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ABSTRACT 
Starting from the assumption that the protein and RNA folding is an event of quantum transition 
between molecular conformations，we deduced a folding rate formula and studied the chain length 
(torsion number) dependence and temperature dependence of the folding rate. The chain length 
dependence of the folding rate was tested in 65 two-state proteins and 27 RNA molecules.  The 
success of the comparative study of protein and RNA folding reveals the possible existence of a 
common quantum mechanism in the conformational change of biomolecules. The predicted 
temperature dependence of the folding rate has also been successfully tested for proteins. Its further 
test in RNA is expected.    
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INTRODUCTION 
In a recent work Garbuzynskiy et al reported that the measured protein folding rates fall within a 

narrow triangle (called Golden triangle)[1]. Simultaneously, Hyeon et al reported that RNA folding 
rates are determined by chain length. [2]  Both protein and RNA are biological macromolecules.  
They may obey the same dynamical laws and a unifying folding mechanism is expected [3]. We have 
proposed a quantum theory on protein folding [4] . Following the idea that the conformational 
change of biomolecule is essentially a quantum transition between conformational states we shall 
make comparative studies on two-state protein folding and RNA folding and give a unifying 
approach to find the folding dynamics of both molecules. 

For a macromolecule consisting of n atoms there are 3n coordinates if each atom is looked as a 
point. Apart from 6 translational and rotational degrees of freedom there are 3n-6 coordinates 
describing molecular shape. The molecular shape is the main variables responsible for 
conformational change. It has been proved that the bond lengths, bond angles and torsion (dihedral) 
angles form a complete set to describe the molecular shape. As compared with chemical bond energy 
(typically in several electron volts) , the vibrational energy of bond length and bond angle (in the 
range of 0.4-0.03 ev) and other forms of biological energies, the torsion vibration energy (about 
0.03-0.003 ev) is the lowest and therefore constitutes the slow variables of the molecular biological 
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system. Moreover, different from stretching and bending the torsion potential generally has several 
minima with respect to angle coordinate that correspond to several stable conformations. Based on 
the idea that the molecular conformation is defined by torsion state and the folding/unfolding is 
essentially a quantum transition between them, through adiabatically elimination of fast variables we 
obtain a set of fundamental equations to describe the rate of conformational transition of 
macromolecule.[4]  By use of these equations we have successfully explain the non-Arrhenius 
temperature dependence of the folding rate (the logarithm folding rate is not a decreasing linear 
function of 1/T）for each protein. Moreover, the statistical investigation of 65 two-state protein 
folding rates shows the fundamental equations are consistent with experimental data [5]. 

In the article, based on the rate equation deduced from quantum transition theory a unifying 
investigation on protein folding and RNA folding will be given. Firstly we shall deduce a relation 
between folding rate and chain length. Then we shall test the relation in 65 two-state protein dataset 
and use the relation to analyze the folding rate data of 27 RNA molecules.  We shall also give the 
relation of folding rate with temperature and discuss its experimental implication. 

MATERIALS AND METHODS 

Datasets  Recently Garbuzynskiy and coworkers collected folding rate data for 69 two-state 
proteins [1]. Of the 69 proteins, the folding rates of 65 two-state proteins are obtained at around 
25 °C. They constitute a dataset used by us to compare the theoretical vs. experimental results (Table 
S1 in the Supplementary data).  Hyeon and Thirumalai collected the folding rates of 27 RNA 
molecules [2]. They constitute the second dataset we shall use.  In addition, the temperature 
dependence data of the folding rate for 16 proteins are given in Table S2 in the Supplementary data. 

