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Abstract  11 
TransRate is a tool for reference-free quality assessment of de novo transcriptome assemblies. 12 

Using only sequenced reads as the input, TransRate measures the quality of individual contigs 13 

and whole assemblies, enabling assembly optimization and comparison. TransRate can 14 

accurately evaluate assemblies of conserved and novel RNA molecules of any kind in any 15 

species. We show that it is more accurate than comparable methods and demonstrate its use 16 

on a variety of data. 17 

Introduction 18 
High-throughput sequencing of RNA has revolutionized our ability to assess the genetic basis of 19 

biological traits. For organisms that have sequenced and annotated genomes gene expression, splice-20 

variants and mutations can be estimated from alignment of reads direct to the genome. In the absence 21 

of an appropriate reference genome, de novo transcriptome assembly is required. 22 

Many de-novo assembly algorithms have been developed, including Trinity (Grabherr et al., 2011), 23 

Oases (Schulz et al., 2012), and SOAPdenovo-Trans (Xie et al., 2014), each of which takes a different 24 

approach to the problem. These tools provide multiple parameters and heuristics that can be modified 25 
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to allow for variations in library construction, coverage depth and differences between organisms. The 26 

large parameter spaces mean that the same read data can generate substantially different assemblies 27 

both within and between assembly methods. 28 

In addition to the considerable algorithmic flexibility, the data being assembled can be generated from 29 

multiple different RNA types. These can range from specifically amplified sub-populations of particular 30 

types of RNA, to total RNA encompassing all RNA types within the cell. Given the wide range of input 31 

data and assembly methods there is a need to be able to evaluate the quality of any de novo 32 

transcriptome in the absence of a known reference and identify the set of parameters, or assembly 33 

methods that best reconstruct the transcriptome from which the raw read data was generated. 34 

Moreover, there is a need to be able to identify within a given assembly the set of contigs that are well-35 

assembled from those that are not, so that incorrect data do not influence downstream biological 36 

interpretation. 37 

To date the majority of de novo transcriptome assessment methods have compared the assembled 38 

transcriptome to a known reference dataset (Lowe et al., 2014; O’Neil and Emrich, 2013). These 39 

comparative methods provide insight into the subset of known sequences that are represented within 40 

a de novo assembly but do not explicitly measure correctness of the assembled contigs. Furthermore, 41 

they only assess the subset of contigs that represent conserved sequences, so novel, divergent or 42 

non-coding transcripts are not assessed by these methods. Only a single reference-free transcriptome 43 

assembly evaluation tool has been published, RSEM-eval (Li et al., 2014). RSEM-eval provides an 44 

assembly likelihood given the read data, allowing the comparison of assemblies generated from the 45 

same input data. Although RSEM-eval quantifies the relative contribution that each contig makes to an 46 

overall assembly score, it is focused on assembly-level quality and does not provide descriptive 47 

statistics about the quality of each contig within an assembly. 48 

We have developed TransRate, a method for evaluating the accuracy and completeness of de novo 49 

transcriptome assemblies that is focused on individual contigs. TransRate reports two key reference-50 

free statistics: the contig score and the assembly score. The contig score measures accuracy and 51 
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completeness of assembly for each individual contig by combining four independent components that 52 

are computed from the read evidence (Online Methods). These score components are designed to 53 

measure common assembly artefacts including hybrid assembly of gene families, transcript fusion 54 

(chimerism), spurious insertions, and structural abnormalities such as incompleteness, fragmentation 55 

and local mis-assembly (Figure 1). The assembly score measures accuracy and completeness of the 56 

whole assembly by combining the proportion of the read data captured with the individual contig 57 

scores. TransRate is free, open-source and available at http://hibberdlab.com/transrate. 58 

Results 59 

Problem definition and approach 60 
The aim of de novo transcriptome assembly is to accurately reconstruct the complete set of transcripts 61 

that are represented in the read data in the absence of a reference genome. There are several factors 62 

that negatively affect the accuracy of this process. These include error in the sequencing process, 63 

incomplete coverage of transcripts (due to insufficient sequencing depth), and real biological variability 64 

