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Molecular simulations intended to compute equilibriumproperties are o�en initiated fromconfigurations
that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient
in mechanical observables computed from the simulation trajectory. Traditional practice in simulation
data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and
automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure
that does not make strict assumptions about the distribution of the observable of interest, in which the
equilibration time is chosen to maximize the number of e�ectively uncorrelated samples in the production
timespan used to compute equilibrium averages. We present a simple Python reference implementation of
this procedure, and demonstrate its utility on typical molecular simulation data.
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INTRODUCTION6

Molecular simulations use Markov chain Monte Carlo7

(MCMC) techniques [1] to sample configurations x from an8

equilibrium distribution π(x), either exactly (using Monte9

Carlo methods such as Metropolis-Hastings) or approx-10

imately (using molecular dynamics integrators without11

Metropolization) [2].12

Due to the sensitivity of the equilibrium probability den-13

sity π(x) to small perturbations in configuration x and the14

di�iculty of producing su�iciently good guesses of typical15

equilibrium configurations x ∼ π(x), these molecular sim-16

ulations are o�en started from highly atypical initial con-17

ditions. For example, simulations of biopolymers might be18

initiated from a fully extended conformation unrepresenta-19

tive of behavior in solution, or a geometry derived from a fit20

to di�raction data collected from a cryocooled crystal; sol-21

vated systems may be prepared by periodically replicating22

a small solvent box equilibrated under di�erent conditions,23

yielding atypical densities and solvent structure; liquidmix-24

tures or lipid bilayersmay be constructed by usingmethods25

that fulfill spatial constraints (e.g. PackMol [3]) but create lo-26

cally aytpical geometries, requiring long simulation times to27

relax to typical configurations.28

As a result, traditional practice in molecular simulation29

has recommended some initial portion of the trajectory be30

discarded to equilibration (also called burn-in1 in the MCMC31

literature [4]). While the process of discarding initial sam-32

ples is strictly unnecessary for the time-average of quanti-33

ties of interest to eventually converge to the desired expec-34

tations [5], this nevertheless o�en allows the practitioner to35

avoidwhatmaybe impractically long run times to eliminate36

the bias in computed properties in finite-length simulations37

∗ Corresponding author; john.chodera@choderalab.org
1 The term burn-in comes from the field of electronics, in which a
short “burn-in” period is used to ensure that a device is free of faulty
components—which o�en fail quickly—and is operating normally [4].