Theoretical model  Suppose the quantum state of a macromolecule is described by a wave 
function M(θ, x)  where {θ} the torsion angles of the molecule and {x} the set of fast variables 
including the stretching-bending coordinates and the frontier electrons of the molecule, etc.  The 
wave function M(θ,x) satisfies  
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where Ij denotes the inertial moment of the j-th torsion and the torsion potential Utor is a function of a 
set of torsion angles { }jθ θ= . Its form is dependent of solvent environment of the molecule. fvH  

is fast-variable Hamiltonian. Because the fast variables change more quickly than the variation of 
torsion angles, the adiabatic approximation can be used. In adiabatic approximation the wave 
function is expressed as  
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and these two factors satisfy 

( , ; ) ( , ) ( ) ( , )fvH x x x
x αα αθ ϕ θ ε θ ϕ θ

∂
=

∂
                   (4) 

{ ( , ) ( )} ( ) ( )tor kn kn knH Eα α α αθ ε θ ψ θ ψ θ
θ
∂

+ =
∂

                 (5) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2015. ; https://doi.org/10.1101/021782doi: bioRxiv preprint 

https://doi.org/10.1101/021782


here α denotes the quantum number of fast-variable wave function ϕ , and (k, n) refer to the 

conformational (indicating which minimum the wave function is localized around) and the 
vibrational state of torsion wave function ψ , respectively.  

Because M ( x,θ ) is not a rigorous eigenstate of Hamiltonian Htor + Hfv, there exists a 

transition between adiabatic states that results from the off–diagonal elements 
22
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Here H ′  is a Hamiltonian describing conformational transition. The nonadiabatic matrix element (6) 
can be calculated under the perturbation approximation.  Through tedious calculation we obtain the 
rate of conformational transition [4] 
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where W means the rate of conformational transition at given temperature T and solvent condition, 

VI ′  is slow-variable factor and EI ′  fast-variable factor, N is the number of torsion modes 

participating in a quantum transition coherently, jI  denotes the inertial moment of the atomic 

group of the j-th torsion mode (I0 denotes its average hereafter), ω  and ω′  are the initial and 

final frequency parameters jω  and jω′  of torsion potential averaged over N torsion modes, 

respectively, δθ  is the averaged angular shift between initial and final torsion potential, G∆  is 
the free energy decrease per molecule between initial and final states, M is the number of torsion 
angles correlated to fast variables, 2a  is the square of the matrix element of the fast-variable 
Hamiltonian operator, or, more accurately, its change with torsion angle, averaged over M modes,  
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Eqs (7)(8) are basic equations for conformational transition.  To obtain quantitative result one 
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should calculate the number of torsion modes N in advance. N describes the coherence degree of 
multi-torsion transition in the folding. For two-state protein folding we assume that N can be 
obtained by numeration of all main-chain and side-chain dihedral angles on the polypeptide chain 
except those residues on its tail which does not belong to any contact. A contact is defined by a pair 
of residues at least four residues apart in their primary sequence and with their spatial distance no 
greater than 0.65 nm. Each residue in such contact fragment contributes 2 main-chain dihedral 
angles and, for non-alanine and -glycine, it contributes 1 - 4 additional side-chain dihedral angles 
(Table S3 in the Supplementary data). For RNA folding, we assume the quantum transition occurs 
between compact (yet disordered) intermediate and folding state [8] or between primary and 
secondary structures of the molecule [9]. The torsion number can be estimated by chain length. 
Following IUB/IUPAC there are 7 torsion angles for each nucleotide, namely  

    

(O3' P O5' C5'),
(P O5' C5' 4 '),
(O5' C5' 4 ' C3'),
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C
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C
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β
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− − −

− − −
− − −
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− − −

 

and  
(O4 ' C1' N1 C2)χ − − − (for Pyrimidine) or (O4 ' C1' N9 C2)χ − − − (for Purine),  

of which many have more than one advantageous conformations (potential minima). If each 
nucleotide has q torsion angles with multi-minima in potential then the torsion number N=qL, 
where L is chain length of RNA.  

RESULTS AND DISCUSSIONS 

Obtaining a relation of the fast-variable factor EI ′  with respect to torsion number N.  