(such as variation in exon/intron retention, exon boundary usage, and nucleotide sequence between 65 

alleles). Errors can also originate from algorithmic simplifications such as representing the information 66 

contained in the reads as shorter words, and allowances such as allowing mis-matches that are used 67 

to reduce complexity of the assembly problem.  68 

TransRate proceeds by mapping the reads to the assembled contigs, assigning multi-mapping reads 69 

probabilistically to their contig of origin, analyzing the alignments, calculating contig level metrics, 70 

integrating these contig level metrics to provide a contig score, and then combining the completeness 71 

of the assembly with the score of each contig to produce an overall assembly score (Figure 2). 72 

Contig assessment criteria 73 
To calculate the TransRate contig score a correctly assembled contig is assumed to have the 74 

following four properties. 1) The identity of the nucleotides in the contig will accurately represent the 75 

nucleotides of the true transcript. 2) The number of nucleotides in the contig will accurately represent 76 

the number in the true transcript. 3) The order of the nucleotides in the contig will accurately represent 77 

the order in the true transcript. 4) The contig will represent a single transcript. We propose that each of 78 
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Figure 1 Common errors in de-novo transcriptome assembly, and how they can be detected 
using read mapping data. 

Family collapse occurs when multiple members of a gene family are assembled into a single hybrid contig. This 

error can be detected by measuring the extent that the nucleotides in the contig are supported by the mapped 

reads. Chimerism occurs when two or more transcripts (that may or may not be related) are concatenated 

together in a single contig during assembly. This can be detected when the expression levels of the transcripts 

differ, leading to a change-point in the read coverage along the contig. Unsupported insertions can be detected 

as bases in a contig that are unsupported by the read evidence. Incompleteness can be detected when reads or 

fragments align off the end of the contig. Fragmentation is detectable when read pairs bridge two contigs. Local 

misassembly encompasses various structural errors that can occur during assembly, such as inversions, usually 

as a result of assembler heuristics. These are detectable when both members of a read pairs align to single 

contig, but in manner inconsistent with the sequencing protocol. Redundancy occurs when a single transcript is 

represented by multiple overlapping contigs in an assembly. This is detectable when reads align to multiple 

contigs but the assignment process assigns them all to the contig that best represents the original transcript. 

 79 
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these four statements can approximated through analysis of the reads that map to the assembled 80 

contigs. 81 

𝑠(𝐶!"#) corresponds to property 1, this score measures the extent to which the nucleotides in the 82 

mapped reads are the same as those in the assembled contig. 𝑠(𝐶!"#) corresponds to property 2, this 83 

score measures the proportion of nucleotides in the contig that have zero coverage and thus have no 84 

supporting read data. 𝑠(𝐶!"!) corresponds to property 3, this score measures the extent to which the 85 

order of the bases in contig are correct by analyzing the pairing information in the mapped reads. 86 

𝑠(𝐶!"#) corresponds to property 4, this score measures the probability that the coverage depth of the 87 

transcript is univariate, i.e. that it represents an assembly of a single transcript and not a 88 

hybrid/chimeric assembly of multiple transcripts expressed at different expression levels. For a 89 

detailed description of these metrics and how they are calculated see the TransRate contig score 90 

section. 91 

To determine whether these four contig level metrics were independent, and thus captured different 92 

properties of each assembled contig, their performance was evaluated on a range of assemblies 93 

generated using different algorithms from multiple different species (Figure 3A). For each contig level 94 

metric the distributions of observed scores was broadly similar irrespective of species or assembly 95 

algorithm (Figure 3A). One notable exception to this observation is that the distribution of 𝑠(𝐶!"#) 96 

observed for rice and mouse contigs generated using SOAPdenovo-Trans was markedly different to 97 

that observed for Oases and Trinity for the same species. This reveals that the contigs generated 98 

using SOAPdenovo-Trans on this rice data contained fewer regions that had zero coverage after read 99 

mapping.  100 

 101 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2015. ; https://doi.org/10.1101/021626doi: bioRxiv preprint 

https://doi.org/10.1101/021626
http://creativecommons.org/licenses/by/4.0/


6 
 

Figure 2. The TransRate workflow. 

(1) TransRate takes as input one or more de novo 

transcriptome assemblies and the paired-end reads used to 

generate them. (2) The reads are aligned to the contigs. (3) 

Multi-mapping reads are assigned to contigs based on the 

posterior probability that each contig was the true origin. (4) 

The alignments are evaluated using four independent score 

components. (5) The four score components are integrated to 

generate the TransRate contig score. (6) The TransRate 

assembly score is calculated from analysis of all contig 

scores. 
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Figure 3. Distribution and interrelationship of contig score components. 

