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Molecular simulations intended to compute equilibriumproperties are o�en initiated fromconfigurations
that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient
in mechanical observables computed from the simulation trajectory. Traditional practice in simulation
data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and
automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure
that does not make strict assumptions about the distribution of the observable of interest, in which the
equilibration time is chosen to maximize the number of e�ectively uncorrelated samples in the production
timespan used to compute equilibrium averages. We present a simple Python reference implementation of
this procedure, and demonstrate its utility on typical molecular simulation data.
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INTRODUCTION6

Molecular simulations use Markov chain Monte Carlo7

(MCMC) techniques [1] to sample configurations x from an8

equilibrium distribution π(x), either exactly (using Monte9

Carlo methods such as Metropolis-Hastings) or approx-10

imately (using molecular dynamics integrators without11

Metropolization) [2].12

Due to the sensitivity of the equilibrium probability den-13

sity π(x) to small perturbations in configuration x and the14

di�iculty of producing su�iciently good guesses of typical15

equilibrium configurations x ∼ π(x), these molecular sim-16

ulations are o�en started from highly atypical initial con-17

ditions. For example, simulations of biopolymers might be18

initiated from a fully extended conformation unrepresenta-19

tive of behavior in solution, or a geometry derived from a fit20

to di�raction data collected from a cryocooled crystal; sol-21

vated systems may be prepared by periodically replicating22

a small solvent box equilibrated under di�erent conditions,23

yielding atypical densities and solvent structure; liquidmix-24

tures or lipid bilayersmay be constructed by usingmethods25

that fulfill spatial constraints (e.g. PackMol [3]) but create lo-26

cally aytpical geometries, requiring long simulation times to27

relax to typical configurations.28

As a result, traditional practice in molecular simulation29

has recommended some initial portion of the trajectory be30

discarded to equilibration (also called burn-in1 in the MCMC31

literature [4]). While the process of discarding initial sam-32

ples is strictly unnecessary for the time-average of quanti-33

ties of interest to eventually converge to the desired expec-34

tations [5], this nevertheless o�en allows the practitioner to35

avoidwhatmaybe impractically long run times to eliminate36

the bias in computed properties in finite-length simulations37

∗ Corresponding author; john.chodera@choderalab.org
1 The term burn-in comes from the field of electronics, in which a
short “burn-in” period is used to ensure that a device is free of faulty
components—which o�en fail quickly—and is operating normally [4].