For protein (and RNA) folding or other macromolecular conformational change not involving 
chemical reaction and electronic transition the fast variable includes only bond lengths and bond 

angles of the macromolecule. In this case an approximate relation of the fast-variable factor EI ′  

with respect to torsion number N can be deduced. When the kinetic energy in ( , ; )fvH x
x

θ
∂
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 is 

neglected as compared with interaction potential U one has 
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In the above deduction of the second equality the fast-variable wave function ( , )αϕ ′r r  has been 

assumed to be a constant and normalized in the volume V. As the energy and volume V are 

dependent of the size of the molecule one may assume energy (0)
αε and U proportional to the 
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interacting-pair number (namely N2) and V proportional to N.  However, because only a small 

fraction of interacting-pairs correlated to given ( 1,..., )j j Nθ = , 
0
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U
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increases with N. So, one estimate ( ) 3ja Nα α
−
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r r may depend on the molecular structure. For example, the high 

helix content makes the integral increasing.  It was indicated that a protein with abundant α helices 
may have a quite oblong or oblate ellipsoid, instead of spheroid, shape and this protein has higher 

folding rate[1][5]. Therefore, apart from the factor 3N −  there is another structure-related factor in 

( )jaα α′ . The latter is N-independent. Assuming M proportional to N, one obtains 

2 5Ma cfN −=                                        (10) 

where f is a structure-related shape parameter. It means the fast-variable factor EI ′  is inversely 

proportional to N5. With 0
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 is an N-independent constant.  

The relationship of lnW with N given by Eq (11) can be tested by the statistical analyses of 65 
two-state protein folding rates kf.  We found that the theoretical logarithm rate lnW is in good 
agreement with the experimental lnkf  (Fig 1).  The correlation coefficient R has attained higher 
than 0.78. 
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Figure 1  Comparison of theoretical folding rates lnW with experimental folding rates lnkf for 
65 proteins.  The experimental rates kf are taken from Table S1. The straight line is the linear regression 

between lnW and lnkf . In calculation of theoretical lnW  by use of Eq 11 the shape parameter f is taken as 

follows:, f=81 for (Lα- Lβ)/L ≥ 0.6, f=25 for 0.3≤(Lα- Lβ)/L< 0.6, and f=1 for (Lα- Lβ)/L< 0.3.( Lα and Lβ are the 

number of residues in α helix and β sheet, respectively, and L is the total number of folded residues). Our 

experience shows that the different choice of f-value in the intermediate region is insensitive to the statistical 

result.  The figure is plotted for 0.097ρ =  (with correlation R=0.7818 and slop of regression line 1.109).  

For any ρ between 0.06 and 0.1 the basically same results are obtained, for example, R=0.7537 and slop=1.044 

for 0.069ρ = , R=0.7396 and slop=0.997 for 0.06ρ = . 

 
Obtaining a relation of the free energy G∆  with respect to torsion number N and 
testing it in protein folding dataset   To find the relation between free energy G∆  and 

torsion number N we consider the statistical relation of free energy combination 
2
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The linear regression between y and x is given by y A Bx= + where A and B are two statistical 
parameters describing free energy distribution in the dataset. We will test the linear relation in protein 
folding dataset. Due to the ignorance of the accurate ρ-value for each protein one can test the relation 
by using the single-ρ-fit (assuming a single ρ-value to deduce a linear regression) at first, then 
compare the fitting results and find the best-fit ρ-value and the corresponding free-energy statistical 
parameter A and B . The statistical results (correlation R and parameter A and B) in two-state protein 
dataset are listed in Table 1.  From Table 1 we find the correlation R between y and x is near to 0.8 
for ρ= 0.065~0.075 and reaches maximum at ρ= 0.069 where R=0.7966. Thus, by single-ρ-fit we 
obtain the best-fit statistical relation of free energy for two-state proteins as 

4.306 541.1y x= + (ρ= 0.069)                            (13a) 

(Figure 2).  In above discussion the single-ρ-fit has been used. Evidently, as the variation of ρ for 
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different proteins is taken into account the linear regression between free energy combination y and 
torsion number x will be further improved. 
 
Table 1  Free energy parameters determined by linear regression 
ρ 0.05 0.060 0.065 0.069 0.075 0.097 
R 0.6573 0.7759 0.7934 0.7966 0.7919 0.7507 
A 3.194 3.867 4.126 4.306 4.540 5.152 
B 428.0 496.4 522.8 541.1 564.9 626.9 
A and B - free energy parameter, R- correlation coefficient. R reaches maximum at ρ=0.069. 

              
Figure 2  Statistical relation of free energy for two-state proteins. Experimental data are taken from 65- 

protein set (Table S1). Five proteins in the set denatured by temperature have been omitted in our statistics. 