(A) Distribution of contig score components in ten different assemblies spanning four species and three different 

assemblers. 𝑠 𝐶!"#   is the fraction of nucleotides in a contig whose sequence identity agrees with the aligned 

reads. 𝑠 𝐶!"#  is the fraction of nucleotides in a contig that have one or more mapped reads. 𝑠 𝐶!"#  is the 

fraction of reads that map to the contig in the correct orientation. 𝑠(𝐶!"#) is the probability that the read coverage 

along the length of the contig is best explained by a single Dirichlet distribution, as opposed to two or more 

distributions. (B) The Spearman’s rank correlation coefficient between the contig score components, averaged 

across all species and assemblers. 

 103 

Visual inspection of the global behavior of the contig level metrics suggested that the four scores could 104 

be classified into two groups based on the density function of the observed score values. Both 𝑠(𝐶!"#) 105 

and 𝑠(𝐶!"#) produced approximately uniform distributions spanning the entire score range (Figure 3A), 106 

whereas 𝑠(𝐶!"#) and 𝑠(𝐶!"#) produced distributions whose density increased towards higher values 107 

(Figure 3A). To determine if these visually similar distributions were correlated, and thus measured 108 

features of the assembled contigs that were inter-dependent, we analysed the pairwise Spearman’s 109 

rank correlation between the score components. This revealed that the metrics were poorly correlated 110 

(Figure 3B) and thus each provided independent assessment of the assembled contigs to which they 111 

were applied. 112 
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Manual inspection of reference-based results for the 30 lowest-scoring contigs according to each 113 

score component was consistent with the individual score components accurately capturing their 114 

target properties (Supplementary file 2). 115 

Evaluation of the TransRate contig score 116 
As the contig-level metrics provided independent evaluation of assembled contigs, we sought to 117 

determine if the product of these metrics was informative of the accuracy of assembly. To assess this, 118 

4 million read pairs were simulated from each of the four test species (rice, mouse, human, and yeast, 119 

see Independence of score components) and assembled using SOAPdenovo-Trans with default 120 

settings. Simulated reads were used here so that the true set of transcripts was known and hence the 121 

accuracy of the assembled contigs could be assessed. The resultant assemblies were subjected to 122 

TransRate assessment, and the utility of the TransRate contig scores was assessed by comparing 123 

them to a conventional measure of contig accuracy calculated by alignment of the assembled contigs 124 

to the transcripts used to simulate the reads (see Calculation of contig accuracy). Comparison of these 125 

measures revealed that there was a strong monotonic relationship between contig accuracy and 126 

TransRate contig score (Figure 4A). Across all simulated datasets, the TransRate contig score 127 

exhibited a Spearman’s rank correlation with contig accuracy of ρ = 0.71 (Figure 4A, Supplemental file 128 

1). For comparison we also applied RSEM-eval to the same dataset (Figure 4B). Here, the contig 129 

impact score from RSEM-eval, which measures the relative contribution of every contig to the 130 

assembly score, also showed a positive correlation with contig accuracy, however the Spearman’s 131 

rank correlation with accuracy was lower than that observed for TransRate (ρ = 0.36, Supplemental 132 

file 1). Non-parametric correlation measures were used here to enable unbiased comparison of 133 

TransRate and RSEM-eval scores, as their score distributions differ in type, location, scale and shape.  134 

 135 
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Figure 4. TransRate contig score is related to assembly accuracy. 

Contigs from assemblies of simulated reads from four species (rice, mouse, yeast, and human) were evaluated 

using TransRate and RSEM-eval. Reciprocal best-BLAST against the true set of transcripts was used to 

determine the F-score, or reference-based accuracy, of the assembled contig. Each point is a contig in an 

assembly, with all four assemblies on the same plot. A) Comparison between TransRate contig score and contig 

F-score. B) Comparison between RSEM-eval contig impact score and contig F-score, with contig impact scores 

below 0 set to the smallest positive value in the data to enable plotting. 