induced by atypical initial starting conditions. It is worth38

noting that a similar procedure is not a practice universally39

recommended by statisticians when sampling from poste-40

rior distributions in statistical inference [4]; the di�erences41

in complexity of probability densities typically encountered42

in statistics and molecular simulation may explain the dif-43

ference in historical practice.44

As a motivating example, consider the computation of45

the average density of liquid argon under a given set of re-46

duced temperature and pressure conditions shown in Fig-47

ure 1. To initiate the simulation, an initial dense liquid ge-48

ometry at reduced density ρ∗ ≡ ρσ3 = 0.960 was pre-49

pared and subjected to local energy minimization. The up-50

per panel of Figure 1 depicts the average relaxation behav-51

ior of simulations initiated fromthe sameconfigurationwith52

di�erent random initial velocities and integrator random53

number seeds (see Simulation Details). The average (black54

line) and 95% confidence interval (shaded grey) of 500 re-55

alizations of this process show a characteristic relaxation56

behavior away from the initial density toward the equilib-57

rium density. The expectation of the running average of the58

density over many realizations of this procedure (Figure 1,59

lower panel) significantly deviates from the true expecta-60

tion (dashed line), leading to significantly biased estimates61

of the expectationunless simulations are su�iciently long to62

eliminate this starting point dependent bias—a surprisingly63

long 30 ns in this case. Note that this bias is present even in64

the average of many realizations because the same atypical65

starting condition is used for every realization of this simu-66

lation process.67

To develop an automatic approach to eliminating this68

bias, we take motivation from the concept of reverse cumu-69

lative averaging from Yang et al. [6], in which the trajectory70

statistics over the production region of the trajectory are71

examined for di�erent choices of the end of the discarded72

equilibration region to determine the optimal production73

region to use for computing expectations and other statis-74

tical properties. We begin by first formalizing our objectives75

mathematically.76
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FIG. 1. Illustration of themotivation for discarding data to equilibration. To illustrate the bias in expectations induced by relaxation
away from initial conditions, 500 replicates of a simulation of liquid argon were initiated from the same energy-minimized initial configu-
ration constructedwith initial reduced density ρ∗ ≡ ρσ3 = 0.960 but di�erent randomnumber seeds for stochastic integration. Top: The
average of the reduced density (black line) over the replicates relaxes to the region of typical equilibrium densities over the first∼ 90 τ
of simulation time, where τ is a natural time unit (see Simulation Details). Bottom: If the average density is estimated by a cumulative
average from the beginning of the simulation (red dotted line), the estimate will be heavily biased by the atypical starting density even
beyond 1000 τ . Discarding even a small amount of initial data—in this case 500 initial samples—results in a cumulative average estimate
that converges to the true average (black dashed line) muchmore rapidly. Shaded regions denote 95% confidence intervals.
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FIG. 2. Statistical ine�iciency, number of uncorrelated samples, and bias for di�erent equilibration times. Trajectories of length
T = 2000 τ for the argon system described in Figure 1 were analyzed as a function of equilibration time choice t0. Averages over all 500
replicate simulations (all starting from the same initial conditions) are shown as dark lines, with shaded lines showing standard deviation
of estimates among replicates. Top: The statistical ine�iciency g as a function of equilibration time choice t0 is initially very large, but
diminishes rapidly a�er the system has relaxed to equilibrium. Middle: The number of e�ectively uncorrelated samplesNeff = (T − t0 +
1)/g shows a maximum at t0 ∼ 90 τ (red vertical lines), suggesting the system has equilibrated by this time. Bottom: The cumulative
average density 〈ρ∗〉 computed over the span [t0, T ] shows that the bias (deviation from the true estimate, shown as red dashed lines)
is minimized for choices of t0 ≥ 90 τ . The standard deviation among replicates (shaded region) grows with t0 because fewer data are
included in the estimate. The choice of optimal t0 thatmaximizesNeff (red vertical line) strikes a goodbalance between bias and variance.
The true estimate (red dashed lines) is computed from averaging over the range [5 000, 10 000] τ over all 500 replicates.
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STATEMENT OF THE PROBLEM77

Consider T successively sampled configurations xt from78

amolecular simulation, with t = 1, . . . , T , initiated fromx0.79

Wepresumeweare interested in computing the expectation80

〈A〉 ≡
∫
dxA(x)π(x) (1)

of amechanical propertyA(x). For convenience, we will re-81

fer to the timeseries at ≡ A(xt), with t ∈ [1, T ]. The esti-82

mator Â ≈ 〈A〉 constructed from the entire dataset is given83

by84

Â[1,T ] ≡
1

T

T∑
t=1

at. (2)

While limT→∞ Â[1,T ] = 〈A〉 for an infinitely long simula-85

tion2, the bias in Â[1,T ] may be significant in a simulation of86

finite length T .87

By discarding samples t < t0 to equilibration, we hope to88

exclude the initial transient from our sample average, and89

provide a less biased estimate of 〈A〉,90

Â[t0,T ] ≡
1

T − t0 + 1

T∑
t=t0

at. (3)

We can quantify the overall error in an estimator Â[t0,T ]91

in a sample average that starts at x0 and excludes samples92

where t < t0 by the expected error δ2Â[t0,T ],93

δ2Â[t0,T ] ≡ Ex0

[(
Â[t0,T ] − 〈A〉

)2
]

(4)

whereEx0
[·] denotes the expectation over independent re-94

alizations of the specific simulation process initiated from95

configuration x0, but with di�erent velocities and random96

number seeds.97

We can rewrite the expected error δ2Â by separating it98

into two components:99

δ2Â[t0,T ] = Ex0

[(
Â[t0,T ] − Ex0

[Â[t0,T ]]
)2
]

+
(
Ex0

[Â[t0,T ]]− 〈A〉
)2

(5)

The first term denotes the variance in the estimator Â,100

varx0
(Â[t0,T ]) ≡ Ex0

[
Â[t0,T ] − Ex0

[Â[t0,T ]]
]2

(6)

while the second term denotes the contribution from the101

squared bias,102

bias2
x0

(Â[t0,T ]) ≡
(
Ex0

[Â[t0,T ]]− 〈A〉
)2

(7)

2 We note that this equality only holds for simulation schemes that sam-
ple from the true equilibrium density π(x), such as Metropolis-Hastings
Monte Carlo or Metropolized dynamical integration schemes such as hy-
brid Monte Carlo (HMC). Molecular dynamics simulations utilizing finite
timestep integrationwithoutMetropolizationwill produce averages that
may deviate from the true expectation 〈A〉 [2].