 About the relationship of free energy ΔG with torsion number N two statistics were done in 

literatures. One was based on the assumption of linear relation existing between ΔG and N , 

G a N b∆ = −  ( 0b ≠ ) [5]. Another was based on the assumed relation of ΔG vs 

( 2/3
LLg B Lσ+ )( L - the length of polypeptide chain)[1]. By the statistics on 65 two-state proteins in 

the same dataset we demonstrated the correlation R between free energy and N-related quantity is 

0.67 for the former and 0.69 for the latter [5], both lower than the correlation shown in Fig 2.  The 

free energy combination of 
2

22 2B B

G G
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−
( )

( )
 occurring in the folding rate is an important 

peculiarity of the present theory. We shall use the statistical relation of the free-energy combination 

versus N in the following studies on RNA folding. 

Testing the relation of the folding rate with respect to torsion number N in RNA folding 

dataset 

In virtue of Eqs (11) (13) we obtain an approximate expression for transitional rate lnW versus 
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N for protein folding 

ln lnBW A D N const
N

= − − +                               (14) 

           D=5.5,  4.306, 541.1A B= =  

Here const is an N-independent constant but dependent of molecular shape (due to the factor f 
contained in it).  

The quantum folding theory of protein is usable in principle for each step of the conformational 

transition of RNA molecule. Although recent experiments have revealed the multi-stages in RNA 

collapse, the final search for the native structure within compact intermediates seems a common step 

in the folding process. In the meantime it exhibits strong cooperativity of helix assembly [3][7]. In 

calculation of the transition from intermediate to native fold, as the collapse transition prior to the 

formation of intermediate is a fast process and the time needed for the latter is generally shorter than 

the former [7] , the calculation result can be directly compared with the experimental data of total 

rate.  Moreover, for RNA folding the const term in Eq (14) is a real constant if the variation of the 

structure-related shape parameter f can be neglected in the considered dataset.  By using N=qL (L is 

the chain length of RNA) we have 

'ln ln 'BW A D L c
L

= − − +     ( B’=B/q, ' lnc const D q= − )    (15) 

Eq (15) is deduced from quantum folding theory and it predicts the relation of folding rate versus 
chain length: the rate W increasing with L, attaining the maximum at Lmax=B’/D, then decreasing with 
power law L-D. 

In a recent work Hyeon and Thirumala [2] indicated that the chain length determines the folding 
rates of RNA. They obtained a good statistical relation between folding rates and chain length L in a 
dataset of 27 RNA sequences. Their best-fit result is 

0.46log 14.3 1.15HW L= − ×                                   (16) 

Both equations (15) and (16) give relation between RNA folding rate and chain length. 
Comparing the theoretical folding rates ln W or ln WH with the experimental folding rates ln kf  in 27 
RNA dataset the results are shown in Figure 3 . We find Eq (15) can fit the experimental data on 
RNA folding rate equally well as Eq (16).  By using the best-fit value of B’ and D the correlation 
between ln W (calculated from Eq 15) and ln kf is R=0.9729 (Fig 3a)，while the correlation between 
ln WH (calculated from Eq 16) and ln kf is R=0.9752(Fig 3b). However, in Fig 3b the slope of the 
regression line is 1.03 and the line deviates from origin by -0.36 , while in Fig 3a the slope is 1.0001, 
very close to 1 and the line deviates from origin only by -0.0012.  The reason is: although two 
equations have the same overall accuracy in fitting experimental data, but for large L cases the errors 

log log fEr W k= −  calculated from Eq (15) are explicitly lower than log logH H fEr W k= −  
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from Eq (16) (Table 2).  It means the folding rate lowers down with increasing L as ( 5.5)DL D− ≅  

at large L (a long-tail existing in the W-L curve) rather than a short tail as exp( )Lλ−  assumed in 

[2]. 

 
 
Figure 3  Comparison of experimental folding rates lnkf with theoretical folding rates lnW (Fig 
3a) or lnWH (Fig 3b) for 27 RNA molecules. Experimental rates are taken from Table 1 in literature [2]. 

Theoretical rates are calculated from Eq (15) and (16) respectively. 
 