induced by atypical initial starting conditions. It is worth38

noting that a similar procedure is not a practice universally39

recommended by statisticians when sampling from poste-40

rior distributions in statistical inference [4]; the di�erences41

in complexity of probability densities typically encountered42

in statistics and molecular simulation may explain the dif-43

ference in historical practice.44

As a motivating example, consider the computation of45

the average density of liquid argon under a given set of re-46

duced temperature and pressure conditions shown in Fig-47

ure 1. To initiate the simulation, an initial dense liquid ge-48

ometry at reduced density ρ∗ ≡ ρσ3 = 0.960 was pre-49

pared and subjected to local energy minimization. The up-50

per panel of Figure 1 depicts the average relaxation behav-51

ior of simulations initiated fromthe sameconfigurationwith52

di�erent random initial velocities and integrator random53

number seeds (see Simulation Details). The average (black54

line) and 95% confidence interval (shaded grey) of 500 re-55

alizations of this process show a characteristic relaxation56

behavior away from the initial density toward the equilib-57

rium density. The expectation of the running average of the58

density over many realizations of this procedure (Figure 1,59

lower panel) significantly deviates from the true expecta-60

tion (dashed line), leading to significantly biased estimates61

of the expectationunless simulations are su�iciently long to62

eliminate this starting point dependent bias—a surprisingly63

long 30 ns in this case. Note that this bias is present even in64

the average of many realizations because the same atypical65

starting condition is used for every realization of this simu-66

lation process.67

STATEMENT OF THE PROBLEM68

Consider T successively sampled configurations xt from69

a molecular simulation, with t = 1, . . . , T . We presume we70

are interested in computing the expectation71

〈A〉 ≡
∫
dxA(x)π(x) (1)
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FIG. 1. Illustration of the motivation for discarding data to equilibration. To illustrate the bias in expectations induced by relax-
ation away from initial conditions, 500 replicates of a simulation of liquid argon were initiated from the same energy-minimized initial
configuration constructed with initial reduced density ρ∗ ≡ ρσ3 = 0.960 but di�erent random number seeds for stochastic integration.
Top: The average of the reduced density (black line) over the replicates relaxes to the region of typical equilibrium densities over the first
few ns of simulation time. Bottom: If the average density is estimated by a cumulative average from the beginning of the simulation (red
dotted line), the estimate will be heavily biased by the atypical starting density even beyond 10 ns. Discarding even a small amount of
initial data—in this case 500 initial samples (∼1.4 ns, blue solid line)—results in a cumulative average estimate that converges to the true
average (black dashed line) muchmore rapidly. Shaded regions denote 95% confidence intervals.
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FIG. 2. Statistical ine�iciency, number of uncorrelated samples, and bias for di�erent equilibration times. Trajectories of length
T = 2 000 iterations (∼28 ns) for the argon systemdescribed in Fig. 1 were analyzed as a function of equilibration time choice t0. Averages
over all 500 replicate simulations (all starting fromthe same initial conditions) are shownasdark lines,with shaded lines showing standard
deviation of estimates among replicates. Top: The statistical ine�iciency g as a function of equilibration time choice t0 is initially very
large, but diminishes rapidly a�er the system has relaxed to equilibrium. Middle: The number of e�ectively uncorrelated samplesNeff =
(T − t0 +1)/g shows amaximumat t0 ∼ 200 iterations (∼2 ns), suggesting the system has equilibrated by this time. The red vertical line
in all plots marks this choice of t0 ∼ 200. Bottom: The cumulative density average 〈ρ∗〉 computed over the span [t0, T ] shows that the
bias (deviation from the true estimate, shown as red dashed lines) is minimized for choices of t0 ≥ 200 iterations (∼ 2 ns). The standard
deviation among replicates (shaded region) grows with t0 because fewer data are included in the estimate. The choice of optimal t0 that
maximizes Neff (red vertical line) strikes a good balance between bias and variance. The true estimate (red dashed lines) is computed
from averaging over the range [5 000, 10 000] iterations over all 500 replicates.
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of amechanical propertyA(x). For convenience, we will re-72

fer to the timeseries at ≡ A(xt), with t ∈ [1, T ]. The esti-73

mator Â ≈ 〈A〉 constructed from the entire dataset is given74

by75

Â[1,T ] ≡
1

T

T∑
t=1

at. (2)

While limT→∞ Â[1,T ] = 〈A〉 for an infinitely long simula-76

tion2, the bias in Â[1,T ] may be significant in a simulation of77

finite length T .78

By discarding samples t < t0 to equilibration, we hope to79

exclude the initial transient from our sample average, and80

provide a less biased estimate of 〈A〉,81

Â[t0,T ] ≡
1

T − t0 + 1

T∑
t=t0

at. (3)

We can quantify the overall error in an estimator Â in82

a sample average that starts at x0 and excludes samples83

where t < t0 by the expected error δ2Â,84

δ2Â ≡ Ex0

[(
Â[t0,T ] − 〈A〉

)2
]

(4)

= Ex0

[(
Â− Ex0

[Â[t0,T ]]
)2
]

+

∣∣∣∣(Ex0
[Â[t0,T ]]− 〈A〉

)2
]

whereEx0
[·] denotes the expectation over independent re-85

alizations of the specific simulation process initiated from86

configuration x0, but with di�erent velocities and random87

number seeds.88

The first term denotes the variance in the estimator Â,89

varx0
(Â[t0,T ]) ≡ Ex0

[
Â[t0,T ] − Ex0

[Â[t0,T ]]
]2

(5)

while the second term denotes the contribution from the90

squared bias,91

bias2
x0

(Â[t0,T ]) ≡
(
Ex0

[Â[t0,T ]]− 〈A〉
)2

(6)

BIAS-VARIANCE TRADEOFF92

With increasing equilibration time t0, bias is reduced, but93

the variance—the contribution to error due to randomvaria-94

tion from having a finite number of uncorrelated samples—95

will increase because less data is included in the estimate.96

This can be seen in the bottom panel of Figure 2, where the97

shaded region (denoting the 95% confidence interval of the98

2 We note that this equality only holds for simulation schemes that sam-
ple from the true equilibrium density π(x), such as Metropolis-Hastings
Monte Carlo or Metropolized dynamical integration schemes such as hy-
brid Monte Carlo (HMC). Molecular dynamics simulations utilizing finite
timestep integrationwithoutMetropolizationwill produce averages that
may deviate from the true expectation 〈A〉 [2].

