l2y(wt) 7.927 -0.02526 -0.00840 2.75 0.009 -0.013 1.22 

1lmb(wt) 33.50 -0.1002 0.07203 9.73 -0.062 -0.019 1.12 
1lmb(g46a) 37.87 -0.1114 -0.39823 13.22 0.215 -0.026 1.07 

1lmb(sa37g) 29.42 -0.08996 -0.19194 6.06 0.166 -0.020 1.07 
1pin(wt) 24.16 -0.07282 -0.03545 6.28 0.031 -0.048 1.05 

1pin(s18g) 23.48 -0.07139 -0.17282 5.33 0.149 -0.048 1.05 
1pin(n26d) 18.88 -0.06075 -0.03087 9.91 0.027 -0.025 1.17 

1prb 27.73 -0.07431 0.02403 9.71 -0.021 -0.034 1.06 
2a3d 21.15 -0.06110 -0.10796 14.84 0.094 -0.013 1.19 
2pdd 22.27 -0.06840 -0.06313 2.26 0.055 -0.043 1.02 

(Rʹ/R)pred  are calculated from Eq (22). Rpred are calculated from Eq (17). The free energy parameters α, β and ΔG0 

are given by experiments (Figure S1).  R and Rʹ are experimental values deduced from statistical analyses of 

folding/unfolding rate data [13].  Tc can be found in Table 2 of ref [13]. 

 

From Tab 1 we find : 1) Rpred /R takes a value near 1. The differences between two sides of 
Eq (17) , the relative errors in predicting R by use of Eq(17), are in the range of 1% to 22% for 
different proteins and smaller than 10% for most of them. Thus the constraint equation between 
slope and curvature parameters on Arrhenius plot are proved. 

2) (Rʹ/R)pred calculated from Eq (22) are compared with Rʹ/R given from the statistical 
analyses of folding/unfolding rate data. The difference between log(Rʹ/R)pred and log(Rʹ/R) is 
generally smaller than 0.23 apart from one protein (1div) as seen from Tab 1. This means the ratio 
of (Rʹ/R)pred to (Rʹ/R) is generally smaller than 1.7 for most proteins. Considering the possible 
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errors in the experimental determination of Rʹ and R the theoretical prediction based on equation 
(22) is acceptable. Moreover, (Rʹ/R)pred given in Tab 1 takes a value between 0.86 and 1.64 apart 

from 1div. From 2/ ( / )R' R 'ω ω=  we estimate the frequency ratio / 'ω ω ≈ 0.92-1.28.   

3) 0( ) 0cG T G∆ ≡ ∆ ≠ , which is deduced from the linear temperature-dependence of free 
energy. If 0G∆  were 0 then Rʹ would equal R from Eq (22). So the inequality between Rʹ and R 
indicated by experiments would require 0 0G∆ ≠ . Of course, 0G∆  is a small quantity in the order 

of ln
'B ck T ω

ω
. However, in the accurate determination of free energy at a given temperature T near 

Tc one should consider the non-vanishing contribution from 0G∆  term.  
So far we have discussed the temperature dependence of protein folding. The temperature 

dependence law Eq (12) deduced from quantum folding theory can also be used for RNA folding. 
For RNA molecule the temperature dependence of folding rate was observed for yeast tRNAphe 
[24].  They measured the logarithm folding rate lnkf  versus 1/T between 28.5°C and 34.8°C. The 
Arrhenius plot shows a straight line in this temperature interval but large standard deviation 
existing at low temperature end.  From the experiments on protein folding, the strong curve of 
the lnkf  - 1/T relation only occurs in a temperature interval of several tens degrees. We expect 
more accurate measurements within a large enough temperature interval will be able to exhibit the 
non-Arrhenius peculiarity of the temperature dependence of the RNA folding rate. 
 

