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Abstract 
 

During cell division chromosomes are compacted in length by more than a hundred-fold. A wide range of 
experiments demonstrated that in their compacted state, mammalian chromosomes form arrays of closely 
stacked consecutive ~100Kb loops. The mechanism underlying the active process of chromosome compaction 
into a stack of loops is unknown. Here we test the hypothesis that chromosomes are compacted by enzymatic 
machines that actively extrude chromatin loops. When such loop-extruding factors (LEF) bind to 
chromosomes, they progressively bridge sites that are further away along the chromosome, thus extruding a 
loop. We demonstrate that collective action of LEFs leads to formation of a dynamic array of consecutive 
loops. Simulations and an analytically solved model identify two distinct steady states: a sparse state where 
loops are highly dynamic but provide little compaction, and a dense state with more stable loops and dramatic 
chromosome compaction. We find that human chromosomes operate at the border of the dense steady state. 
Our analysis also shows how the macroscopic characteristics of the loop array are determined by the 
microscopic properties of LEFs and their abundance. When number of LEFs are used that match 
experimentally based estimates, the model can quantitatively reproduce the average loop length, the degree of 
compaction, and the general loop-array morphology of compact human chromosomes. Our study 
demonstrates that efficient chromosome compaction can be achieved solely by an active loop-extrusion 
process. 
 

Significance Statement  
 
During cell division chromosomes are compacted in length more than a hundred-fold and are folded in arrays 
of loops. The mechanism underlying this essential biological process is unknown. Here we test whether 
chromosome compaction can be performed by molecular machines that actively extrude chromatin loops. 
These machines bind to DNA and progressively bridge sites that are further and further away along the 
chromosome. We demonstrate that the collective action of loop-extruding machines can fold a chromosome 
into a dynamic array of loops. Simulated chromosome agrees with compact human chromosomes in its degree 
of compaction, loop size and the general loop-array morphology. Our study demonstrates that efficient 
chromosome compaction can be achieved solely by such active loop-extrusion process.  
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Introduction   

During cell division, initially decondensed interphase human chromosomes are compacted in length by more 
than a hundred-fold into the cylindrical, parallel-chromatid metaphase state. Several lines of evidence suggest 
that this compaction is achieved via formation of loops along chromosomes (1, 2). First, chromatin loops of 

          have long been observed via electron microscopy (2–4). These observations served as a basis for 
the “radial loop” models of the mitotic chromosome (4) and are consistent with optical imaging data (5). 
Second, theoretical studies showed that compaction into an array of closely stacked loops could explain the 
observed shape, the mechanical properties and the degree of compaction of mitotic chromosomes (6–8). More 
recently, the general picture of mitotic chromosomes as a series of closely packed chromatin loops was 
supported by Hi-C experiments, which measure the frequency of physical contacts within chromosomes (9). 
The same study independently confirmed the         length of the chromatin loops. 
 
The mechanism underlying compaction of chromosomes into a stack of loops is unknown. Several lines of 
evidence suggest that this compaction cannot be achieved by simple mechanisms of chromatin condensation, 
e.g., “poor solvent” conditions, or non-specific chromatin “cross-linker” proteins. First, the loops are formed 
overwhelmingly within individual chromatids. Different chromosomes and sister chromatids are not extensively 
cross-linked to each other as would tend to happen during nonspecific condensation, but instead become 
individualized during the compaction process. Second, loops are arranged in essentially genomic order and 
are non-overlapping (9), without the strong overlap of loops that would be expected from nonspecific cross-
linking. Finally, metaphase chromosomes compact into elongated structures with a linear arrangement of loops 
along the main axis. A cross-linking agent would generate surface tension and shrink chromosomes into 
spherical globules with a random spatial arrangement within a globule (6, 10, 11).  In fact, the term 
“condensation”, which generally refers to the effects of chemical interactions driving phase separation and 
surface tension, is inappropriate for description of mitotic chromosome compaction where neither effect occurs. 
Chromatin is clearly being actively compacted during mitosis. 
 
An alternative hypothesis is that chromosomes are condensed by enzymatic machines that actively extrude 
chromatin loops (12, 13). When these enzymes bind to chromosomes, they first link two adjacent sites, but 
then move both contact points along the chromosome in opposite directions, so that they progressively bridge 
more distant sites (12). Loop-extruding functions have been observed for other enzymes acting on naked DNA  
(14–17). Condensin complexes, which play an central role in chromosome compaction (18) and which are 
present in all domains of life (19), are likely to be a key component of such “loop-extruding factors” (LEFs).  A 
key question is whether LEFs alone are sufficient to drive formation of arrays of non-overlapping loops 
essential for linear compaction of chromatids, or if other factors are required, e.g., to define the loop bases. 
 
In this paper, we model the collective action of loop-extruding factors (LEFs) that dynamically exchange 
between the nucleoplasm and chromatin fiber. We find that LEFs self-organize into a dynamic array of 
consecutive loops, which has two distinct steady states: a sparse state where loops are separated by gaps and 
provide moderate compaction, and a dense state where jammed LEFs drastically compact a long chromatin 
fiber. These states can be described by a simple analytical model of loop dynamics. We show how the 
macroscopic characteristics of the loop array are determined by the microscopic properties of the LEFs and 
their abundance, and we demonstrate that efficient chromosome compaction can be achieved solely by LEFs. 
 
 

Results 

 

Model for LEFs on a long chromatin segment 
To understand the dynamics of loops formation and chromatin compaction by loop-extruding factors (LEFs) we 
carried out stochastic simulations of the process shown in Fig. 1 (13).  We focus on the organization and 
dynamics of loop formation and dissolution without considering 3D organization of the chromatin fiber and 
assume that emerging topological conflicts can be resolved by topoisomerase II enzymes active during 
metaphase compaction. 
 
We consider a single piece of chromatin fiber of length  , occupied by   LEFs. We model a LEF very generally 
as having two “heads” connected by a linker. The LEF heads bind to nearby sites along the chromatin fiber and 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2015. ; https://doi.org/10.1101/021642doi: bioRxiv preprint 

https://doi.org/10.1101/021642
http://creativecommons.org/licenses/by-nc/4.0/


proceed to slide away from each other stochastically with an average velocity  , thus extruding a loop with rate 
   (Fig. 1a). When the heads of two neighboring LEFs collide, they block each other and halt (Fig 1b). 
 
For the LEFs to be able to organize robust loop domains, it is essential that they be able to relocate via 

unbinding and rebinding (13).  We allow each LEF to dissociate at a rate    ⁄  which is independent of their 
state and location (Fig 1c). When a LEF dissociates, we suppose that it immediately rebinds to a random site 
elsewhere on the chromosome, where it begins to extrude a new loop (Fig. 1d). The model is fully determined 
by the four parameters          , of which   and   can be estimated from the experimental studies of 

condensins (20–22). We divide the chromosome into         sites, so that each site can be occupied by 

one LEF head. With each site roughly corresponding to a nucleosome with a DNA linker (        or       , 
a fraction of a size of a condensin complex), our simulated chromosome corresponds to         of chromatin 
fiber. 
 

LEFs can generate a tightly stacked loop array and strong chromosome compaction 

In initial simulations we observed that the LEFs generated tightly stacked loops with a high degree of 
chromatin compaction, despite their constant dissociation (Fig. 1e-g, Supplemental Movie 1). To test that this 
was a steady state rather than a frozen (glassy) configuration we performed simulations ten times longer than 
the apparent time needed to reach the steady state, and used a broad range of initial conditions (SI). 
Simulations converged to states with degree of compaction and distribution of loop size which depended on 
the control parameters, but were independent of initial states (Fig 1f,g and SI Appendix), providing further 
support to the existence of a well-defined loop-stacked steady state. 
 

Two characteristic lengths control whether LEFs form dense or sparse chromatin loops 

To understand how the microscopic characteristics of the LEFs control the compaction process, we performed 
simulations systematically exploring the control parameter space. This revealed that there are two distinct 
steady states of loop-extrusion dynamics in the model (Fig. 2): i) a sparse, poorly compacted state where loops 
are formed by single LEFs and separated by gaps (Fig. 2c); and ii) a dense state, where the chromosome is 
compacted into an array of consecutive loops each having multiple LEFs at its base (Fig. 2d).  
 