mean, computed from twice the standard deviation among99

sample estimates) increases in widthwith increasing equili-100

bration time t0.101

To examine the tradeo� between bias and variance ex-102

plicitly, Figure 3 plots the bias and variance (here, shown as103

standard error) contributions against each other as a func-104

tion of t0 (denoted by color) as computed from statistics105

over all 500 replicates. At t0 = 0, the bias is large but106

variance is minimized. With increasing t0, bias is eventu-107

ally eliminated but then variance rapidly grows as fewer un-108

correlated samples are included in the estimate. There is a109

clear optimal choice at t0 ∼ 150 iterations that minimizes110

variance while also e�ectively eliminating bias.111

SELECTING THE EQUILIBRATION TIME112

Is there a simple approach to choosing an optimal equi-113

libration time t0 that provides a significantly improved es-114

timate Â[t0,T ], even when we do not have access to multi-115

ple realizations of the same process? At worst, we hope that116

such a procedure would at least give some improvement117

over the naive estimate, such that δ2Â[t0,T ] < δ2Â[1,T ];118

at best, we hope that we can achieve a reasonable bias-119

variance tradeo� close to the optimal point identified in Fig-120

ure 3 that minimizes bias without greatly increasing vari-121

ance. We remark that, for cases in which the simulation is122

not long enough to reach equilibrium, no choice of t0 will123

eliminate bias completely; the best we can hope for is to124

minimize this bias.125

While several automatedmethods for selecting theequili-126

bration time t0 havebeenproposed, these approaches have127

shortcomings that have greatly limited their use. The re-128

verse cumulative averaging method [6], for example, uses129

a statistical test for normality to determine the point be-130

fore which which the observable timeseries deviates from131

normality. While this concept may be reasonable for ex-132

perimental data, where measurements o�en represent the133

sum of many random variables such that the central limit134

theorem’s guarantee of asymptotic normality ensures the135

distribution of the observable will be approximately nor-136

mal, there is no such guarantee that instantaneous mea-137

surements of a simulation property of interest will be nor-138

mally distributed. In fact, many properties will be decidedly139

non-normal. For a biomolecule such as a protein, for exam-140

ple, the radius of gyration, end-to-end distance, and torsion141

angles sampled during a simulation will all be highly non-142

normal. Instead, we require a method that makes no as-143

sumptions about the nature of the distribution of the prop-144

erty under study.145

AUTOCORRELATION ANALYSIS146

The set of successively sampled configurations {xt} and147

their corresponding observables {at} compose a correlated148

timeseries of observations. To estimate the statistical er-149

ror or uncertainty in a stationary timeseries free of bias,150
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we must be able to quantify the e�ective number of un-151

correlated samples present in the dataset. This is usually152

accomplished through computation of the statistical ine�i-153

ciency g, which quantifies the number of correlated time-154

series samples needed to produce a single e�ectively un-155

correlated sample of the observable of interest. While these156

concepts arewell-established for the analysis of bothMonte157

Carlo and molecular dynamics simulations [7–10], we re-158

view them here for the sake of clarity.159

For a given equilibration time choice t0, the statistical un-160

certainty in our estimator Â[t0,T ] can be written as,161

δ2Â[t0,T ] ≡ Ex0

[(
Â[t0,T ] − 〈Â〉

)2
]

= Ex0

[
Â2

[t0,T ]

]
− Ex0

[
Â[t0,T ]

]2
=

1

T 2
t0

T∑
t,t′=t0

{Ex0
[atat′ ]− Ex0

[at]Ex0
[at′ ]}

=
1

T 2
t0

T∑
t=t0

{
Ex0

[
x2
t

]
− Ex0

[xt]
2
}

(7)

+
1

T 2
t0

T∑
t6=t′=t0

{Ex0
[atat′ ]− Ex0

[at]Ex0
[at′ ]} ,

where Tt0 ≡ T − t0 + 1, the number of correlated samples162

in the timeseries {at}Tt0 . In the last step, we have split the163

double-sum into two separate sums—a term capturing the164

variance in the observations at, and a remaining term cap-165

turing the correlation between observations.166

If t0 is su�iciently large for the initial bias tobeeliminated,167

the remaining timeseries {at}Tt0 will obey the properties of168

both stationarity and time-reversibility, allowing us to write,169

δ2Âequil
[t0,T ] =

1

Tt0

[
〈a2

t 〉 − 〈at〉2
]