3.2 Relation of fast-variable factor of folding rate with respect to torsion 
number N  

For a large class of conformational change problems, for example in the conventional 
protein and RNA folding,  the chemical reaction and electronic transition are not involved and 
the fast variables include only bond lengths and bond angles of the macromolecule. In this case 

an approximate relation of the fast-variable factor EI ′  with respect to torsion number N can be 

deduced. When the kinetic energy in ( , ; )fvH x
x

θ
∂
∂

 is neglected as compared with interaction 

potential Ufv one has 

0

0

( ) * 3 3
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          (23) 

In the above deduction of the second equality the fast-variable wave function ( , )αϕ ′r r  has 

been assumed to be a constant and normalized in the volume V. As the energy and volume V are 

dependent of the size of the molecule one may assume energy (0)
αε and Ufv proportional to the 

interacting-pair number (namely N2) and V proportional to N.  However, because only a small 

fraction of interacting-pairs correlated to given ( 1,..., )j j Nθ = , 
0

( , )
( )fv

j

U
θ

θ
θ

′∂ −
∂
r r

 does 
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not increases with N. So, one estimates ( ) 3ja Nα α
−

′ ≈ . On the other hand, the integral 

0

3( , )
( ) ( )fv

j

U
dθ

θ
θ

′∂ −
′−

∂∫
r r

r r  may depend on the molecular structure. For example, the 

high helix content makes the integral increasing.  It was indicated that a protein with abundant α 
helices may have a quite oblong or oblate ellipsoid, instead of spheroid, shape and this protein 

has higher folding rate[12][13]. Therefore, apart from the factor 3N −  there is another 

structure-related factor in ( )jaα α′  though the latter is N-independent. Assuming M proportional to 

N, one obtains 

2 5Ma cfN −=                                        (24) 

where f is a structure-related shape parameter. It means the fast-variable factor EI ′  is inversely 

proportional to N5. With 0

N

j
j

I NI≅∑  and Eq (24) inserted into Eq (7)-(8) we obtain the relation 

of logarithm rate with respect to N and ΔG [25] 

2

0
( / )ln 5.5ln ln

2 2
B

B

G G k TW N c f
k T Nρ
∆ ∆

= − − +                        (25) 

where  

2 2
0 ( ) / ( )BI k Tρ ω δθ=                                            (26) 

is a torsion-energy-related parameter and 1/ 2
0 2

0

2 ( )Bk Tc c
I

π
δθ ω

=
′h

 is an N-independent constant.  

The relationship of lnW with N given by Eq (25) can be tested by the statistical analyses of 65 
two-state protein folding rates kf.  We found that the theoretical logarithm rate lnW is in good 
agreement with the experimental lnkf (Fig 2). The figure is plotted for ρ=0.097 and it gives the 
correlation between theoretical and experimental rates R=0.7818 and slop of regression line 1.109.  
For any ρ between 0.06 and 0.1 the basically same results are obtained, for example, R=0.7537 
and slop=1.044 for ρ=0.069, R=0.7396 and slop=0.997 for ρ=0.06. 
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Figure 2  Comparison of theoretical folding rates lnW with experimental folding rates lnkf 
for 65 proteins.  The experimental rates kf are taken from Table 1 of ref [13]. The straight line is the 

linear regression between lnW and lnkf . In calculation of theoretical lnW  by use of Eq (25) the shape 

parameter f is taken as follows: f=81 for (Lα- Lβ)/L ≥ 0.6, f=25 for 0.3≤(Lα- Lβ)/L< 0.6, and f=1 for (Lα- Lβ)/L< 

0.3.( Lα and Lβ are the number of residues in α helix and β sheet, respectively, and L is the total number of 

folded residues). Our experience shows that the different choice of f-value in the intermediate region is 

insensitive to the statistical result.   

 
3.3  Relation of free energy G∆  with respect to torsion number N 
To find the relation between free energy G∆  and torsion number N we consider the 

statistical relation of free energy combination 
2

22 2B B

G G
k T k T Nρ
∆ ∆

−
( )

( )
 that occurs in rate equation (7) 

or (25). Set 
2

2

1
2 2B B

G G y x
k T k T N Nρ
∆ ∆

− = − =
( ) ,

( )
                             (27) 

The linear regression between y and x is given by y A Bx= + where A and B are two statistical 
parameters describing free energy distribution in the dataset. We will test the linear relation in 
protein folding dataset [12] [13]. Due to the ignorance of the accurate ρ-value for each protein one 
can test the relation by using the single-ρ-fit (assuming a single ρ-value to deduce a linear 
regression) at first, then compare the fitting results and find the best-fit ρ-value and the 
corresponding free-energy statistical parameter A and B . The statistical results (correlation R 
between y and x and parameter A and B) in two-state protein dataset are listed in Table 2  From 
Table 2 we find the correlation R between y and x is near to 0.8 for ρ= 0.065~0.075 and reaches 
maximum at ρ= 0.069 where R=0.7966. Thus, by single-ρ-fit we obtain the best-fit statistical 
relation of free energy for two-state proteins as 