 136 

Analysis of the interrelationship between contig scores and contig accuracy revealed that both 137 

assessment methods exhibited minimum value inflation (Figure 4A & B). Though some of these 138 

minimum value contigs comprise accurately assembled transcript sequences, they are assigned 139 

minimum score values as they fail to acquire mapped reads during the read-mapping process. This 140 

occurs due to the presence of contigs within the assembly that better represent the true contig than 141 

the contig in question and thus preferentially obtain all of the mapped reads during the probabilistic 142 

read assignment stage. This phenomenon commonly occurs when the contig in question is a substring 143 

of longer contig in the assembly. As these contigs are redundant and they would be quantified as “not 144 

expressed” in downstream expression analyses of the assemblies, both TransRate and RSEM-eval 145 

are justified in the assignment of minimum value scores to these contigs.   146 
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Application of TransRate for relative evaluation of de novo assemblies from the same 147 
read data 148 
Given that the TransRate contig score is strongly related to contig accuracy, we sought to develop an 149 

assembly-level score that summarised the information captured by assessment the individual contigs 150 

(Figure 4A). Here, the geometric mean of all contig scores was selected such that each contig 151 

contributed equally to the final assembly assessment. Analysis of the TransRate contig score 152 

distributions for assemblies generated using different assembly algorithms from different species 153 

revealed that most assemblers produced contigs that obtained a wide range of scores (Figure 5A). 154 

Some distributions also appeared to be multi-modal with overlapping populations of low and high 155 

scoring contigs (Figure 5A).  156 

Comparison of the geometric mean of the contig scores revealed that on different datasets, different 157 

assemblers tended to produce more accurate assemblies (Figure 5A). On average, Oases produced 158 

the highest mean contig scores for mouse and rice, while Trinity produced the highest mean contig 159 

scores for human and yeast (Figure 5B). The percentage of the input that could be mapped to these 160 

assemblies ranged from 65-85% and thus significant amounts of read data failed to be assembled by 161 

each method (Figure 5C). To provide a single assembly assessment score that combined the 162 

proportion of read data contained within the assembly and the mean accuracy of the constituent 163 

contigs we took the product of the geometric mean contig score and the proportion of reads mapping 164 

to the assembly (Figure 5D). This assembly score places equal importance on the accuracy of the 165 

assembled contigs and the proportion of the input read data that is captured by the de novo assembly. 166 

In an ideal scenario where all of the input reads map back to the assembled contigs with no 167 

disagreement between the reads and the assembly the assembly score will be 1. Errors in the 168 

sequencing or assembly process that cause reads to be omitted form the assembly or reads to 169 

disagree with the assembled contigs will cause the assembly score to tend towards 0.   170 
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Figure 5. Calculation of TransRate assembly scores. 

A) Distribution of TransRate contig scores for the 10 representative assemblies from real data. B) Geometric 

mean of TransRate contig scores for all assemblies. C) Proportion of reads that map to each assembly. D) Final 

TransRate assembly scores for the 10 representative assemblies. E) The proportion of reference transcripts that 

are best assembled by individual assembly methods. F) The number of reference transcripts (identified by 

reciprocal best BLAST) that are assembled by each assembler. 

 171 
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Further comparison of de novo assemblies using BLAST and TransRate 172 
To demonstrate additional ways in which TransRate can be combined with BLAST based assessment 173 

of de novo transcriptome assemblies, the de novo assemblies was annotated using reciprocal best 174 

BLAST (bi-directional best BLAST hit) against the appropriate Ensembl reference dataset for that 175 

species. The TransRate scores for these contigs were compared and the proportion of transcripts that 176 

had the highest TransRate score for each assembly was recorded (Figure 5E). No one method 177 

consistently outperformed the others, rather the different assemblers produced the best assembly for 178 

>25% of transcripts (Figure 5E). Analysis of the total number of reference transcripts that were 179 

assembled by the different methods revealed that, though there was significant agreement between 180 

the methods, each method uniquely assembled a large number of bona fide transcripts not assembled 181 

by the other methods (Figure 5F). Taken together these analyses lend support to the idea that 182 

combining contigs from multiple assembly methods is an effective way to increase the completeness 183 

of a de novo assembled transcriptome.     184 

Filtration of contigs using TransRate contig scores 185 
As shown in Figure 4A, 4B & 5A, many contigs within a given assembly can achieve low or minimum 186 

value scores and thus users may desire to remove them from the assembly. While TransRate allows 187 

the user to specify any contig score cut-off between 0 and 1 for filtration of assembled contigs, it also 188 