+
2

Tt0

T−t0∑
n=1

(
Tt0 − n
Tt0

)
[〈atat+n〉 − 〈at〉〈at+n〉]

≡
σ2
t0

Tt0
(1 + 2τt0) =

σ2
t0

Tt0/gt0
, (8)

where the variance σ2, statistical ine�iciency g, and inte-170

grated autocorrelation time τ (in units of the sampling in-171

terval) are given by172

σ2 ≡ 〈a2
t 〉 − 〈at〉2, (9)

τ ≡
T−1∑
t=1

(
1− t

T

)
Ct, (10)

g ≡ 1 + 2τ , (11)

with the discrete-time normalized fluctuation autocorrela-173

tion functionCt defined as174

Ct ≡
〈anan+t〉 − 〈an〉2

〈a2
n〉 − 〈an〉2

. (12)

In practice, it is di�icult to estimate Ct for t ∼ T , due to175

growth in the statistical error, so common estimators of g176

make use of several additional properties of Ct to provide177

useful estimates (see Practical Computation of Statistical In-178

e�iciencies).179

The t0 subscript for the variance σ2, the integrated auto-180

correlation time τ , and the statistical ine�iciency t0 mean181

that thesequantitiesareonlyestimatedover theproduction182

portion of the timeseries, {at}Tt=t0 . Since we assumed that183

the bias was eliminated by judicious choice of the equilibra-184

tion time t0, this estimate of the statistical error will be poor185

for choices of t0 that are too small.186

THE ESSENTIAL IDEA187

Suppose we choose some arbitrary time t0 and discard188

all samples t ∈ [0, t0) to equilibration, keeping [t0, T ] as the189

dataset to analyze. Howmuch data remains? We can deter-190

mine this by computing the statistical ine�iciency gt0 for the191

interval [t0, T ], and computing the e�ective number of un-192

correlated samplesNeff(t0) ≡ (T − t0 + 1)/gt0 . If we start193

at t0 ≡ T and move t0 to earlier and earlier points in time,194

we expect that the e�ective number of uncorrelated sam-195

plesNeff(t0) will continue to grow until we start to include196

the highly atypical initial data. At that point, the integrated197

autocorrelation time τ (andhence the statistical ine�iciency198

g) will greatly increase, and the e�ective number of samples199

Neff will start to plummet.200

Figure 2 demonstrates the application of this concept to201

the liquid argon system described above, using averages of202

the statistical ine�iciency gt0 and Neff(t0) computed over203

500 independent replicate trajectories. At short t0, the aver-204

age statistical ine�iciency g (Figure 2, top panel) is large due205

to the contribution fromslow relaxation fromatypical initial206

conditions, while at long t0 the statistical ine�iciency esti-207

mate is much shorter and nearly constant of a large span of208

time origins. As a result, the average e�ective number of un-209

correlated samplesNeff (Figure 2, middle panel) has a peak210

at t0 ∼ 222 iterations (Figure 2, vertical red lines). The ef-211

fect on bias in the estimated average reduced density 〈ρ∗〉212

(Figure 2, bottom panel) is striking—the bias is essentially213

eliminated for the choice of equilibration time t0 that maxi-214

mizes the number of uncorrelated samplesNeff .215

This suggests an alluringly simple algorithm for identify-216

ing the optimal equilibration time—pick the t0 which maxi-217

mizes the number of uncorrelated samplesNeff . In mathe-218

matical terms,219

topt
0 = argmax

t0

Neff(t0) (13)

= argmax
t0

T − t0 + 1

gt0
(14)

Bias-variance tradeo�. But how will this strategy work220

for cases where we do not know the statistical ine�iciency g221

as a function of the equilibration time t0 precisely? When222

all that is available is a single simulation, our best esti-223

mate of gt0 is derived from that simulation alone over the224
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FIG. 3. Bias-variance tradeo� for fixed equilibration time
versus automatic equilibration time selection. Trajectories of
length T = 2 000 iterations (∼28 ns) for the argon system de-
scribed in Fig. 1 were analyzed as a function of equilibration time
choice t0, with colors denoting the value of t0 (in iterations) corre-
sponding to each plotted point. Using 500 replicate simulations,
the average bias (average deviation from true expectation) and
standard deviation (random variation from replicate to replicate)
were computed as a function of a prespecified fixed equilibration
time t0, with colors running from t0 = 0 (violet) to t0 =1 1800 iter-
ations (red). As is readily discerned, the bias for small t0 is initially
large, butminimized for larger t0. By contrast, the standarderror (a
measure of variance, estimated here by standard deviation among
replicates) grows as t0 grows above a certain critical time (here,
∼200 iterations). If the t0 thatmaximizesNeff is instead chosen in-
dividually for each trajectory based on that trajectory’s estimates
of statistical ine�iciency g[t0,T ], the resulting bias-variance trade-
o� (black triangle) does an excellent job minimizing bias and vari-
ance simultaneously, comparable to what is possible for a choice
of equilibration time t0 based on knowledge of the true bias and
variance amongmany replicate estimates.