In the sparse state, LEFs do not efficiently condense chromosomes, since even a small fraction of fiber length 
remaining unextruded in the gaps between loops prevents efficient linear compaction (Figure S7). In the dense 
state, however, the whole chromosome is folded into a gapless array of loops, where the end of one loop 
adjacent to the beginning of the following one (Fig 2). Such organization was found to be essential to achieve 
agreement with Hi-C data for mitotic chromosomes (9). Below we show that realistic LEF abundance (one 
condensin per         ) can give rise to loop sizes of            consistent with mitotic Hi-C and earlier 
direct measurements (3, 21–24) and inferred from Hi-C data (9). These findings suggest a dense state as an 
attractive model of chromosome compaction.  
 

Two steady states arise from the interplay of two length scales characterizing the LEFs: i) processivity      , 
the average size of a loop extruded by an isolated LEF during its residency time on chromatin; and ii) the 

average linear separation between LEFs     ⁄  (Fig 2a). When   ⁄   , the system resides in the sparse 
state: LEFs work in isolation, a small fraction of the chromosome is extruded into loops and large gaps 
between them prevent efficient compaction. In the opposite dense case, when   ⁄   , the whole 
chromosomal fiber is extruded into loops, leading to a high degree of compaction. When the loop coverage is 
plotted as a function of   ⁄ , rather than individual parameters, the curves collapse into a single transition curve 

indicative of the central role of    ⁄  in controlling the compaction (Figure S1) 
 

Loop organization and dynamics are distinct in the sparse and dense steady states 

To understand the process of chromosome compaction by LEFs, we consider the dynamics of loop formation 
and disassembly. In the sparse state, LEFs rarely interact; each loop is extruded by a single LEF and it 
disappears once the LEF dissociates, leading to a highly dynamic state with a rapid (  ) turnover of loops (Fig 
S1a, SI Appendix). Since LEFs extrude loops continuously and the distribution of LEFtheir residence times is 
exponential, the distribution of loop size is exponential too (Figure S2). 
 
Two aspects of the loop organization control the dense state dynamics: i) loops have no gaps between each 
other; and (ii) individual loops are reinforced by multiple LEFs, i.e. several LEFs are stacked on top of each 
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other at the base of a loop (13). Both phenomena result from the competition for chromosomal fiber among 
abundant LEFs. The gaps disappear because, in the dense state, LEFs have enough time to extrude all 
available fiber until colliding with adjacent LEFs. Abundant collisions lead to a non-exponential distribution of 
loop sizes (Figure S2, SI Appendix). Loop reinforcement is also caused by LEF collisions (Fig 3): every time a 
new LEF binds within an existing loop, it re-extrudes this loop until colliding with the LEF residing at the loop 
base. As a result, each loop is stabilized by multiple LEFs at its base. The absence of gaps and the 
reinforcement of loops preserve the structure of loops on the timescales     (Fig S1b, SI Appendix): loops 
cannot grow because their LEFs are blocked by the neighbors, and they do not disband when individual LEFs 
dissociate, as remaining LEFs support them. Thus, the loops of a condensed chromosome are maintained 
despite continuously exchanging LEFs, like the planks in the ship of Theseus (25). 
 

Steady state loop dynamics is controlled by competition between loop death and division 

To develop an analytical model of the system’s steady state we consider its dynamics. Loops in the dense 
state are not completely static: Two stochastic processes, loop “death” and loop “division”, change the 
structure of the loop array and drive self-organization of the steady state.  
 
A loop “dies” when the number of LEFs at its base supporting it fluctuates to zero. When all LEFs dissociate, 
neighboring LEFs become unblocked and extrude the released fiber into their own loops (Fig 4a). We compute 
the rate at which a stack of    LEFs supporting a loop of size   can stochastically fluctuate to zero. The stack 
can shrink due to LEFs dissociation (at rate    ) and can grow due to association of new LEFs to the loop (at 

rate   
 

 
  

 

 

 

 
 ). Fluctuations of the LEF stack size are equivalent to the stochastic immigration-death 

process, for which the rate of fluctuation to zero can be computed as        
 

 

 

 
      (SI Appendix) (26).  

 
A loop “divides” into two smaller loops when two LEFs land within a single loop almost simultaneously and 
extrude two smaller consecutive loops (Fig 4b). These newly created loops become subsequently reinforced 
by other LEFs that land into them. The original “parent” loop, on the contrary, is effectively cut off from the 
supply of reinforcing LEFs, and disintegrates on a timescale   , with the two child loops taking its place. The 
rate-limiting process for loop division is the landing of two LEFs onto the same loop, giving an estimate for the 

rate of division:           
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 (SI Appendix). These scaling laws accurately predict the dynamics of loop 

birth and death (Fig. 4c, d) 
 
In the steady state, the number of loops is approximately constant. By equating the rate of loop creation by 
division to the rate of loop death, the average loop size is obtained as: 
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and the average number of LEFs per loop is: 
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where      is the Lambert W function. 
 
Our analytical model agrees with simulations (Fig 4e) and explains how the number of LEFs and their 
microscopic properties affect the morphology of compacted chromosomes. First, Eq. (1) and (2) show that     
is the key control parameter of the system, which determines not only the state of the system (sparse vs 
dense), but also loop sizes and the degree of loop reinforcement in the dense state. 
 
Using these scaling laws plus available experimental data we can estimate LEF processivity and dynamic state 
for human metaphase chromosomes. The average loop length has been estimated by miroscopy and via 

modeling of Hi-C data as             (3, 9, 23, 24). The spacing between bound condensin molecules 
was measured as         (21). Using these values we obtain a range of   ⁄    that is shown on Fig 4e 

and corresponds to   ⁄    . These values shows that human mitotic chromosomes operate at the lower 
bound of the dense state, have each loop reinforced by     LEFs, and human LEF have processivity 
        . 
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Second, our analysis allows to compute the degree of chromosomal compaction by LEFs. Since the length of a 
compacted chromosome in the gapless dense state equals the sum of the widths of the loop bases,   (Fig 1E), 

the coefficient of chromosomal compaction is    ̅  ⁄ . While addition of extra LEFs leads to better loop 
reinforcement, it also makes loops shorter (      ⁄ ) and thus reduces the degree of chromosomal 

compaction (Fig S7, SI Appendix). For the loop base size close to the chromatin fiber diameter            

we obtain the degree of compaction  ̅  ⁄            . Interestingly, our estimate for the compaction 
achieved through folding of a chromosome into a gapless array of loops is in a good agreement with the 

experimentally measured degree of human chromosome compaction in mid-prophase (        ) (27). 
  
Third, our model predicts how the loop array morphology changes in response to biological perturbations. 
Specifically, factors that decrease the speed of loop extrusion   or reduce LEF residence time   will decrease 
the processivity   and thus decrease the average loop size, degree of loop reinforcement and the degree of 
chromatid compaction. The effects of LEF overexpression depend on the state of the system: for sparse loop 
arrays, it does not affect the average loop size and only increases the number of loops and, thus the degree of 
compaction. In the dense systems, LEF overexpression decreases the average loop size and degree of 
compaction, but increases the degree of loop reinforcement. 
 
Finally, this analytical model shows how LEFs robustly self-organize chromosomes into a globally stable 
steady state. The rates of death and division        and           scale differently with the loop length: large 

loops are more likely to divide into smaller ones (         ), and smaller loops are more likely to die 

(           ) allowing neighboring loops to grow. This negative feedback drives the system to a steady state 
with a relatively narrow distribution of loop lengths. These results indicate that loop sizes and hence 
chromosome diameter and length will be sensitive to concentrations of LEFs while the overall morphology as a 
gapless array of consecutive loops will remain unchanged as long as the system remains in the dense state. 

 

 
Discussion 
 
Our model of loop-extrusion provides a resolution of the puzzle of how roughly nanometer-sized enzyme 
complexes can drive the regular organization of a chromosome at scales well beyond a micron, as occurs in 
eukaryote cells during mitosis. A fundamental problem with almost any mechanism based on non-specific 
crosslinking of chromatin fibers is that chromosomes will end up crosslinked together: our model avoids this 
fate by having LEFs bind to chromatin at one location and then actively extrude loops without the possibility of 
forming inter-chromosome attachments. Through unbinding, rebinding, and re-extrusion, enzymatic machines 
of this type gradually build larger loops anchored by multiple LEFs, eventually reaching a steady state.  A key 
feature of our model is that the compaction process proceeds by a combination of stochastic loop “death” and 
“division” events, which gradually but not strictly monotonically leads to a highly compacted chromosome. 
 