BIAS-VARIANCE TRADEOFF103

With increasing equilibration time t0, bias is reduced, but104

the variance—the contribution to error due to randomvaria-105

tion from having a finite number of uncorrelated samples—106

will increase because less data is included in the estimate.107

This can be seen in the bottom panel of Figure 2, where108

the shaded region (95% confidence interval of themean) in-109

creases in width with increasing equilibration time t0.110

To examine the tradeo� between bias and variance ex-111

plicitly, Figure 3 plots the bias and variance (here, shown as112

standard error) contributions against each other as a func-113

tion of t0 (denoted by color) as computed from statistics114

over all 500 replicates. At t0 = 0, the bias is large but115

variance is minimized. With increasing t0, bias is eventu-116

ally eliminated but then variance rapidly grows as fewer un-117

correlated samples are included in the estimate. There is a118

clear optimal choice at t0 ∼ 90 τ that minimizes variance119

while also e�ectively eliminating bias (where τ is a natural120

time unit—see Simulation Details).121

SELECTING THE EQUILIBRATION TIME122

Is there a simple approach to choosing an optimal equi-123

libration time t0 that provides a significantly improved esti-124

mate Â[t0,T ], even when we do not have access to multiple125

realizations? Atworst, wehope that suchaprocedurewould126

at least give some improvement over the naive estimate,127

such that δ2Â[t0,T ] < δ2Â[0,T ]; at best, we hope thatwe can128

achieve a reasonable bias-variance tradeo� close to the op-129

timal point identified in Figure 3 that minimizes bias with-130

out greatly increasing variance. We remark that, for cases131

in which the simulation is not long enough to reach equilib-132

rium, no choice of t0 will eliminate bias completely; the best133

we can hope for is to minimize this bias.134

While automated methods for selecting the equilibration135

time t0 have been proposed, these approaches have short-136

comings that have greatly limited their use. The reverse137

cumulative averaging (RCA) method proposed by Yang et138

al. [6], for example, uses a statistical test for normality to de-139

termine the point before which which the observable time-140

series deviates from normality when examining the time-141

series in reverse. While this concept may be reasonable for142

experimental data, where measurements o�en represent143

the sum of many random variables such that the central144

limit theorem’s guarantee of asymptotic normality ensures145

thedistributionof theobservablewill beapproximatelynor-146

mal, there is no such guarantee that instantaneous mea-147

surements of a simulation property of interest will be nor-148

mally distributed. In fact, many properties will be decidedly149

non-normal. For a biomolecule such as a protein, for exam-150

ple, the radius of gyration, end-to-end distance, and torsion151

angles sampled during a simulation will all be highly non-152

normal. Instead, we require a method that makes no as-153

sumptions about the nature of the distribution of the prop-154

erty under study.155
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AUTOCORRELATION ANALYSIS156

The set of successively sampled configurations {xt} and157

their corresponding observables {at} compose a correlated158

timeseries of observations. To estimate the statistical er-159

ror or uncertainty in a stationary timeseries free of bias,160

we must be able to quantify the e�ective number of un-161

correlated samples present in the dataset. This is usually162

accomplished through computation of the statistical ine�i-163

ciency g, which quantifies the number of correlated time-164

series samples needed to produce a single e�ectively un-165

correlated sample of the observable of interest. While these166

concepts arewell-established for the analysis of bothMonte167

Carlo and molecular dynamics simulations [7–10], we re-168

view them here for the sake of clarity.169

For a given equilibration time choice t0, the statistical un-170

certainty in our estimator Â[t0,T ] can be written as,171

δ2Â[t0,T ] ≡ Ex0

[(
Â[t0,T ] − 〈Â〉

)2
]

= Ex0

[
Â2

[t0,T ]

]
− Ex0

[
Â[t0,T ]

]2
=

1

T 2
t0

T∑
t,t′=t0

{Ex0
[atat′ ]− Ex0

[at]Ex0
[at′ ]}

=
1

T 2
t0

T∑
t=t0

{
Ex0

[
x2
t

]
− Ex0

[xt]
2
}

(8)

+
1

T 2
t0

T∑
t6=t′=t0

{Ex0
[atat′ ]− Ex0

[at]Ex0
[at′ ]} ,

where Tt0 ≡ T − t0 + 1, the number of correlated samples172

in the timeseries {at}Tt0 . In the last step, we have split the173

double-sum into two separate sums—a term capturing the174

variance in the observations at, and a remaining term cap-175

turing the correlation between observations.176

If t0 is su�iciently large for the initial bias tobeeliminated,177

the remaining timeseries {at}Tt0 will obey the properties of178

both stationarity and time-reversibility, allowing us to write,179

δ2Âequil
[t0,T ] =

1

Tt0

[
〈a2

t 〉 − 〈at〉2
]