provides an alternative option whereby a specific contig score cut-off can be learned for any given 189 

assembly. To do this TransRate uses a global optimisation method to find the contig score cut-off 190 

value such that the TransRate assembly score function is maximised (Supplemental figure 1). This 191 

automated cut-off method is consistent with the problem definition and overall aim of TransRate (to 192 

assess the accuracy and completeness of a de novo assembled transcriptome using only the input 193 

reads) as it automatically selects the subset of contigs that maximises both accuracy and 194 

completeness.  195 
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Figure 6. Application of TransRate to 155 
published assemblies from the NCBI 
Transcriptome Shotgun Archive. 
155 assemblies from the Transcriptome 

Shotgun Archive were analysed using transrate. 

The quality of the reads used to generate the 

assemblies were also analysed using FastQC. 

A) Cumulative distribution of TransRate raw and 

optimsed assembly scores for each of the 155 

assemblies. B) Comparison between raw and 

optimised assembly score. C) Distribution of 

TransRate optimised assembly scores 

partitioned by taxonomic group. C) Distribution 

of TransRate optimised assembly scores 

partitioned by assembly method. (E-J) 

TransRate optimsied assembly scores 

compared to various summary statistics of the 

input reads: E) read length, F) read GC%, G) 

mean read per-base Phred score, H) percent of 

reads that were PCR duplicates, I) number of 

read pairs, and J) read bases per assembled 

base. 
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 196 

Comparative analysis of 155 published assemblies provides a reference for calibration 197 
and relative assessment of assembly quality 198 
To provide a reference distribution of TransRate assembly scores that end-users can use to assess 199 

the relative merit of their own assemblies, TransRate was applied to a set of 155 published de novo 200 

assembled transcriptomes (Supplemental File 3). All assembled transcriptomes were downloaded 201 

from the NCBI Transcriptome Shotgun Archive (http://www.ncbi.nlm.nih.gov/genbank/tsa) and were 202 

chosen for analysis if they met the following criteria: 1) The assembly program was listed; 2) The 203 

reads were Illumina paired-end reads; 3) The published assembly contained at least 5,000 contigs. 204 

TransRate assembly scores for this set of published assemblies ranged tom 0.001 to 0.52 (Figure 6A, 205 

red line). Each assembly was also subject to automated assembly score optimisation producing 206 

optimised assembly scores that ranged from 0.001 to 0.6 (Figure 6A, teal line). Although some 207 

assembly scores showed little or no change following removal of low scoring transcripts, most 208 

improved when contigs below the learned cut-off were discarded (Figure 6B). 209 

It has been suggested that the transcriptomes from certain groups of organisms may be more difficult 210 

to assemble than others (Martin and Wang, 2011). To investigate whether TransRate assembly scores 211 

varied for different taxa the results were analyzed according to their major phylogenetic groups (Figure 212 

6C). For clades with more than 10 representative assemblies no association between assembly 213 

quality and taxonomic group was found (Figure 6C). 214 

To determine if any assembler consistently produced higher TransRate assembly scores on end-user 215 

datasets, the performance of methods that had at least 10 assemblies was compared (Figure 6D). In 216 

this test Trinity, Oases, and SOAPdenovo-Trans all produced assemblies that spanned similar score 217 

ranges, with the highest mean score exhibited by Trinity (Figure 6D). In contrast, Newbler, Agalma 218 

and Trans-Abyss assemblies produced lower TransRate scores (Figure 6D). However, caution should 219 

be exercised when interpreting these results as the user-modifiable settings and post-assembly 220 

processing steps were not reported for these published assemblies. Thus the extent to which the 221 
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TransRate assembly scores were influenced by changes in user-modifiable assembly parameters or 222 

post-assembly processing is unknown.  223 

Given that neither assembly method nor taxonomic group produced a major effect on the TransRate 224 

score of an assembly we sought to determine whether the quality of the input read data was 225 

responsible for some of the variation in TransRate assembly scores. The read data for each assembly 226 

was analyzed using FastQC (Supplemental file 2) and the resulting read-level metrics compared to the 227 

TransRate assembly scores of the assemblies generated using those reads. This revealed that neither 228 

the read length nor the percentage GC of the read dataset exhibited any correlation with TransRate 229 

assembly score (Figure 6E & F). However, significant associations were observed for both read quality 230 