Compaction driven by LEFs is distinct from the usual polymer “condensation” occurring under “poor solvent” 
conditions. Unlike proposed linear compaction, nonspecific adhesion of chromatin fibers to one another would 
generate surface tension, driving adhesion of chromosomes together into spherical masses of chromatin (11), 
increasing entanglement and working against chromosome segregation and individualization (8, 13). An 
important feature of the LEF-compacted state is that despite its robust structure, it is entirely dependent on 
DNA connectivity; intermittent cleavage of DNA alone can lead to dissolution of the entire chromosome, as has 
been observed experimentally (28, 29). 
 
We emphasize that in the compacted steady state the loops have a well-defined size, and that inside the 
chromosome the LEFs establish internal tension, rather than the surface tension generated by nonspecific 
crosslinking. This internal tension is an essential contributor to the uniform folding and well-regulated cylindrical 
morphology of chromatids, and also generates repulsive forces between folded chromosomes essential to 
segregation of sister chromatids and individualization of different chromosomes (6).   
 
Note that achieving a compacted steady state by this mechanism can be a slow process, i.e. it would require 

          , while the turnover rate   for condensin was measured to be at least a few minutes (20). 
However, we found that gradual or step-wise loading/activation of LEFs can lead to a significant speed-up of 
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the process (SI Appendix). For the optimal activation rate, the compact steady state can be achieved in a 
fraction of time   (see Fig S9, SI Appendix). A sign of this dynamics occurring in vivo would be its gradual up-
regulation/activation of condesin during early chromosome compaction. 
 
On the other hand, if there are too few LEFs we have found that a distinct, disordered, poorly compacted 
chromosome steady state occurs. This outcome has been observed in experiments where condensins were 
interfered with, both in cells (30) and in Xenopus egg extracts (18, 30).  Modulation of chromosome structure 
also has been observed to occur through development, for example in Xenopus, where mitotic chromosomes 
become gradually shorter and fatter with maturation (31); this gradual change in chromosome morphology 
could be due to changes in LEF amount or activity with development. 
 
While the mechanisms of loop extrusion remain unknown, a relative simple molecular organization of a protein 
complex could produce loop-extruding activity. A LEF composed of two connected heads, each able to move 
along chromatin fiber processively, can achieve a loop extrusion activity. Moreover relative dynamics of the two 
heads (motors) does not have to be coordinated. In fact, of four possible relative orientation of heads’ 
directions (  ,   ,   ,   ), two (  ,   ) produce LEFs that slide along chromatin without loop extrusion, 

one (  ) makes LEFs with heads pushing against each other and thus stuck on chromatin, and the last one 
(  ) makes LEFs with heads moving away from each other and thus extruding loops. It remains to be seen 
how these functions are implemented in structures of SMC complexes (cohesins and condensins) that have 
enzymatic (ATP-hydrolyzing) domains. 
 
We note that our model does not discern between condensin I and condensin II, and also that the considered 
compaction process is the prophase compaction driven by condensin II (30).  Experiments aimed at disrupting 
LEFs would perhaps be best targeted at condensin II; however other proteins may be involved as condensin II 
by itself is not thought to have motor function.  Intriguingly, the motor KIF4A has been shown to be involved 
with mitotic chromosome compaction (32); it is conceivable that condensins are somehow aided in a LEF 
function by a separate motor molecule such as KIF4A.  Alternately, condensins may be able to cooperatively 
organize so as to generate contractile LEF behavior, for example by “directional polymerization” (13). 
 

Materials and methods 
Simulations were performed using the Gillespie algorithm (13, 33). The Python code performing the 
simulations of loop extrusion and the data analysis and is available online at https://bitbucket.org/golobor/loop-
extrusion-1d. See SI Appendix for details of simulations. 
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Figure Legends 
Figure 1. Simulations of chromosome compaction by loop extruding factors (LEFs). The action of LEFs can be 
simulated using a one-dimensional lattice model with four dynamic rules (a)-(d): (a) LEFs extrude loops by 
moving the two connected heads along the chromosome, (b) LEF heads block each other, (c) LEFs dissociate 
from chromatin, and (d) LEFs in the solution rebind to the chromosome. (e) Simulations show that LEFs can 
fold a chromosome into an array of consecutive loops. The diagram shows the loops formed by LEFs in a 
simulation with       ,      ,      ,     after 45000 time steps. (f),(g) The system of LEFs on a long 
chromatin fiber converges to a steady state. The steady distribution of loop sizes and the degree of compaction 
depends on the control parameters, but is independent of initial state. Results are shown for different 
simulation parameters and starting conditions; data for each curve is averaged over 10 simulation replicas. 

 

Figure 2. Simulations of LEFs reveal two distinct steady states. (a-b) The properties of loop arrays formed by 
LEFs, such as the portion of the chromosome extruded into loops, the portion of branched loops and the 
number of LEFs per loop, depend on the dimensionless ratio   ⁄ . This ratio defines the two steady states of 

the system: (c) the sparse state (  ⁄   ) where the loops are supported by single LEFs and separated by big 
loop-free gaps and (d) the dense state (  ⁄   ) where the whole chromosome is extruded into an array of 
consecutive loops supported by multiple LEFs. In both steady states, the loops are not branched (a). The 

vertical dotted lines at   ⁄      and    roughly show the transition region. 
 
Figure 3. The mechanism of loop reinforcement in the dense state. Upon binding to an existing loop, a LEF re-
extrudes it and stacks on top of the LEFs already supporting the loop. 

 

Figure 4. The model of loop death and division explains the origin of the dense steady state. (a) Loops 
occasionally disassemble when the number of reinforcing LEFs fluctuates to zero. The chromatin of the 
disassembled loop is immediately extruded into the adjacent loops. (b) A loop splits upon simultaneous landing 
of two reinforcing LEFs. The rates of loop death (c) and division (d) in the dense state can be estimated using 
simple analytical formulas (red dots) or more accurate computational models (blue dots). (f) In the dense state, 
the steady-state balance between loop death and division provides an approximate analytical expression for 
the average loop length (the red line). In the sparse state, the average loop length is predicted to be equal   
(the red line). Both predictions agree well with the simulations (the black line). The four horizontal overlapping 

gray bands show the available independent experimental estimates of   ̅   in mitotic human 

chromosomes:   ̅           (3),            (24),          (23) and           (9) and         (21). 
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LEF – loop extuding factor 

SMC – structural maintenance of chromosomes 
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Figure 4. The model of loop death and division explains the origin of the dense steady state. (a) Loops 
occasionally disassemble when the number of reinforcing LEFs fluctuates to zero. The chromatin of the 
disassembled loop is immediately extruded into the adjacent loops. (b) A loop splits upon simultaneous landing 
of two reinforcing LEFs. The rates of loop death (c) and division (d) in the dense state can be estimated using 
simple analytical formulas (red dots) or more accurate computational models (blue dots). (f) In the dense state, 
the steady-state balance between loop death and division provides an approximate analytical expression for 

the average loop length (the red line). In the sparse state, the average loop length is predicted to be equal   
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1 Materials and methods.
We study the action of loop extruding factors (LEFs) using the previously de-
scribed model [1]. In this model, we model a chromosome as a one-dimensional
lattice with L sites with N LEFs. Each LEF is represented as a pair of “heads”,
each occupying an individual site on the chromosome. The positions of LEF
heads are stochastically updated using the Gillespie algorithm with four rules:

1. The two heads of each LEF stochastically step away from each other with
the average rate v.

2. The heads of different LEFs cannot step over each other and thus stop
extrusion upon reaching another LEF. However, the two heads of the same
LEF extrude loops independently and if one head of a LEF is blocked,
another head continues extrusion.

3. LEFs stochastically unbind from the fiber with the rate of 1
τ , where τ is

the average residence time.

4. Free LEFs immediately rebind to the chromatin fiber at a random uni-
formly chosen pair of adjacent sites.

In this study we modeled 12Mb of chromatin fiber, close to the size of the
smallest human chromosomal arm 21p (12.7 Mb). Without loss of generality,
we divided the fiber into a lattice of L = 60000 cells of 200 bp each, roughly
the size of a nucleosome with a DNA linker. We simulated systems with N =
100, 400, 800, 1200 and 1600 LEFs, where 400-1200 LEFs corresponded to the
experimental estimates of the abundance of condensin in mitotic human cells (1
per 10-30kb) [2, 3]. The speed of extrusion v varied in a broad range between
1 and 100 sites per time unit and the residence time τ varied between 10 and
105 time units. At the beginning of each simulation, LEFs were distributed
randomly along the chromosome with both heads in adjacent lattice sites. We
simulated each system for 104 · τ units of time, with 10 simulations per each
parameter set.