4.306 541.1y x= + (ρ= 0.069)                            (27a) 

(Figure 3a).  In above discussion the single-ρ-fit has been used. Evidently, as the variation of ρ 
for different proteins is taken into account the linear regression between free energy combination y 
and torsion number x will be further improved. 
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 Because N increases linearly with the length L of polypeptide chain, instead of Eq (27), by 
setting 

2

2

( )
2 2( )B B L

G G x
k T k T Lρ
∆ ∆

− = ,   
1 y
L

− =                        (28) 

we obtain the best-fit statistical relation of free energy for two-state proteins (Fig 3b) as 

3.626 83.76y x= +   ( 0 28L .ρ = )                  (28a) 

and the correlation coefficient R=0.781. 
Table 2  Free energy parameters determined by linear regression 

ρ 0.05 0.060 0.065 0.069 0.075 0.097 
R 0.6573 0.7759 0.7934 0.7966 0.7919 0.7507 
A 3.194 3.867 4.126 4.306 4.540 5.152 
B 428.0 496.4 522.8 541.1 564.9 626.9 
A and B - free energy parameter, R- correlation coefficient. R reaches maximum at ρ=0.069. 

 

Figure 3  Statistical relation of free energy for two-state proteins. Experimental data are taken from 

65- protein set [12][13]. Five proteins in the set denatured by temperature have been omitted in our statistics. In (a) 

y and x are defined as Eq (27); in (b) y and x defined as Eq (28). 

  

 About the relationship of free energy ΔG with torsion number N or chain length L several 

proposals were proposed in literatures. One statistics was done by assuming the linear relation 

between ΔG and N , G a N b∆ = −  ( 0b ≠ ) [13]. Another was based on the assumed relation 

of ΔG vs ( 2/3
LLg B Lσ+ ) [12]. By the statistics on 65 two-state proteins in the same dataset we 

demonstrated the correlation R between free energy and N or L is 0.67 for the former and 0.69 for 

the latter [13], both lower than the correlation shown in Fig 3. On the other hand, the proposal of 
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free energy scaled as N  or L  ( G a N G a L∆ = ∆ =, ) [17] seems not agree with protein 

experiments.  The free energy combination of 
2

22 2B B

G G
k T k T Nρ
∆ ∆

−
( )

( )
 occurring in the folding rate 

is an important peculiarity of the present theory. We shall use the statistical relation of the 

free-energy combination versus N in the following studies on RNA folding. 

3.4  Relation of folding rate with respect to torsion number N and its test in 

RNA folding dataset 

In virtue of Eqs (25) (27) we obtain an approximate expression for transitional rate lnW 

versus N for protein folding 

ln lnBW A D N const
N

= − − +                               (29) 

             D=5.5,  4.306, 541.1A B= =  

Here const is an N-independent constant but dependent of molecular shape (through the factor f 
contained in it). Neglecting the shape-dependence and putting N proportional to chain length L we 
re-write the relation as 

ln lnL
L

BW A D L const
L

= − − +                              (29a) 

and compare it with 65- protein dataset the correlation between lnW and experimental lnkf is 
R=0.722 as AL=3.626, BL=83.76 (Eq 28a) and D=5.5 are taken. 

The quantum folding theory of protein is applicable in principle for each step of the 

conformational transition of RNA molecule. Although recent experiments have revealed the 

multi-stages in RNA collapse, the final search for the native structure within compact 

intermediates seems a common step in the folding process. Moreover it exhibits strong 

cooperativity of helix assembly [15][20]. Because the collapse transition prior to the formation of 

intermediate is a fast process and the time needed for the former is generally shorter than the latter 

[20] , the calculation of the transition from intermediate to native fold can be directly compared 

with the experimental data of total rate. Furthermore, for RNA folding the const term in Eq (29) 

can be looked as a real constant if the variation of structure-related shape parameter f is neglected 

in the considered dataset.  By using N=qL (L is the chain length of RNA) we have 

'ln ln 'BW A D L c
L

= − − +     ( B'=B/q, ' lnc const D q= − )    (30) 

Eq (30) is deduced from quantum folding theory with some statistical consideration and it predicts 
the relation of folding rate versus chain length: the rate W increasing with L, attaining the 
maximum at Lmax=B'/D, then decreasing with power law L-D. 
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In a recent work Hyeon and Thirumalai [16] indicated that the chain length determines the 
folding rates of RNA. They obtained a good statistical relation between folding rates and chain 
length L in a dataset of 27 RNA sequences. Their best-fit result is 