+
2

Tt0

T−t0∑
n=1

(
Tt0 − n
Tt0

)
[〈atat+n〉 − 〈at〉〈at+n〉]

≡
σ2
t0

Tt0
(1 + 2τt0) =

σ2
t0

Tt0/gt0
, (9)

where the variance σ2, statistical ine�iciency g, and inte-180

grated autocorrelation time τ (in units of the sampling in-181

terval) are given by182

σ2 ≡ 〈a2
t 〉 − 〈at〉2, (10)

τ ≡
T−1∑
t=1

(
1− t

T

)
Ct, (11)

g ≡ 1 + 2τ , (12)

with the discrete-time normalized fluctuation autocorrela-183

tion functionCt defined as184

Ct ≡
〈anan+t〉 − 〈an〉2

〈a2
n〉 − 〈an〉2

. (13)

In practice, it is di�icult to estimate Ct for t ∼ T , due to185

growth in the statistical error, so common estimators of g186

make use of several additional properties of Ct to provide187

useful estimates (see Practical Computation of Statistical In-188

e�iciencies).189

The t0 subscript for the variance σ2, the integrated auto-190

correlation time τ , and the statistical ine�iciency t0 mean191

that thesequantitiesareonlyestimatedover theproduction192

portion of the timeseries, {at}Tt=t0 . Since we assumed that193

the bias was eliminated by judicious choice of the equilibra-194

tion time t0, this estimate of the statistical error will be poor195

for choices of t0 that are too small.196

THE ESSENTIAL IDEA197

Suppose we choose some arbitrary time t0 and discard198

all samples t ∈ [0, t0) to equilibration, keeping [t0, T ] as the199

dataset to analyze. How much data remains? We can de-200

termine this by computing the statistical ine�iciency gt0 for201

the interval [t0, T ], and computing the e�ective number of202

uncorrelated samples Neff(t0) ≡ (T − t0 + 1)/gt0 . If we203

start at t0 ≡ T and move t0 to earlier and earlier points in204

time, we expect that the e�ective number of uncorrelated205

samples Neff(t0) will continue to grow until we start to in-206

clude the highly atypical initial data. At that point, the inte-207

grated autocorrelation time τ (and hence the statistical in-208

e�iciency g) will greatly increase (a phenomenon observed209

earlier, e.g. Figure 2 of [6]). As a result, the e�ective number210

of samplesNeff will start to plummet.211

Figure 2 demonstrates this behavior for the liquid argon212

system described above, using averages of the statistical213

ine�iciency gt0 and Neff(t0) computed over 500 indepen-214

dent replicate trajectories. At short t0, the average statis-215

tical ine�iciency g (Figure 2, top panel) is large due to the216

contribution from slow relaxation from atypical initial con-217

ditions, while at long t0 the statistical ine�iciency estimate218

is much shorter and nearly constant of a large span of time219

origins. As a result, the average e�ective number of uncor-220

related samplesNeff (Figure 2, middle panel) has a peak at221

t0 ∼ 90 τ (Figure 2, vertical red lines). The e�ect on bias in222

the estimated average reduced density 〈ρ∗〉 (Figure 2, bot-223

tom panel) is striking—the bias is essentially eliminated for224

the choice of equilibration time t0 that maximizes the num-225

ber of uncorrelated samplesNeff .226

This suggests an alluringly simple algorithm for identify-227

ing the optimal equilibration time—pick the t0 which maxi-228

mizes the number of uncorrelated samplesNeff . In mathe-229

matical terms,230

topt
0 = argmax

t0

Neff(t0) (14)

= argmax
t0

T − t0 + 1

gt0
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FIG. 3. Bias-variance tradeo� for fixed equilibration time
versus automatic equilibration time selection. Trajectories of
length T = 2000τ for the argon system described in Figure 1 were
analyzed as a function of equilibration time choice t0, with col-
ors denoting the value of t0 (in units of τ ) corresponding to each
plotted point. Using 500 replicate simulations, the average bias
(average deviation from true expectation) and standard deviation
(random variation from replicate to replicate) were computed as
a function of a prespecified fixed equilibration time t0, with colors
running from violet (0 τ ) to red (1800 τ ). As is readily discerned,
the bias for small t0 is initially large, butminimized for larger t0. By
contrast, the standarderror (ameasureof variance, estimatedhere
by standard deviation among replicates) grows as t0 grows above
a certain critical time (here,∼ 90 τ ). If the t0 that maximizesNeff

is instead chosen individually for each trajectory based on that tra-
jectory’s estimates of statistical ine�iciency g[t0,T ], the resulting
bias-variance tradeo� (black triangle) does an excellent job min-
imizing bias and variance simultaneously, comparable to what is
possible for a choice of equilibration time t0 based on knowledge
of the true bias and variance amongmany replicate estimates.