We found that the average loop length ℓ in the steady state did not depend
on the initial positions of LEFs, with only 1 out of 75 tested parameter sets
failing the Bonferroni-corrected one-way ANOVA comparison of ℓ̄ between ten
randomly initiated replicas. Additionally, we found that the same final values of
ℓ̄ were achieved if the system was initiated with 20 or 60 loops of equal length,
each supported by closely stacked LEFs.

2 The two regimes of LEFs on a chromosome.
We found that the system of LEFs has two distinct regimes: the sparse regime,
where loops are formed by individual LEFs and are separated by gaps, and
the dense regime, where loops are supported by multiple LEFs and cover the
chromosome completely. The transition between the two regimes occurs when
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we increase the parameter λ
d , where λ = 2vτ is the LEF processivity, i.e. the

average length of a loop extruded by an obstructed LEF over its residence time
on chromatin and d = L

N is the average linear separation between LEFs. Our
simulations suggested that this ratio, and not each of the parameters alone,
determines the average loop coverage, i.e. the portion of chromatin extruded
into loops (Figure S1).

a b c

Figure S1: Loop coverage as (a) a function of the LEF processivity λ for different
numbers of LEFs N and (b) as a function of N for several values of λ. (c) The
curves collapse when plotted relative to the ratio λ/d = λN/L.

2.1 Loops have different dynamics in the sparse and dense
regimes.

We found that loops in the two regimes of LEFs display very different dynamics
(Fig. S2). As a proxy for the timescale of loop stability we measured the au-
tocorrelation time of the LEF footprint on chromatin. This measure allowed us
to estimate the characteristic times of change in loop structures across multiple
orders of magnitude. In the sparse regime, autocorrelation time is much shorter
than τ , inversely proportional to the speed of loop extrusion v and independent
of other parameters, indicating unobstructed loop extrusion by LEFs. In the
dense regime, dynamics slows down drastically and the autocorrelation time ex-
ceeds τ , showing that the loop structure persists after multiple rounds of LEF
exchange. In the dense regime, the autocorrelation time normalized by τ scales
as
√

λ
d .
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a b

Figure S2: The autocorrelation time of LEF footprints in the sparse (a) and
dense (b) regimes. In the sparse regime, we varied N between 10 and 400 LEFs,
τ between 10 and 100, and v between 1 and 10. In the dense regime, N was
varied between 100 and 1600 LEFs, τ between 10 and 10000, and v between 1
and 100. The vertical dashed line in (b) shows the approximate boundary of
the dense regime, λ

d ≈ 20.

2.2 The distribution of loop lengths is exponential in the
sparse regime and normal in the dense regime.

The two regimes also have different statistics of loop lengths: in the sparse
regime, the loop lengths are distributed exponentially; in the dense regime, the
lengths are distributed approximately normally (Fig. S3).

a b

Figure S3: (a) Loop lengths in the sparse and dense regime follow different
statistics. In the sparse regime, shown in blue, loop lengths are distributed
exponentially; in the dense regime, shown in read, loop lengths are distributed
approximately normally. (b) The variance-to-mean ratio of loop lengths nor-
malized by LEF separation d is close to 1.0 in the dense regime.

The exponential distribution of loop lengths in the sparse regime is explained
by the simple LEF dynamics. Since LEFs are separated by large gaps, they
rarely block each other and extrude loops continuously throughout their resi-
dence time on the chromosome. Therefore at every moment of time, the length
of a loop is proportional to the amount of time passed since its LEF bound
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to the chromosome. In the theory of renewal processes this amount of time is
called age and, like the residence time of LEF, it is distributed exponentially
around its mean of τ [4]. Thus, the lengths of loops in the sparse regime also
become exponentially distributed with the average length of ℓ = λ = 2vτ .

In the dense regime, the distribution of loop lengths can be approximated
by the normal distribution, with the mean and the standard deviation that
depend on the parameters of the system. Interestingly, the variance-to-mean
ratio of loop lengths in units of LEF separation d is very close to unity in the
dense regime. Our theory presented below explains why the distribution of
loop lengths ℓ has a non-zero peak and predicts its approximate location, but
it cannot predict the exact analytical form of this distribution nor its width.

2.3 Gaps disappear exponentially with λ/d.
The simple structure of loops in the sparse regime allows us to explain the
observed dependence of loop coverage 1 − g on λ

d (where g is the portion of
gaps, i.e. the portion of chromatin fiber that is not extruded into any loop)
(Fig. S4). When we increase the number of LEFs N , while keeping L, v and τ
fixed, the portion g of gaps should decrease. This dependence is, however, not
linear: as more chromatin fiber is extruded into loops, it becomes increasingly
likely for LEFs to form nested loops (i.e. bind within already extruded loops)
and thus not contribute to the overall loop coverage. Therefore, every new LEF
in the system that lands in a gap between loops increases loop coverage by
ℓ̄
L ≈ λ

L (i.e. reduces the portion of gaps g by the same amount). The chance of
a LEF landing in a gap is g, which gives us a simple differential equation:

dg

dN
= −λ

L
g,

g = e−
λ
d (S1)

Comparison with the simulations (Figure S4) shows that this solution cap-
tures the transition between the sparse and the dense regimes, but noticeably
underestimates the portion of gaps as we approach the dense regime, 1 < λ

d < 20.
This discrepancy is due to the growing difference between ℓ and λ in the dense
regime (see below).
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Figure S4: The comparison of the theoretically predicted loop coverage with
the results of the simulations. The vertical dashed lines show the approximate
boundaries of the sparse and dense regimes.

3 The theory of self-organization of loop arrays
in the dense regime.

3.1 In the dense regime, loops have stable lengths and
fluctuating numbers of reinforcing LEFs.

At λ ≫ d, gaps between loops disappear and the system transitions into the
dense regime. The condition λ ≫ d means that LEFs can potentially form
loops that are much larger than the amount of chromatin available to each of
them, so the size of the extruded loop become limited by collisions between
LEFs. Also, because there are no gaps between loops, LEFs that rebind to the
chromatin always start new loops within other already existing loops. Finally, as
we show in the main text, in the extreme dense regime loop branching becomes
increasingly rare and the majority of LEFs just stack on top of each other,
forming reinforced loops. Thus, LEFs in the dense regime fold chromatin into
an array of consecutive reinforced loops. The length ℓ of each reinforced loop is
relatively stable: supported by multiple LEFs, it does not disappear or shrink,
when some of them unbind, but it cannot grow either, because its LEFs are
blocked by the neighbors. Conversely, the number of LEFs n in each reinforced
loop constantly fluctuates: the loops constantly lose LEFs due to their unbinding
and receive new LEFs that rebind to the chromosome from the solution. Below
we describe the fluctuations of loop structure in the dense regime and show how
they lead to a globally stable steady state.

3.2 The number of LEFs in a loop is approximately Poisson-
distributed around ℓ/d.

Let us derive the distribution of the number of LEFs n supporting a single
reinforced loop of length ℓ. The loop loses LEFs due to their dissociation from
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the chromatin fiber. Since individual LEFs unbind with a rate µ = 1
τ , the overall

rate of LEF loss depends on n and equals

µn = nµ =
n

τ
(S2)

The loop also receives a flux of incoming LEFs that bind back to the chro-
mosome from the solution. In our simple model, LEFs rebind to random sites
and thus have a chance ℓ

L of landing within the chosen loop. As a result, the
body of the loop serves as an antenna: the larger the loop is, the more LEFs
it receives. At every moment of time, LEFs unbind and immediately rebind to
the chromosome with the rate N · 1

τ , so that the rate r of LEF binding to the
chosen loop equals

r =
N

τ
· ℓ

L
=

1

τ

ℓ

d
(S3)

This stochastic gain and loss of LEFs produces fluctuations of the number
of LEFs in the loop. The equations S2 and S3 allow us to find the probability
pn for the loop to have n LEFs. In a population of loops of equal length ℓ, the
fraction pn of loops supported by n LEFs changes over time because of three
factors: a) these loops gain or lose LEFs with a combined rate r+µn , b) loops
with n− 1 LEFs gain LEFs at rate r and c) loops with n+ 1 LEF lose LEFs at
rate µn+1. The dynamics of the fraction pn is then described with:{

dpn

dt = − (r + µn) pn + rpn−1 + µn+1pn+1, n > 1
dp1

dt = − (r + µ1) p1 + µ2p2, n = 1

The loss of the last LEF is irreversible and loops without LEFs disappear.
In order to find a quasi steady state distribution of pn described by dpn

dt = 0,
we have to ignore this fact for now and set µ1 = 0. This gives us the following
system of equations [5]:{

(r + µn)pn = rpn−1 + µn+1pn+1, n > 1

rp1 = µ2p2

The solution of this system shows that the number of LEFs n, n ≥ 1 in a
loop is Poisson-distributed:

pn =
n−1∏
i=1

ri
µi+1

p1 =
1

n!