0.46log 14.3 1.15HW L= − ×                                   (31) 

Both equations (30) and (31) give the relation between RNA folding rate and chain length. 
Comparing the theoretical folding rates lnW or lnWH with the experimental folding rates ln kf  in 
27 RNA dataset the results are shown in Figure 4 . We found Eq (30) can fit the experimental data 
on RNA folding rate equally well as Eq (31).  By using the best-fit value of B' and D the 
correlation between lnW (calculated from Eq 30) and ln kf is R=0.9729 (Fig 4a)，while the 
correlation between lnWH (calculated from Eq 31) and ln kf is R=0.9752(Fig 4b). However, in Fig 
4b the slope of the regression line is 1.03 and the line deviates from origin by -0.36 , while in Fig 
4a the slope is 1.0001, very close to 1 and the line deviates from origin only by -0.0012.  The 
reason lies in: although two equations have the same overall accuracy in fitting experimental data, 

but for large L cases the errors log log fEr W k= −  calculated from Eq (30) are explicitly lower 

than log logH H fEr W k= −  from Eq (31) (Table 3).  It means the folding rate lowers down with 

increasing L as ( 5.5)DL D− ≅  at large L (a long-tail existing in the W-L curve) rather than a short 

tail as exp( )Lλ−  assumed in [16]. The long-tail form of folding rate can be used to explain 

some small- probability events in pluripotency conversion of gene [25].  

 

 
Figure 4  Comparison of experimental folding rates lnkf with theoretical folding rates lnW 
(Fig 4a) or lnWH (Fig 4b) for 27 RNA molecules. Experimental rates are taken from Table 1 in ref 

[16]. Theoretical rates are calculated from Eq (30) and (31) respectively. 
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Table 3  Errors of RNA folding rates in two theoretical models compared with 
experimental data  

 1 2 3 4 5 6 7 8 
L 125 160 205 225 368 377 409 414 

kf(s-1) 6 2 10.5 6.5 0.03 0.011 0.008 0.013 
ErH 0 0.17 3.27 3.37 1.52 0.71 1.06 1.66 
Er 0 0.18 3.15 3.17 0.44 0.42 0.30 0.26 

log logH H fEr W k= −  , log log fEr W k= − . 

1, hairpin ribozyme [26][27]; 2; P4-P6 domain (Tetrahymena ribozyme)[28]; 3, Azoarcus ribozyme [27][29]; 4, B. 

subtilis RNase P RNA catalytic domain[30]; 5, Ca.L-11 ribozyme[31]; 6, E. coli RNase P RNA[32]; 7, B. subtilis 

RNase P RNA[32] and 8, Tetrahymena ribozyme[27][33].  Experimental rates kf’s can be found in literatures 

[26-33].  The errors of eight RNAs with lengths larger than 120 in 27-RNA dataset are analyzed in the table. The 

errors of the first RNA hairpin ribozyme are normalized to zero in two models.  

 
There are two independent parameters in RNA folding rate Eq (30), B′  and D, apart from 

the additive constant. As seen from Fig 4a we obtain the best-fit D value Df=5.619 on the 27-RNA 
dataset, close to D=5.5 predicted from a general theory of quantum folding. Simultaneously we 

obtain the best-fit B′  value fB′ =61.63. The fB′  value derived from RNA folding can be 

compared with the BL=83.76 from protein folding (Eq (29a)).  Notice that BL or B′ represents the 
contribution from free energy square term in logarithm folding rate. The RNA folding free energy 
is typically 2 to 4 kcal/mol [20,34,35] while the folding free energy for most proteins in 65-protein 
dataset is between 1 and 4.6 kcal /mol. (Table 1 in ref [13]).  The two free energy values are near 

each other. It explains fB′  near BL. 