span [t0, T ]—will this a�ect the quality of our estimate of225

equilibration time? Empirically, this does not appear to be226

the case—the black triangle in Figure 3 shows the bias and227

variance contributions to the error for estimates computed228

over the 500 replicates where t0 is individually determined229

fromeach simulation using this simple schemebasedon se-230

lecting t0 to maximize Neff for each individual realization.231

Despite not having knowledge about multiple realizations,232

this strategy e�ectively achieves a near-optimal balance be-233

tweenminimizing bias without increasing variance.234

Overall RMS error. How well does this strategy perform235

in terms of decreasing the overall error δÂ[t0,T ] compared236

to δÂ[1,T ]? Fiigure 4 compares the expected standard er-237

ror (denoted δÂ in the figure) as a function of a fixed initial238

equilibration time t0 (black line with shaded region denot-239

ing 95%confidence interval)with the strategy of selecting t0240

to maximize Neff for each realization (red line with shaded241

region denoted 95% confidence interval). While the mini-242

mum error for the fixed-t0 strategy (0.002545±0.00009) is243

achieved in the rangeof 2–6ns—a fact that couldonly bede-244

termined fromknowledge ofmultiple realizations—the sim-245

ple strategy of selecting t0 using Eq. 13 achieves aminimum246

error that is only 6%worse (compared to 137%worse should247

no data have been discarded). While this is certainly statis-248

tically significant in being worse than the optimal t0 given249

all 500 replicates, it is remarkably good for a simplemethod250

employing data from a single simulation.251

DISCUSSION252

The scheme described here—in which the equilibration253

time t0 is computed using Eq. 13 as the choice that maxi-254

mizes the number of uncorrelated samples in the produc-255

tion region [t0, T ]—is both conceptually and computation-256

ally straightforward. It providesanapproach todetermining257

theoptimal amountof initial data todiscard toequilibration258

in order to minimize variance while also minimizing initial259

bias, and does this without employing statistical tests that260

require generally unsatisfiable assumptions of normality of261

theobservableof interest. Aswehaveseen, this schemeem-262

pirically appears to select a practical compromise between263

bias and variance even when the statistical ine�iciency g is264

estimated directly from the trajectory using Eq. 11.265

Aword of caution is necessary. One can certainly envision266

pathological scenarioswhere this algorithm for selecting an267

optimal equilibration time will break down. In cases where268

the simulation is not long enough to reach equilibrium—let269

alone collectmanyuncorrelated samples from it—no choice270

of equilibration timewill bestow upon the experimenter the271

ability to produce an unbiased estimate of the true expecta-272

tion. Similarly, in cases where insu�icient data is available273

for the statistical ine�iciency to be estimated well, this al-274

gorithm is expected to perform poorly. However, in these275

cases, the data itself should be suspect if the trajectory is276

not at least anorder ofmagnitude longer than theminimum277

estimated autocorrelation time.278

SIMULATION DETAILS279

All molecular dynamics simulations described here were280

performedwith OpenMM 6.2 [11] (available at openmm.org)281

using thePythonAPI. All scriptsused to retrieve the so�ware282

versions used here, run the simulations, analyze data, and283

generate plots—along with the simulation data itself and284

scripts for generating figures—are available on GitHub3.285

3 All Python scripts necessary to reproduce this work—along with data
plotted in the published version—are available at:
http://github.com/choderalab/automatic-equilibration-detection
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FIG. 4. RMS error for fixed equilibration time versus automatic equilibration time selection. Trajectories of length T = 2 000
iterations (∼28 ns) for the argon system described in Fig. 1 were analyzed as a function of fixed equilibration time choice t0. Using 500
replicate simulations, the root-mean-squared (RMS) error (Eq. 4) was computed (black line) along with 95% confidence interval (gray
shading). The RMS error is minimized for fixed equilibration time choices in the range 2–6 ns. If the t0 that maximizes Neff is instead
chosen individually for each trajectory based on that trajectory’s estimated statistical ine�iciency g[t0,T ] using Eq. 13, the resulting RMS
error (red line, 95% confidence interval shown as red shading) is quite close to theminimumRMS error achieved from any particular fixed
choice of equilibration time t0, suggesting that this simple automated approach to selecting t0 achieves close to optimal performance.