(
r

µ

)n
1

e
r
µ − 1

We can relate this distribution to the size of the loop and density of LEFs
using the expressions (S3) and (S2):

pn (ℓ/d) =
1

n!
(ℓ/d)

n 1

eℓ/d − 1
(S4)
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The average number of LEFs n in a loop then equals:

n̄ =
ℓ

d

1

1− e−ℓ/d
(S5)

This expression highlights the importance of the length scale d: the length
of a loop expressed in units of LEF separation d is approximately equal to the
average number of LEFs in this loop. Below we will often use the loop length
normalized by d:

ℓd ≡ ℓ

d
(S6)

such that:

n ≈ ℓd (S7)

3.3 The lifespan of reinforced loops increases exponen-
tially with their length.

The derived distribution (S4) of the number of LEFs per loop allows us to
estimate the average lifespan of a loop t. Loops get disassembled when they
lose their last LEF. Therefore, the rate of loop death can be estimated as:

Rdeath ≈ µp1 =
1

τ

ℓd
eℓd − 1

≈ 1

τ
ℓde

−ℓd (S8)

And the average lifespan t̄ of a loop of length ℓd is

t =
1

Rdeath
≈ τ

eℓd − 1

ℓd
(S9)

The asymptotic dependence of t on the length of the normalized loop length
ℓd is then:

tasymp =
1

Rasymp
death

≈ τ
eℓd

ℓd
(S10)

The equation (S10) reveals that the lifespan of a loop grows almost expo-
nentially with its length. Thus, reinforcement makes longer loops essentially
immortal: for example, loops with length ℓd = 6.5 live 100 times longer than
individual LEFs, and those with ℓd = 9 live 1000 times longer. However, the
effects of reinforcement are significant only for longer loops (ℓd ≳ 3.5) with the
lifespan extension to 10τ and more.

The simple functional form of Eq. (S10) allows us to use it in analytical
calculations. However, in its derivation we assumed that loop death does not
perturb the distribution of n, which is not necessarily true. In chapter (4.1),
we will derive the expression for t without this assumption and show that our
estimates (S9) and (S10) are, in fact, very accurate.
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3.4 Loops in the dense regime stochastically divide in two.
Loops in the dense regime divide when two LEFs land within the same loop
and extrude two separate loops instead of stacking on top of one another. Both
daughter loops then start receiving reinforcing LEFs, thus, cutting the supplies
off the mother loop. This causes the mother loop to disassemble on the timescale
of several τ (for more accurate estimate, see Chapter (4.4)) and the two daughter
loops take its place. This process creates new loops on the chromatin in the
dense regime.

We can estimate how the rate of loop division depends on the parameters
of the system. LEFs land into a loop of size ℓ with a rate of Nℓ

τL = 1
τ

ℓ
d . A loop

divides when the second LEF lands before the first LEF has fully expanded to
the loop borders, within a time window of ∼ ℓ

2v . Thus, the rate of loop division
scales as:

Rdiv ∼
(
1

τ

ℓ

d

)2
ℓ

2v
=

1

τ
ℓ3d

d

λ
(S11)

However, these two LEFs can still stack on one another. In fact, as the first
LEF extrudes a bigger and bigger loop, there is less chance for the second LEF
to land outside of its loop. Thus, a more accurate general expression for Rdiv

should look like:

Rdiv = r2
ˆ ∞

0

Pdiv(ℓ, t) dt, (S12)

where Pdiv(ℓ, t) is the probability for two LEFs to divide a loop of length ℓ
if they land with a time delay t.

The loop splits if the second LEF lands outside of the loop extruded by the
first. Integrating over all possible positions of the two LEFs, x1 and x2, we get:

Pdiv(ℓ, t) =
1

l2

ˆ l

0

dx1

ˆ l

0

dx2 (1x2>x1+vt + 1x2<x1−vt) = (S13)

=

(
1− vt

ℓ

)2

Here, 1condition is the indicator function, which equals 1 is the condition is
true and 0 otherwise. The expression for Rdiv is then:

Rdiv

(
ℓd,

λ

d

)
= r2

ˆ ℓ/v

0

Pdiv(ℓ, t) dt =
2

3

1

τ
ℓ3d

d

λ
(S14)

In other words, stacking of LEFs decreases the rate of loop division by 2/3.

3.5 The balance between loop death and division gives rise
to the steady state of the dense regime.

In the steady state of the dense regime, the average length ℓ̄ of all loops in the
system stays approximately constant over time. This implies that the number
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of loops on the chromosome is also constant, therefore, the global rate of loop
creation through division should be equal the global rate of loop death. Assum-
ing that all loops in the system have the same length ℓ = dℓ̄d, we get the steady
state condition:

Rdiv

(
ℓd,

λ

d

)
= Rdeath

(
ℓd
)

(S15)

Plugging in the previously obtained estimates for Rdeath (S8) and Rdiv (S14),
we get:

2

3

1

τ
ℓ3d

d

λ
=

1

τ
ℓde

−ℓd

The solution of this equation defines us the average length and the number
of LEFs per loop in the steady state:

ℓ = 2dW

(√
3λ

8d

)
(S16)

n ≈ ℓd = 2W

(√
3λ

8d

)
(S17)

Here, W (x) is the Lambert W function, defined as the solution of W (x)eW (x) =
x. For λ

d varying between 20 and 106, we can use the approximation W (x) ≈
0.3 + ln(x)− ln(ln(x)):

ℓ ≈ d

[
0.3 + ln

(
3λ

8d

)
− ln ln

(
3λ

8d

)]
(S18)

n ≈ 0.3 + ln
(
3λ

8d

)
− ln ln

(
3λ

8d

)
(S19)

Our theory also explains why the steady state is globally stable. The average
steady state loop length ℓ (S16) is located at the intersection of the curves
Rdeath(ℓ, d) (S10) and division Rdiv(ℓ, λ, d) (S14) (Fig. S5); loops longer than ℓ
are more likely to divide into smaller loops, loops shorter than ℓ are more likely
to die and let their neighbors grow. Thus, the scalings of Rdeath(ℓ, d) (S10) and
division Rdiv(ℓ, λ, d) (S14) focus the distribution of the loop sizes around the
average value ℓ, which explains the approximately normal distribution of loop
sizes shown on Fig.(S3).

11

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2015. ; https://doi.org/10.1101/021642doi: bioRxiv preprint 

https://doi.org/10.1101/021642
http://creativecommons.org/licenses/by-nc/4.0/


Figure S5: The scalings of Rdeath and Rdiv with the loop length ℓ. The average
loop length at the steady state is located at the intersection of the two curves.
The difference in the derivative signs of Rdeath and Rdiv provides global stability
of the steady state.

The equation (S16) is approximate and thus can be not accurate enough.
For the applications requiring ~1% precision, we used a 7-th degree polynomial
expression which was fit to log10 ℓ(λd ) observed in the simulations with λ

d in the
range (10−1.5; 105.5):

log10
(
ℓ

d

)
= −0.08238 + 0.7258x− 0.2514x2 − 0.003995x3

+0.03445x4 − 0.01077x5 + 0.001371x6 − 6.472 · 10−5x7, x = log10
(
λ

d

)

3.6 Maximal lengthwise compaction is achieved on the
lower border of the dense regime.

LEFs fold a chromosome into a system of consecutive loops and thus dramat-
ically reduce its length (Fig. S6). A biologically important question is what
amount of LEFs would maximize lengthwise compaction of the chromosome,
given their microscopic properties.