(r2 = 0.27, Figure 6G) and the level of read-duplication in the dataset (r2 = 0.1, Figure 6H). In Illumina 231 

sequencing, low read qualities are predominantly caused by errors in the sequencing process, 232 

common sources include over-clustering of the flow cell and phasing. In contrast, increases in read-233 

duplication is caused by errors in the sample preparation stage. It occurs during the PCR amplification 234 

stage of the read library preparation and is generally caused by either conducting the library 235 

preparation from too little starting material, or by having a large variance in the fragment size such that 236 

smaller fragments become over-represented during the limited cycle PCR. While there is little 237 

correlation between the number of sequenced reads and the TransRate score of the assembled 238 

transcriptome (Figure 6I) there is a clear association between the relative coverage implied by those 239 

reads and the TransRate score (r2 = 0.16, Figure 6J). In summary, the quality of the sequence reads, 240 

the number of reads per-gene and the quality of the input cDNA library (in order of relative 241 

contribution) explain 43% of the variance in de novo assembly quality. Thus, the quality of the input 242 

data is more important in determining the quality of a de novo assembly than the choice of assembly 243 

method that is used.   244 

Discussion 245 
Here we present TransRate a novel method for reference free assessment and filtering of de novo 246 

assembled transcriptomes. Our method is focused on a clear definition of an optimal de novo 247 
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assembled transcriptome, that it should be a complete and accurate representation of the transcripts 248 

encompassed in the raw read data. TransRate avoids conflating assessment of de novo assembly 249 

quality with other criteria (such as coverage of expected reference transcript subsets) that are not 250 

equivalent to correct or complete assembly of the input reads. As the majority of published de novo 251 

assembled transcriptomes use Illumina paired-end sequencing, our analysis of the efficacy of 252 

TransRate is focused on this data type. However, the method is suitable for the analysis of other types 253 

of sequencing and thus is not restricted to use in the analysis of Illumina data.  254 

TransRate is specifically designed to provide detailed insight into the quality of any de novo 255 

assembled transcriptome and each of its constituent contigs such that comparative analysis between 256 

assembly methods and post-assembly filtering of good and bad contigs can be performed. As 257 

TransRate does not use reference datasets in the evaluation of assemblies it is equally suitable for the 258 

assessment of assemblies of all types of RNA, including long non-coding RNA, mRNA, ribosomal 259 

RNA and mixed RNA samples. Moreover, given multiple assemblies generated using the same input 260 

reads, TransRate can also be used to determine the assembly that best represents the input read 261 

data. Thus TransRate could be used to help improve the performance of multiple different de novo 262 

transcriptome assembly algorithms. 263 

To help end users to interpret the TransRate scores that they obtain for their own assemblies and 264 

place them in context of previously published assemblies, we provide a meta-analysis of 155 265 

published de novo assemblies. Here, a user generated de novo assembly with a TransRate score of 266 

0.22 (optimised score of 0.35) would be better than 50% of published de novo assembled 267 

transcriptomes that have been deposited in the NCBI TSA. Through detailed analysis of these 155 268 

published assemblies we reveal that the quality of the input read data is the major factor determining 269 

the quality of any de novo transcriptome assembly, explaining more of the variance in quality between 270 

assemblies than quantity of read data or assembly method that is used.  271 

 272 
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Materials and Methods 273 

Algorithm overview 274 
TransRate is a reference-free qualitative assessment tool for the analysis of de novo transcriptome 275 

assemblies. TransRate requires one or more transcriptome assemblies and the reads used to 276 

generate those assemblies. TransRate aligns the reads to the assembly, processes those read 277 

alignments, and calculates contig scores using the full set of processed read alignments. TransRate 278 

classifies contigs into those that are well assembled and those that are poorly assembled, by learning 279 

a score cutoff from the data that maximises the overall assembly score.  280 

Implementation 281 
TransRate is written in Ruby and C++, and makes use of the BioRuby (Goto et al., 2010) and 282 