Table 2  Errors of RNA folding rates in two theoretical models compared with experimental data  
 1 2 3 4 5 6 7 8 
L 125 160 205 225 368 377 409 414 
kf(s-1) 6 2 10.5 6.5 .03 .011 .008 .013 
ErH 0 0.17 3.27 3.37 1.52 0.71 1.06 1.66 
Er 0 0.18 3.15 3.17 0.44 0.42 0.30 0.26 

log logH H fEr W k= −  , log log fEr W k= − ,  

1, hairpin ribozyme [9][10]; 2; P4-P6 domain (Tetrahymena ribozyme)[11]; 3, Azoarcus ribozyme [10][12]; 4, B. 

subtilis RNase P RNA catalytic domain[13]; 5, Ca.L-11 ribozyme[14]; 6, E. coli RNase P RNA[15]; 7, B. subtilis 

RNase P RNA[15] and 8, Tetrahymena ribozyme[10][16].  Experimental rates kf’s can be found in literatures [9-16].  

The errors of eight RNAs with lengths larger than 120 in 27-RNA dataset are analyzed in the table. The errors of the 

first RNA hairpin ribozyme are normalized to zero in two models.  

 
There are two independent parameters in RNA folding rate Eq (15), B′  and D, apart from the 

additive constant. As seen from Fig 3a we obtain the best-fit D value Df=5.619 on the 27-RNA 
dataset, close to D=5.5 predicted from a general theory of quantum folding. Simultaneously we 

obtain the best-fit B′  value fB′ =61.63. The fB′  value derived from RNA folding can be compared 

with the B value from protein folding (Eq (14)).  Notice that B or B′ =B/q represents the 
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contribution from free energy square term 
2

22 B

G
k T Nρ

∆( )
( )

 in logarithm folding rate. The RNA folding 

free energy is typically 2 to 4 kcal / mol [7, 17,18] while the folding free energy for most proteins in 
65-protein dataset is between 1 and 4.6 kcal /mol. (Table S1).  On the other hand, the ρ - value 
varies from about 0.03 (for fast folds) to 0.1 as seen from the statistical analysis of protein data [5].  

Although both 2G∆( )  and ρ  changes with N the variation of 
2G

ρ
∆( ) with N in a given dataset 

may be more weak. It is plausible to assume the mean 
2G

ρ
∆( )  for protein differs that for RNA by a 

factor no larger than 1.5 to 2.  If 
2

prot

G
ρ

∆( ) =(1.5~2) 
2

RNA

G
ρ

∆( )  then the B –value for RNA, 

BRNA ,will be smaller than Bprotein=541.1 and takes a value in the range 270-360. Comparing with 

fB′ =61.63 it leads to q=4.4 ~ 5.8, consistent with the theoretical upper limit q =7 for RNA molecule. 

   The 27-RNA dataset [2] contains data of experimental folding rates measured in different 
processes. The dataset is inhomogeneous, including several subsets, one subset of total folding rates 
for some RNAs and another subset of rates of secondary structure formation for other RNAs, etc. In 
using Eq (15) one should notice the parameter difference among subsets. All D’s in different subsets 
are near to 5.5 by theoretical grounds. If the variation of B’ (and additive constant) among subsets 
can be neglected then one can use Eq (15) with single parameter B’ , D and additive constant to fit 
the experimental folding rates. We wonder why the simple formula Eq (15) can fit the experiments 
so well. Here gives an explanation. However, the dissimilarity of free energy parameters B (and A) 
and the variation of structure-related parameter f in different subsets do exist. For example, as the 
nucleotide G in the tetraloop hairpin UUCG is substituted by 8-bromoguanosine G , the folding rate 
of gcUUC G gc is 4.1-fold faster than gcUUCGgc.[8] Both samples were collected in the dataset and 

they have the same chain length L=8 but different rate kf . From the present theoretical model, the 
difference comes from the variation of the free energy change G∆  and the structure-related 

parameter f in two samples (see Eq (11)).  This explains the origin of the error of the model fit to 
the RNA folding rate by using Eq (15). 
 