The length of a chromosome compacted by LEFs, Lcomp, has two compo-
nents: (a) the combined widths of loop bases and (b) the length of gaps between
loops (Fig. S6). A loop base has a width of at least the thickness of chromatin
fiber, a (in our model, it equals 1 site or ~10 nm), so that the minimal estimate
for Lcomp is:

Lcomp = anloops + gL = a
L

ℓ
+ gL, (S20)

The coefficient of lengthwise compaction is then given by
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LcompL

loop-free gaps

before compaction after compaction

a

Figure S6: LEFs drastically reduce the length of a chromosome by folding it
into a system of consecutive loops. The length of a compacted chromosome is
determined by the combined length of the loop bases and the length of gaps
between loops.

clen =
L

Lcomp
=

1
a/ℓ + g

(S21)

The portion of loop-free gaps g decreases almost exponentially with the num-
ber of LEFs as the system approaches the dense regime (see Section 2.3). On
contrary, the combined length of loop bases is proportional to the number of
loops in the system and grows almost linearly with the number of LEFs. There-
fore, maximal compaction is achieved at the lower boundary of the dense regime,
where the gaps disappear, but the number of loops is still low. Simulations con-
firm our reasoning (Fig.S7), but show that the exact location of the optimum
depends slightly on λ. This dependence is caused by the presence of exponen-
tially small residual gaps that prevent the system from achieving extremely high
degrees of compaction.

3.7 The maximal degree of total compaction depends on
the length of the chromosome and the size of LEFs.

The extreme values of the coefficient of lengthwise compaction can be mislead-
ing: high lengthwise compaction is achieved when the chromosome is folded
into a few very large loops, so that the width of the compacted structure can be
larger than its length. Formally, the maximal lengthwise compaction is achieved
when the whole chromosome is folded into one loop! A more meaningful mea-
sure of compaction is the ratio of the chromosome length L to the maximum
of its width and length, or, the coefficient of total compaction ctot. Since poly-
mers folded into loop arrays naturally assume bottle-brush conformations [6]
with loops extending away from the backbone formed by loop bases, we set the
width of a compacted chromatin fiber to be roughly the size of individual loops
ℓ:

ctot = min

(
L

Lcomp
,
L

ℓ

)
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Figure S7: (a) Given the microscopic properties of LEFs, there is an optimal
amount of LEFs that provides maximal lengthwise compaction. (b) Maximal
lengthwise compaction occurs at the lower boundary of the dense regime where
the gaps disappear, but the number of loops is relatively low.

Then the maximal total compaction is achieved when the width and length
are equal:

ℓ
∗
= Lcomp = a

L

ℓ
∗ + gL

Ignoring the contribution of gaps, we can obtain the expression for the op-
timal loop length:

ℓ
∗
=

√
aL

The maximal degree of total compaction is then:

c∗tot =
L

ℓ
∗ =

√
L

a
(S22)

Our simulations confirm the existence of a global maximum of ctot expressed
by Eq. S22 (Fig. S8). The number of LEFs required to reach this maximum
almost does not depend on λ. This is not surprising given that the average
loop length in the steady state (Eq. (S16)) depends linearly on N and only
logarithmically on λ. However, in order to reach the maximal total compaction,
LEFs must have sufficiently large λ, otherwise they can not generate enough
lengthwise compaction (S7).

3.8 Gradual activation of LEFs speeds up convergence to
the steady state.

In our simulations, the steady state was achieved on long timescales, up to
103τ . With the experimental estimates of τ of at least a few minutes [7], cells
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Figure S8: (a) The maximal total compaction and the number of LEFs required
to achieve it almost does not depend on λ. (b) As λ increases, the maximal
total compaction is achieved at higher values of λ

d . The horizontal dashed lines
show the predicted maximal coefficient of total compaction c∗tot =

√
L/a; the

vertical dashed line shows the lower boundary of the dense regime λ/d ≈ 20.

might not have enough time to compact their chromosomes using the mecha-
nism described above. Below we show that gradual activation of LEFs reduces
the timescales of convergence to the steady state below τ , thus allowing fast
chromosome compaction in mitosis.

The transition to the steady regime in our simulations is slow because we
initiate the system far from the steady state. When we activate all LEFs simul-
taneously, they initially fold the chromosome into an array of small loops; some
of these loops then slowly die and the remaining loops grow, until the average
size of a loop reaches the steady state value. We can achieve a faster approach
to the steady state if by initial activation of a small fraction of LEFs or if by
their gradual activation.

By choosing a proper number of LEFs to activate, we can adjust the length
of the initially extruded loops to be equal the steady state length. After initial
loops are formed, we activate the rest of the LEFs. In this scenario the system
will rapidly achieve the steady state because this second batch of LEFs will
reinforce the loops formed by the first batch. The required number of initially
activated LEFs is then given by the condition L

Ninit
= ℓ:

Ninit =
L

ℓ

These LEFs would form an array of consecutive loops over the period of time
tinit ∼ ℓ

2v , after which we could add the rest of the LEFs.
The same result can be achieved using a more realistic scenario where all

LEFs are gradually (stochastically) activated with the activation rate 1/ta. The
number of active LEFs in a system at time t then equals:
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N(t) = N
(
1− e−

t/ta
)

The optimal activation period topta can be found by comparing this approach
with the two-step activation scheme, so that by the time tinit the system has
Ninit active LEFs:

N

(
1− e

− tinit

t
opt
a

)
= Ninit

which gives us the following expression for optimal activation time topta :

topta = τ
ℓ
2

dλ
= τ

d

λ
ℓ
2

d (S23)

In order to confirm Eq. (S23), we simulated stochastic activation of LEFs
in a wide range of parameters and found the optimal LEF activation times
topta . These values of ta provided the fastest convergence to the steady state, as
measured by the root mean square deviation of the loop length trajectory ℓ(t)
from the steady state value. The simulations showed that the expression (S23)
captured the major mechanism behind the optimal LEF activation (Fig. S9).

a b

Figure S9: (a) Stochastic activation of LEFs with a rate 1/ta speeds up conver-
gence of the average loop length ℓ̄ to its steady state value (the gray dashed line).
The optimal activation delay topta minimizes the root mean square deviation of
the curve ℓ(t) from the steady state value. (b) The values of topta predicted with
Eq. (S23) agree reasonably well with the optimal LEF activation times found
in simulations across a wide range of system parameters.

The systematic discrepancy between the optimal activation times in simula-
tions and those predicted by Eq. (S23) is due to two major factors:

a) we assumed that the LEFs activated after formation of a loop array serve
only to reinforce the existing loops. However, these LEFs also divide the existing
loops via the mechanism described in Chapter 3.4 and thus increase the number
of created loops.
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b) Some portion of the initially established Ninitial loops dies before a loop
array get established, thus decreasing the number of created loops.

Finally, it is important to note that we only considered convergence of the
mean loop length ℓ̄; convergence of the other moments of the distribution of
loop length might take a different amount of time.
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4 Corrections to the theory of self-organization
of loop arrays.

4.1 The theory of stochastic processes provides an exact
expression for the lifespan of loops.

The estimate of the rate of loop death (S8) involved several approximations and
thus can potentially be inaccurate. In the next four chapters 4.1-4.4, we will
use the theory of stochastic processes to derive an accurate model of loop death
and estimate the precision of (S8).

We model the fluctuations of the number of LEFs n supporting a loop with
the stochastic immigration-death process: the loop receives a steady flux of
incoming LEFs (immigration), but each of them lives for a finite period of time
(death). This process has been extensively studied in the literature [5] and we
adapt the existing derivations to our model.

In the language of immigration-death processes, the death of loops upon
loss of all LEFs corresponds to an adsorbing state at n = 0. Then the average
lifespan of a loop is defined as the mean time to absorption into the state n = 0
and depends on the initial number of LEFs n. The lifespans tn for different n
are related to each other: a loop with n LEFs keeps the same n for an average
period of 1

r+µn
and then either receives an extra LEF with a probability r

r+µn

and lives for another period tn+1 or loses a LEF with a probability µn

r+µn
and

lives for tn−1 (µn and r were defined in Eq.(S2) and Eq.(S3)). This allows us
to relate different tn with a system of equations:{

tn = 1
r+µn

+ r
r+µn

tn+1 +
µn

r+µn
tn−1, n > 0

t̄0 = 1
r+µ0

+ r
r+µ0

t̄1
(S24)

This system can be converted into a recursive equation using a new variable
δtn,

δtn = tn − tn+1,

such that δt0 = −t1 and t̄n = −
∑n−1

i=0 δt̄i. Plugging δtn into the system of
equations (S25), we obtain a recursive relation

δtn =
1

r
+

µn

r
δtn−1

Then,

δt̄1 =
1

r
+

µ1

r
δt0 =

1

r
− µ1

r
t̄1

δt̄2 =
1

r
+

µ2

r
δt0 =

1

r
+

µ2

r2
− µ1µ2

r2
t̄1

. . .