The LennardJonesFluidmodel system in the openmm-286

tools package4 was used with parameters appropriate for287

liquid argon (σ = 3.4 Å, ε = 0.238 kcal/mol), though all288

results are reported in reduced (universal) units. A cubic289

switching function was employed, with the potential gen-290

tly switched to zero over r ∈ [σ, 3σ], and a long-range291

isotropic dispersion correction accounting for this switch-292

ing behavior used to include neglected contributions. Sim-293

ulations were performed using a periodic box of N = 500294

atoms at reduced temperature T ∗ ≡ kBT/ε = 0.850 and295

reduced pressure p∗ ≡ pσ3/ε = 1.266 using a Langevin296

integrator [12] with timestep ∆t = 0.01τ and collision297

rate ν = 1.5τ−1, with characteristic oscillation timescale298

τ =
√
mr2

0/72ε and r0 = 21/6σ [13]. A molecular scal-299

ing Metropolis Monte Carlo barostat with Gaussian simu-300

lation volume change proposal moves attempted every 25301

timesteps, along with an adaptive algorithm that adjusts302

the proposal width during the initial part of the simula-303

tion [11]. Densities were recorded every 25 timesteps, with304

each set of 25 timesteps termed an “iteration” of the sim-305

ulation. The true expectation 〈ρ∗〉 was estimated from the306

sample average over all 500 realizations over [5000,10000]307

iterations.308

The automated equilibration detection scheme is also309

available in the timeseries module of the pymbar pack-310

age as detectEquilibration(), and can be accessed us-311

ing the following code:312

from pymbar.timeseries import detectEquilibration
# determine equilibrated region
[t0, g, Neff_max] = detectEquilibration(A_t)
# discard initial samples to equilibration
A_t = A_t[t0:]

4 available at http://github.com/choderalab/openmmtools

PRACTICAL COMPUTATION OF STATISTICAL INEFFICIENCIES313

The robust computation of the statistical ine�iciency g314

(defined by Eq. 11) for a finite timeseries at, t = 1, . . . , T315

deserves some comment. There are, in fact, a variety of316

schemes for estimating g described in the literature, and317

their behaviors for finite datasets may di�er, leading to dif-318

ferent estimates of the equilibration time t0 using the algo-319

rithm of Eq. 13.320

Themain issue is that a straightforward approach to esti-321

mating the statistical ine�iciency using Eqs. 10–12 in which322

the expectations are simply replacedwith sample estimates323

causes the statistical error in theestimated correlation func-324

tion Ct to grow with t in a manner that allows this error to325

quickly overwhelm the sum of Eq. 10. As a result, a num-326

ber of alternative schemes—generally based on controlling327

the error in the estimatedCt or truncating the sum of Eq. 10328

when the error grows too large—have been proposed.329

For stationary, irreducible, reversible Markov chains,330

Geyer observed that a function Γk ≡ γ2k + γ2k+1 of the331

unnormalized fluctuation autocorrelation function γt ≡332

〈aiai+t〉 − 〈ai〉2 has a number of pleasant properties (The-333

orem 3.1 of [14]): It is strictly positive, strictly decreasing,334

and strictly convex. Some or all of these properties can be335

exploited to define a family of estimators called initial se-336

quence methods (see Section 3.3 of [14] and Section 1.10.2337

of [4]), of which the initial convex sequence (ICS) estimator is338

generally agreed to be optimal, if somewhat more complex339

to implement.5340

All computations in this manuscript used the fast mul-341

tiscale method described in Section 5.2 of [10], which we342

found performed equivalently well to the Geyer estimators343

(data not shown). This method is related to a multiscale344

5 Implementations of these methods are provided with the code dis-
tributed with this manuscript.
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variant of the initial positive sequence (IPS)method of Geyer345

[15], where contributions are accumulated at increasingly346

longer lag times and the sumof Eq. 10 is truncatedwhen the347

terms become negative. We have found this method to be348

both fast and to provide useful estimates of the statistical349

ine�iciency, but it may not perform well for all problems.350
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