Obtaining a law on the temperature dependence of folding rate and testing it in protein 
dataset    The free energy decrease G∆  in protein folding is linearly dependent of temperature 
T (Figure S2 in the Supplementary data). Inserting the linear relation into Eq(7) we obtain the 
temperature dependence of the transition rate as  

1ln ( ) ln .
2

SW T RT T const
T

= − + +                        (17) 

It means the non-Arrhenius behavior of the rate–temperature relationships. The relation was 
tested for 16 two-state proteins whose temperature dependence data were available (Table S2 in the 
Supplementary data).  The statistical analyses were made in [5] (see Figure S1 and Table S4 in the 
Supplementary data).  Figure 4 gives an example. The strong curvature on Arrhenius plot is due to 
the R term in Eq (17) which comes from the square free energy (ΔG)2 in lnW. The good agreement 
between theory and experiments affords a support to the concept of quantum folding. Moreover, in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2015. ; https://doi.org/10.1101/021782doi: bioRxiv preprint 

https://doi.org/10.1101/021782


this model the universal non-Arrhenius characteristics of folding rate are described by two slope 
parameters S and R and these parameters are related to the known folding dynamics. All parameters 
related to torsion potential defined in this theory (such as torsion frequency ω  and ω′ , averaged 
angular shift δθ  and energy gap ΔE between initial and final torsion potential minima, etc) can be 
determined. They can be calculated consistently with each other for all studied proteins.  
Furthermore，in this theory the folding and unfolding rates are correlated with each other, needless of 
introducing any further assumption [5][19]. 
 For RNA molecule the temperature dependence of folding rate for yeast tRNAphe was observed 
[20].  They measured the logarithm folding rate lnkf  versus 1/T between 28.5°C and 34.8°C. The 
Arrhenius plot shows a straight line in this temperature interval but large standard deviation existing 
at low temperature end.  From the experiments on protein folding, the strong curve of the lnkf  - 1/T 
relation only occurs in a temperature interval of several tens degrees. We expect more accurate 
measurements within a large enough temperature interval will be able to exhibit the non-Arrhenius 
peculiarity of the temperature dependence of the RNA folding rate. 

  

 
 

Figure 4  Model fits to overall folding rate kf vs temperature 1000/T for protein 
FBP28(PDB code 1E0L). Experimental logarithm folding rates are shown by “o”, and solid lines are 

theoretical model fits to the folding rate (kf in unit s-1, T in unit Kelvin). Experimental rates are taken from [22]. 
 
Remarks  Eq (7) can be used for unfolding as well as for folding. The unfolding rate W(unfolding) 
is easily obtained by the replacement of G∆  by G− ∆  and 'ω (ω ) by ω  ( 'ω ) in W(folding).  
Thus we have 

2 2 2

2

(folding) ( ) 'ln{ } ( ) ln
(unfolding) 2 ' 'B B

W G G
W k T k T

ω ω ω
ε ω ω

∆ ∆ −
= + +                   (18) 

( ε = 2 2( )
N

j
j

Iω δθ ∑  ). Eq (18) means the condition of dynamical balance (folding)W = 

(unfolding)W  for protein folding is slightly different from the usual equilibrium condition for 
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chemical reaction G∆ =0 due to the different bias samplings in frequency space of { jω } and 

{ ' jω }, 'ω ω≠ .  

We have studied the folding of two-state proteins and RNA molecules from the point of 
quantum transition. Dislike two-state protein folding RNA folding is a multi-stage process. Both the 
folding from compact intermediate to native fold and the folding of secondary structure formation 
can be studied from quantum folding theory. However, to study the collapse transition as a whole for 
RNA molecule needs further development of the quantum model. The problem can be compared with 
the multi-state protein folding. For multi-state protein one may assume the folding is a mutual 
process of several quantum transitions in different domains and that some time delays exist between 
these transitions [21]. The like idea might be introduced in the study of the total folding rate of the 
RNA molecule.  

Conclusion 
A formula on protein and RNA folding rate dependent of torsion number（chain length）is 

deduced from quantum folding theory of macromolecule. The theoretical prediction is in accordance 
with the experimental data on two-state-protein and RNA folding. A law on the temperature 
dependence of folding rate is also deduced which can explain the non-Arrhenius peculiarity of 
protein folding.  What encourages us is: the partial success of the present study on protein and RNA 
folding from a simple unified theory reveals the existence of a common quantum mechanism in the 
conformational transition of biomolecules. 
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