δtn =
n∑

i=1

1

r

n∏
j=i+1

µj

r
−

(
n∏

i=1

µi

r

)
t̄1
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Defining an auxiliary variable ρn, we get:

ρn =
µ1 . . . µn

r1 . . . rn
=

n!

ℓnd

δtn =

n∑
i=1

1

r

ρn
ρi

− ρnt̄1 = ρn

(
n∑

i=1

1

rρi
− t̄1

)

t1 =
∞∑
i=1

1

rρi
+ lim

n→∞

1

ρn
(t̄n − t̄n+1)

The second term is zero because limn→∞
en

n! = 0, therefore

t1 =
∞∑
i=1

1

rρi

This finally allows us to find t̄n:

tn = −
n−1∑
i=0

δt̄i = t1 −
n−1∑
i=1

δt̄i =

= t̄1 −
n−1∑
i=1

ρi

 i∑
j=1

1

rρj
− t1

 = t̄1 −
n−1∑
i=1

ρi

 i∑
j=1

1

rρj
−

∞∑
j=1

1

rρj


= t̄1 +

n−1∑
i=1

ρi

∞∑
j=i+1

1

rρj
=

=
∞∑
i=1

1

rρi
+

n−1∑
i=1

ρi

∞∑
j=i+1

1

rρj
=

=
1

r

 ∞∑
i=1

1

i!

(
r

µ

)i

+
n−1∑
i=1

i!
(µ
r

)i ∞∑
j=k+1

1

j!

(
r

µ

)j
 =

=
1

r

e r
µ − 1 +

n−1∑
i=1

∞∑
j=1

i!

(i+ j)!

(
r

µ

)j
 =

=
1

r

[
e

r
µ − 1 + e

r
µ

n−1∑
i=1

(µ
r

)i(
Γ(i+ 1)− Γ(i+ 1,

r

µ
)

)]

tn(ℓd) =
τ

ℓd

[
eℓd − 1 + eℓd

n−1∑
i=1

i!− Γ(i+ 1, ℓd)

ℓid

]
(S25)

where Γ(a, x) is the upper incomplete Gamma function. Interestingly, the
previously obtained expression for t (S9), in fact, equals the average lifespan of
a loop with a single LEF:
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t1(ℓd) = τ
eℓd − 1

ℓd
(S26)

The expression (S25) is too bulky to be used in analytical derivations or
provide any new intuitive understanding. Below we show that most of the terms
in (S25) in fact can be dropped to obtain a compact, yet accurate approximation
of tn.

4.2 Loops supported by a single LEF can die immediately.
The Eq. (S25) gives us the average loop lifespan, but does not tell anything
about the distribution of tn. In order to find it, we simulated 105 stochastic
immigration-death processes with n = 3 with n0 = 1 and n0 = 3 initial LEFs
(Fig. (S10)). Both distributions had exponential tails, but the distribution of
t1 had an additional peak around zero (Figure S10). The normalized tails of
the distributions for the two initial conditions perfectly matched at tn ≥ 3τ ,
indicating that the starting number of LEFs did not affect the later stages of
loop dynamics.

Figure S10: The distribution of the lifespans of immigration-death processes
with different initial conditions. (a) The overall distribution; (b) the normalized
lifespan frequency for the processes that survived the initial period tn < 3τ .

The increased frequency of short lifespans of single-LEF loops is caused
by stochastic fluctuations: with some probability these loops immediately lose
their only LEF and disassemble before receiving any reinforcing LEFs. A rough
estimate for the probability of such immediate death is:

pdeath1 (ℓd) ≈
µ

r + µ
=

1

ℓd + 1
(S27)

We can find a more accurate expression for pdeath using the theory of immigration-
death processes. If we define immediate death more generally as an event when a
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loop dies before reaching its fully reinforced level n = n, we get an immigration-
death process with two adsorbing boundaries at n = 0 and n = n. Then the
probability pdeathi that a loop with i LEFs will die before accumulating n LEFs,
obeys the following system of equations:

pdeath0 = 1

· · ·
pdeathi =

µi

r + µi
pdeathi−1 +

r

r + µi
pdeathi+1

· · ·
pdeathn = 0

And the solution is:

pdeathi =

∑n−1
k=i k!

(
µ
r

)k∑n−1
k=0 k!

(
µ
r

)k
Particularly, a loop formed by a single LEF dies before accumulating n LEFs

with the probability

pdeath1 (ℓd) = 1−

[
ld−1∑
k=0

k!

(ℓd)k

]−1

(S28)

4.3 Accounting for immediate death gives a simple and
accurate estimate for the rate of loop death.

The analysis above suggests two different processes lead to loop death: (a)
immediate death before full reinforcement, which probability depends on the
initial number of LEFs n0, (b) exponential death of fully reinforced loops, which
rate is independent of n0. This allows us to find a compact estimate for t̄n(ℓd).
Roughly, a single-LEF loop either dies immediately with a chance pdeath1 or
quickly accumulates n LEFs and lives for tn:

t1(ℓd) ≈ pdeath1 (ℓd) · 0 +
(
1− pdeath1 (ℓd)

)
tn(ℓd)

Then the lifespan of a loop with n0 = n LEFs is given by:

tn(ℓd) ≈
t1(ℓd)

1− pdeath1 (ℓd)
=

τ

ℓd

(
eℓd − 1

) ℓd−1∑
k=0

k!

ℓkd
(S29)

This formula can be generalized for an arbitrary initial number of LEFs
n0, 1 ≤ n0 ≤ n :

tn0(ℓd) ≈
1− pdeathn0

(ℓd)

1− pdeath1 (ℓd)
t1(ℓd) (S30)
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Now we can compare the accuracy of the expressions (S25), (S10) and (S29).
We simulated the dynamics of LEF number n using a stochastic immigration-
death process with different average numbers of LEFs n, n0 = n. Simulations
at each value of n were repeated 1000 times to obtain enough statistics (Figure
(S11)).

Figure S11: The average lifespan of a loop can be predicted accurately with
analytical expressions. The black dots show the results of simulations, the
predictions with analytical expressions (S25), (S10) and (S29) are shown in
blue, green and red, correspondingly.

The simulations show that the asymptotic expression (S10) significantly
overestimates the lifespan t̄ of short loops (ℓd < 2) and underestimates t̄n̄ for
longer loops. On contrary, the approximate expression (S29) is as accurate as
the exact expression (S25) and thus can be used instead.

4.4 The lifespan of a loop after interruption of reinforce-
ment is approximately Gumbel-distributed.

In our theory of loop division, we assumed that “mother” loops die soon after
interruption of reinforcement. In this chapter we support this assumption with
analytical derivations and obtain the full distribution of residual lifetimes of
loops.

A loop exists as long as it has at least one LEF at its base. Therefore,
its residual lifespan tres after interruption of reinforcements is given by the
maximum of the residence times of its n0 LEFs. This allows us to write the
cumulative distribution function (CDF) of tres as the CDF of the maximum of
n0 exponentially distributed lifetimes of individual LEFs:

Fn0(tres) = F{max(t1, .., tn0) ≤ tres} =

[
1− exp

(
− tres

τ

)]n0

The probability density function of tres is then given by:
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fn0(tres) =
d

dtres
F{max(t1, .., tn0) ≤ tres} =

1

τ
n0

[
1− exp

(
− tres

τ

)]n0−1

exp
(
− tres

τ

)
We can rephrase this expression in terms of the known loop length ℓd by

summing over all possible LEF number n0:

fℓd(tres)dtres =
1

τ

∞∑
n0=1

pn0
(ℓd)fn0

(tres)dtres

Since the number of LEFs n0 is roughly Poisson-distributed around n (Eq.
(S4)), we get

fn(t
′)dt′ = e

(
−t′−e−t′

)
dt′,where t′ =

tres
τ

− ln ℓd (S31)

The average lifespan of a loop t̄res after interruption of LEFs is then

tres = τ
[
ln ℓd + γ − Ei(−ℓd) + e−ℓd ln ℓd

]
Here, γ ≈ 0.577 . . . is the Euler–Mascheroni constant and Ei(x) is the expo-

nential integral. At larger values of ℓd this expression can be further simplified
to:

tres ≈ τ (ln ℓd + γ) (S32)
The expression (S31) looks exactly like the Gumbel distribution, with the

only difference that it is defined on t′ ∈ [− ln ℓd;∞), while the Gumbel distri-
bution is defined on the whole real line. The fact that the lifespan of a stack of
LEFs is roughly Gumbel-distributed is not surprising: the residual lifespan of a
loop equals the maximum of n0 exponentially-distributed lifespans of individual
LEFs and the Gumbel distribution is the limiting distribution of a maximum of
n exponential numbers when n → ∞.