Bias-variance tradeo�. How will the simple strategy of231

selecting the equilibration time t0 using Eq 14work for cases232

wherewedonot know the statistical ine�iciency g as a func-233

tion of the equilibration time t0 precisely? When all that is234

available is a single simulation, our best estimate of gt0 is235

derived from that simulation alone over the span [t0, T ]—236

will this a�ect the quality of our estimate of equilibration237

time? Empirically, this does not appear to be the case—238

the black triangle in Figure 3 shows the bias and variance239

contributions to the error for estimates computed over the240

500 replicateswhere t0 is individuallydetermined fromeach241

simulation using this simple scheme based on selecting t0242

tomaximizeNeff for each individual realization. Despite not243

having knowledge about multiple realizations, this strategy244

e�ectively achieves a near-optimal balance between mini-245

mizing bias without increasing variance.246

Overall RMS error. How well does this strategy perform247

in terms of decreasing the overall error δÂ[t0,T ] compared248

to δÂ[0,T ]? Figure 4 compares the expected standard er-249

ror (denoted δÂ) as a function of a fixed initial equilibration250

time t0 (black line with shaded region denoting 95% confi-251

dence interval) with the strategy of selecting t0 tomaximize252

Neff for each realization (red line with shaded region de-253

noting 95% confidence interval). While the minimum error254

for the fixed-t0 strategy (0.00154±0.00005) is achieved at255

90 τ—a fact that could only be determined from knowledge256

of multiple realizations—the simple strategy of selecting t0257

using Eq. 14 achieves aminimum error of 0.00171±0.00006,258

only 11%worse (compared to errors of 0.00456±0.00007, or259

296%worse, should no data have been discarded).260

DISCUSSION261

The scheme described here—in which the equilibration262

time t0 is computed using Eq. 14 as the choice that maxi-263

mizes the number of uncorrelated samples in the produc-264

tion region [t0, T ]—is both conceptually and computation-265

ally straightforward. It providesanapproach todetermining266

theoptimal amountof initial data todiscard toequilibration267

in order to minimize variance while also minimizing initial268

bias, and does this without employing statistical tests that269

require generally unsatisfiable assumptions of normality of270

theobservableof interest. Aswehaveseen, this schemeem-271

pirically appears to select a practical compromise between272

bias and variance even when the statistical ine�iciency g is273

estimated directly from the trajectory using Eq. 12.274

Aword of caution is necessary. One can certainly envision275

pathological scenarioswhere this algorithm for selecting an276

optimal equilibration time will break down. In cases where277

the simulation is not long enough to reach equilibrium—let278

alone collectmanyuncorrelated samples from it—no choice279

of equilibration timewill bestow upon the experimenter the280

ability to produce an unbiased estimate of the true expecta-281

tion. Similarly, in cases where insu�icient data is available282

for the statistical ine�iciency to be estimated well, this al-283

gorithm is expected to perform poorly. However, in these284

cases, the data itself should be suspect if the trajectory is285

not at least anorder ofmagnitude longer than theminimum286

estimated autocorrelation time.287

SIMULATION DETAILS288

All molecular dynamics simulations described here were289

performedwith OpenMM 6.2 [11] (available at openmm.org)290

using thePythonAPI. All scriptsused to retrieve the so�ware291

versions used here, run the simulations, analyze data, and292

generate plots—along with the simulation data itself and293

scripts for generating figures—are available on GitHub3.294

3 All Python scripts necessary to reproduce this work—along with data
plotted in the published version—are available at:
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FIG. 4. RMS error for fixed equilibration time versus automatic equilibration time selection. Trajectories of length T = 2000τ for
the argon system described in Figure 1 were analyzed as a function of fixed equilibration time choice t0. Using 500 replicate simulations,
the root-mean-squared (RMS) error (Eq. 4) was computed (black line) along with 95% confidence interval (gray shading). The RMS error is
minimized for fixed equilibration time choices in the range 90–200 τ . If the t0 that maximizesNeff is instead chosen individually for each
trajectory based on that trajectory’s estimated statistical ine�iciency g[t0,T ] using Eq. 14, the resulting RMS error (red line, 95% confidence
interval shown as red shading) is quite close to theminimumRMS error achieved from any particular fixed choice of equilibration time t0,
suggesting that this simple automated approach to selecting t0 achieves close to optimal performance.