The 27-RNA dataset [16] contains data of experimental folding rates measured in different 
processes. The dataset is inhomogeneous, including several subsets, one subset of total folding 
rates for some RNAs and another subset of rates of secondary structure formation for other RNAs, 
etc. One wondered why the simple formula such as Eq (30) can fit the experiments so well. The 
reason may be in: all RNA folding processes can be looked as the quantum transition between 
conformational states and this common mechanism has been quantitatively described by a 
unifying equation; furthermore, all D’s occurring in the equation for different subsets are near to 
5.5 by theoretical grounds. So one can use Eq (30) with single parameters B', D and an additive 
constant to fit the experimental folding rates. However, the dissimilarity of free energy parameters 
B (and A) and the variation of structure-related parameter f in different subsets do exist. The 
differences of these parameters have been neglected in the simplified equation (30). A more 
rigorous comparison between theory and experiments should take these differences into account. 
For example, as the nucleotide G in the tetraloop hairpin UUCG is substituted by 
8-bromoguanosine G , the folding rate of gcUUC G gc is 4.1-fold faster than gcUUCGgc [21]. 
Both samples were collected in the dataset [16]. They have the same chain length L=8 but 
different rate kf . This cannot be explained by Eq (30). However, if the variations of the free energy 
change G∆  and the structure-related parameter f are incorporated in a more rigorous equation 
(as in the original Eq (25)) then the detailed difference in the folding rate for these two samples 
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will be interpreted in a natural way. 
 
Remarks 
We have studied the folding of two-state proteins and RNA molecules from the point of 

quantum transition. Dislike two-state protein the RNA folding is a multi-stage process. Both the 
folding from compact intermediate to native fold and the folding of secondary structure formation 
can be studied from quantum folding theory. However, to study the collapse transition as a whole 
for RNA molecule needs further development of the quantum model. The problem can be 
compared with the multi-state protein folding. For multi-state protein one may assume the folding 
is a mutual process of several quantum transitions in different domains and that some time delays 
exist between these transitions [36]. The similar idea might be introduced in the study of the total 
folding rate of the RNA molecule.  

To test quantum folding theory we suggest make experimental study directly on protein and 
RNA photo-folding. The stimulated photo-folding rates and the resonance fluorescence cross 
section have been calculated for protein in [37]. These results can be generalized to RNA. The 
particular form of the folding rate–temperature relation and the abundant spectral structure in 
protein and RNA photo-folding will afford direct evidence on the existence of a set of quantum 
oscillators of low frequency and the quantum transitions between molecular conformations. 

4  SUMMARY OF QUANTITATIVE RELATIONS  
 Based on quantum theory of conformation change of biomolecule the following quantitative 
results are deduced:  
1) A law on the temperature dependence of folding rate   

 1ln ( ) ln .
2

SW T RT T const
T

= − + +  (Eq (12)).  

The rate formula successfully explained the non-Arrhenius peculiarity of protein folding in a 
natural way. 
2) The relation between slope S (S') and curvature R(R') on Arrhenius plot for protein folding 

/unfolding  
2

2( )
2 B

R S
k
α β

α
= −  (Eq (17)) ,   

2

2( )
2 B

R' S'
k
α β

α
= − +  (Eq(20)). 

2
0 0( ) ' 1 '( 1) ln 0

2 2B c B c

G G R R
k T k T R Rε
∆ ∆

+ − + =  (Eq (22)) 

3) The linear relation y=Ax+B between free energy 
2

2

( )
2 2( )B B L

G G
k T k T Lρ
∆ ∆

−  (y) and chain length 

-1/L (x) (Eq (28) and (28a)). 
4） A statistical formula on protein and RNA folding rate dependent of torsion number（chain 
length） 

ln lnBW A D N const
N

= − − +  (Eq (29))  and  'ln ln 'BW A D L c
L

= − − +  (Eq(30)) 

The theoretical predictions are in accordance with the experimental data on two-state-protein 
and RNA folding 

The partial success of the present study on protein and RNA folding from a simple unified 
theory reveals the existence of a common quantum mechanism in the conformational transition of 
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Supplementary Material. 
 
 

Table S1  The number of side-chain dihedral angles n′ for 20 amino acids  
amino acids Ala Arg Asn Asp Cys Gln Glu Gly His Ile 
n′  0 4 2 2 1 3 3 0 2 2 
amino acids Leu Lys Met Phe Pro Ser Thr Trp Tyr Val 
n′  2 4 3 2 2 1 1 2 2 1 
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Figure S1  Linear relation between protein free energy ΔG and temperature 

 
Experimental free energies ΔG changing with temperature are plotted for 15 proteins. The protein 1iet in 16 proteins is not shown in 

this figure due to the scarcity of data. The regression analysis shows a good linear relation existing between ΔG and T for each protein. 

ΔG in unit J, T in unit Kelvin.  References on the experimental data can be found in Tab 2 of ref [13]. . 
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