4.5 Selection for the minimal daughter loop size slows
down loop division.

In the next three chapters 4.5-4.7, we will analyze the inaccuracies of our simple
model of loop division and will come up with better estimates for Rdiv.

The first major correction to Eq. (S14) is due to the fact that both daughter
loops must be large enough to survive and receive stable reinforcements. A more
accurate estimate of Rdiv therefore must discard the configurations of daughter
loops where one of them is too small to be viable. The condition on the minimal
size of the loop then can be plugged into the expression for the probability of
division Pdiv (S13):

Pminlen
div (ℓ, t) =

1

ℓ2

ˆ ℓ

0

dx1

ˆ ℓ

0

dx2 (1x2>x1+vt + 1x2<x1−vt)1ℓ1>ℓ01ℓ2>ℓ0
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Here, ℓ0 is the minimal length of a daughter loop, ℓ1 and ℓ2 are the lengths
of the fully-extruded daughter loops, defined as:{

ℓ1 = x2+x1+vt
2 , x1 < x2

ℓ1 = x2+x1−vt
2 , x1 > x2

(S33)

ℓ2 = ℓ− ℓ1

This gives us the following expression for the rate of loop division:

Rminlen
div = r2

ˆ ℓ/v

0

Pdiv(t) dt =
2

3

1

τ
ℓ3d

d

λ

(
1− 6

(
ℓ0
ℓ

)2

+ 4

(
ℓ0
ℓ

)3
)
(S34)

We choose the minimal loop size to be ℓ0 = 3d, since it is the minimal loop
size required for an order of magnitude increase of the lifespan.

4.6 Immediate death of daughter loops slows down loop
division.

Eq. (S14) also ignores the fact the newborn daughter loops have only one LEF
and thus can die before becoming fully reinforced. This can happen even to
large loops with the length ℓ > ℓ0 and thus this effect is different from the one
considered in the previous chapter.

The expression for the probability of successful division (S13) can be modi-
fied to take into account a chance of immediate death:

P imdeath
div (ℓ, t) =

1

ℓ2

ˆ ℓ

0

dx1

ˆ ℓ

0

dx2 (1x2>x1+vt + 1x2<x1−vt)
(
1− pdeath1 (ℓ1)

) (
1− pdeath1 (ℓ2)

)
The rate of loop division then can be calculated analytically if we truncate

the expression for p1death (S28) at the second term:

pdeath1 (ℓd) ≈ 1− 1

1 + ℓd
=

ℓd
ℓd + 1

Rimdeath
div = r2

ˆ ℓ/v

0

Pdiv(ℓ, t) dt =

=
2

3

1

τ
ℓ3d

d

λ

(
1− 6ℓ−1

d − 6ℓ−2
d + 12ℓ−3

d

(ℓd + 1)2

(ℓd + 2)
ln (1 + ℓd)

)
(S35)
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4.7 Loop size selection and immediate death affects daugh-
ter loops independently.

The most accurate expression for Rdiv should account both for the size selection
and immediate death of daughter loops:

P full
div (ℓ, t) =

1

ℓ2

ˆ ℓ

0

dx1

ˆ ℓ

0

dx2 (1x2>x1+vt + 1x2<x1−vt)1ℓ1>ℓ01ℓ2>ℓ0

(
1− pdeath1 (ℓ1)

) (
1− pdeath1 (ℓ2)

)

Rfull
div = r2

ˆ ℓ/v

0

P full
div (ℓ, t) dt (S36)

This expression does not have a short analytical form and has to be calcu-
lated numerically.

We compare the accuracy of the four different expressions for Rdiv(S14),
(S34), (S35) and (S36) with the results of our simulations. For every tested
combination of parameters (L,N, v, τ), we measure the rate of loop division
Rdiv in the simulations and then estimate it with the equations (S14), (S34),
(S35) and (S36) using the observed distribution of loop lengths (Fig. S12).
We found that both corrections for loop size selection and immediate death of
daughter loops significantly improve the accuracy of predicted Rdiv, with the
combined expression (S36) having the highest accuracy.
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Figure S12: The rate of loop division in simulations can be predicted accurately
using analytical expressions. The predictions with analytical expressions (S14),
(S34), (S35) and (S36) are shown in red, green, gray and blue, correspondingly.

5 Glossary and mathematical notation
• Loop extruding factor (LEF) - a molecular machine which bridges two

adjacent sites on a chromosome and then moves the binding sites in the
opposite directions along the chromosome, thus extruding a loop.

• Nested loop - a loop extruded inside some other loop (Fig.S13).

• Reinforced loop - a chromatin loop supported by several LEFs closely
stacked on top of one another. Alternatively, a series of nested loops,
formed by closely stacked LEFs.

• Branched loop - a loop containing two or more nested loops that are not
nested into one another.

• Root loop - a loop that is not nested into any other loop; includes all
nested loops, if it has any.

• L - the length of the chromosome.

• N - the number of LEFs in the system.
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• τ - the average time that a LEF stays continuously bound to the chromo-
some.

• v - the average speed with which a LEF motor translocates chromatin
fiber.

• λ - LEF processivity, the average length of a chromatin loop that a single
unobstructed LEF can extrude over its residence time.

• d - LEF separation, the average spacing between LEFs if they were ran-
domly dispersed along the chromosome.

• a - the thickness of the fiber.

• n - the number of LEFs supporting a reinforced loop.

• ℓ - the length of a loop.

• ℓd - the length of a loop normalized by the LEF separation.

• ℓ - the average length of a loop in the steady state.

• ℓd - the average length of a loop in the steady state normalized by the
LEF separation.

• n - the average number of LEFs supporting a reinforced loop in the steady
state.

• r - the rate of LEF binding per loop.

• µ - the rate of LEF unbinding.

• f - the fraction of the chromosome contained in the gaps between the
loops.

• clen - the coefficient of the lengthwise compaction.

• Rdeath - the rate of death of reinforced loops.

• Rdiv - the rate of division of reinforced loops.

• topta - the optimal rate of stochastic LEF activation that provides the fastest
convergence to the steady state.
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Figure S13: (a) The illustration of the possible loop structures formed by loop-
extruding factors (LEFs). (b) The corresponding diagram of the intramolecular
links formed by LEFs.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2015. ; https://doi.org/10.1101/021642doi: bioRxiv preprint 

https://doi.org/10.1101/021642
http://creativecommons.org/licenses/by-nc/4.0/


References
[1] Elnaz Alipour and John F Marko. Self-organization of domain structures

by DNA-loop-extruding enzymes. Nucleic acids research, 40(22):11202–12,
December 2012.

[2] Kiichi Fukui and Susumu Uchiyama. Chromosome protein framework from
proteome analysis of isolated human metaphase chromosomes. Chemical
record (New York, N.Y.), 7(4):230–7, January 2007.

[3] Ai Takemoto, Keiji Kimura, Shigeyuki Yokoyama, and Fumio Hanaoka. Cell
cycle-dependent phosphorylation, nuclear localization, and activation of hu-
man condensin. The Journal of biological chemistry, 279(6):4551–9, February
2004.

[4] Robert G. Gallager. Stochastic Processes: Theory for Applications. Cam-
bridge University Press, 2013.

[5] Mark A. Pinsky and Samuel Karlin. An Introduction to Stochastic Modeling.
Academic Press, 2011.

[6] Natalia Naumova, Maxim Imakaev, Geoffrey Fudenberg, Ye Zhan, Bryan R
Lajoie, Leonid a Mirny, and Job Dekker. Organization of the mitotic chro-
mosome. Science (New York, N.Y.), 342(6161):948–53, November 2013.

[7] Daniel Gerlich, Toru Hirota, Birgit Koch, Jan-Michael Peters, and Jan Ellen-
berg. Condensin I stabilizes chromosomes mechanically through a dynamic
interaction in live cells. Current biology : CB, 16(4):333–44, February 2006.

29

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2015. ; https://doi.org/10.1101/021642doi: bioRxiv preprint 

https://doi.org/10.1101/021642
http://creativecommons.org/licenses/by-nc/4.0/