To model liquid argon, the LennardJonesFluid model295

system in theopenmmtools package4wasusedwithparam-296

eters appropriate for liquid argon (σ = 3.4 Å, ε = 0.238297

kcal/mol). All results are reported in reduced (dimension-298

less) units. A cubic switching function was employed, with299

the potential gently switched to zero over r ∈ [σ, 3σ], and300

a long-range isotropic dispersion correction accounting for301

this switching behavior used to include neglected contribu-302

tions. Simulations were performed using a periodic box of303

N = 500 atoms at reduced temperature T ∗ ≡ kBT/ε =304

0.850 and reduced pressure p∗ ≡ pσ3/ε = 1.266 using a305

Langevin integrator [12] with timestep∆t = 0.01τ and col-306

lision rate ν = τ−1, with characteristic oscillation timescale307

τ =
√
mr2

0/72ε and r0 = 21/6σ [13]. All times are reported308

in multiples of the characteristic timescale τ . A molecu-309

lar scaling Metropolis Monte Carlo barostat with Gaussian310

simulation volume change proposal moves attempted ev-311

ery τ (100 timesteps), using an adaptive algorithm that ad-312

justs the proposal width during the initial part of the simu-313

lation [11]. Densities were recorded every τ (100 timesteps).314

The true expectation 〈ρ∗〉 was estimated from the sample315

average over all 500 realizations over [5000,10000] τ .316

The automated equilibration detection scheme is also317

available in the timeseries module of the pymbar pack-318

age as detectEquilibration(), and can be accessed us-319

ing the following code:320

from pymbar.timeseries import detectEquilibration
# determine equilibrated region
[t0, g, Neff_max] = detectEquilibration(A_t)
# discard initial samples to equilibration
A_t = A_t[t0:]

http://github.com/choderalab/automatic-equilibration-detection
4 available at http://github.com/choderalab/openmmtools

PRACTICAL COMPUTATION OF STATISTICAL INEFFICIENCIES321

The robust computation of the statistical ine�iciency g322

(defined by Eq. 12) for a finite timeseries at, t = 0, . . . , T323

deserves some comment. There are, in fact, a variety of324

schemes for estimating g described in the literature, and325

their behaviors for finite datasets may di�er, leading to dif-326

ferent estimates of the equilibration time t0 using the algo-327

rithm of Eq. 14.328

The main issue is that a straightforward approach to es-329

timating the statistical ine�iciency using Eqs. 11–13 in which330

the expectations are simply replacedwith sample estimates331

causes the statistical error in theestimated correlation func-332

tion Ct to grow with t in a manner that allows this error to333

quicklyoverwhelmthe sumofEq. 11. As a result, anumberof334

alternative schemes—generally based on controlling the er-335

ror in the estimatedCt or truncating the sum of Eq. 11 when336

the error grows too large—have been proposed.337

For stationary, irreducible, reversible Markov chains,338

Geyer observed that a function Γk ≡ γ2k + γ2k+1 of the339

unnormalized fluctuation autocorrelation function γt ≡340

〈aiai+t〉 − 〈ai〉2 has a number of pleasant properties (The-341

orem 3.1 of [14]): It is strictly positive, strictly decreasing,342

and strictly convex. Some or all of these properties can be343

exploited to define a family of estimators called initial se-344

quence methods (see Section 3.3 of [14] and Section 1.10.2345

of [4]), of which the initial convex sequence (ICS) estimator is346

generally agreed to be optimal, if somewhat more complex347

to implement.5348

All computations in this manuscript used the fast mul-349

tiscale method described in Section 5.2 of [10], which we350

found performed equivalently well to the Geyer estimators351

(data not shown). This method is related to a multiscale352

5 Implementations of these methods are provided with the code dis-
tributed with this manuscript.
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variant of the initial positive sequence (IPS)method of Geyer353

[15], where contributions are accumulated at increasingly354

longer lag times and the sum of Eq. 11 is truncatedwhen the355

terms become negative. We have found this method to be356

both fast and to provide useful estimates of the statistical357

ine�iciency, but it may not perform well for all problems.358
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