Bamtools (Barnett et al., 2011) libraries. The source code is available at 283 

http://github.com/Blahah/transrate and is released under the open source MIT license. Binary 284 

downloads and full documentation are available at http://hibberdlab.com/transrate. The software is 285 

operated via a command line interface and can be used on OSX and Linux. TransRate can also be 286 

used programmatically as a Ruby gem. 287 

Read alignment 288 
Reads are aligned to a given assembly using SNAP v1.0.0 (Zaharia et al., 2011). Alignments are 289 

reported up to a maximum edit distance of 30. Up to 10 multiple alignments are reported per read 290 

where available (-­‐omax	
  10), up to a maximum edit distance of 5 from the best-scoring alignment (-­‐om	
  291 

5). Exploration within an edit distance of 5 from each alignment is allowed for the calculation of MAPQ 292 

scores (-­‐D	
  5). BAM-format alignments produced by SNAP are processed by Salmon v0.4 (Patro et 293 

al., 2014) so that multi-mapping reads are assigned to a single contig based on the posterior 294 

probability that the reads come from that contig. 295 

TransRate contig scores 296 
TransRate outputs scores for every contig. Here, an assembly consists of a set of contigs 𝐶 derived 297 

from a set of reads 𝑅. Reads are aligned and assigned to contigs such that 𝑅! is the set of reads 298 

assigned to 𝐶!. We propose that a correctly assembled contig derived from a de novo transcriptome 299 

assembly will have the following four intuitive properties. 300 
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1. The identity of the nucleotides in the contig will accurately represent the nucleotides of 301 

the true transcript 𝑠(𝐶!"#). This score measures the extent to which the nucleotides in the 302 

mapped reads are the same as those in the assembled contig. If the mapped reads do not 303 

support the nucleotides of the contig then this likely because: A) The non-supportive reads should 304 

map to a different contig or a contig that is not represented in the assembly (a similar gene family 305 

variant, alternative allele, or other similarly encoded gene), or B) the assembled sequence is 306 

incorrect. In the case of the former, a missing contig (i.e. one that is not assembled) will 307 

negatively affect the score of the contig to which its reads incorrectly map. Though the contig to 308 

which they map may be correctly assembled, the negative score for this contig can be justified as 309 

the incorrectly mapped reads will render the abundance estimate of the assembled contig invalid. 310 

In the case of the latter, disagreement between the reads and the contig must be due to mis-311 

assembly. To ensure that stochastic read errors that result in disagreement between a read and a 312 

contig do not affect the overall score for that contig support for an alternative nucleotide 313 

sequence needs to be provided by multiple reads, (see below).  314 

2. The number of nucleotides in the contig will accurately represent the number in the true 315 

transcript 𝑠(𝐶!"#). This score measures the proportion of nucleotides in the contig that have zero 316 

coverage and thus have no supporting read data. If there are nucleotides in the contig that are 317 

not covered by any reads (regardless of the agreement between the reads and the sequence of 318 

the contig) then this should negatively impact on the contig score. 319 

3. The order of the nucleotides in the contig will accurately represent the order in the true 320 

transcript 𝑠(𝐶!"#). This score measures the extent to which the order of the bases in contig are 321 

correct by analyzing the pairing information in the mapped reads. Here, if the orientation of the 322 

mapped reads does not conform to an expected mapping estimated from an analysis of a sub-323 

sample of mapped read pairs then these incorrectly mapping reads will negatively affect the 324 

contig score. Similarly, if the contig could have been extended, i.e. there are read-pairs that map 325 

such that one read is present near a terminus of the contig and its pair is not mapped and would 326 
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be expected to map beyond the scope of the contig, then such cases indicate that the contig 327 

does not use all of the available reads and thus is incompletely assembled. 328 

4. The contig will represent a single transcript 𝑠(𝐶!"#). This score measures the probability that 329 

the coverage depth of the transcript is univariate, i.e. that it represents an assembly of a single 330 

transcript and not a hybrid/chimeric assembly of multiple transcripts expressed at different 331 

expression levels. Here the per-nucleotide coverage depth of the contig must be best modelled 332 

by a single Dirichlet distribution (described below). If the contig is better modelled by the product 333 

of two or more Dirichlet distributions then this indicates that two or more contigs with different 334 

transcript abundances have been erroneously assembled together.    335 

The TransRate contig score is the product of the scores for each of these properties using the aligned 336 

reads as evidence. These four properties is evaluated as follows.  337 

Calculation of 𝒔(𝑪𝒏𝒖𝒄)  338 
The alignment edit distance is used to quantify the extent to which the contig sequence is correct. The 339 

alignment edit distance is the number of changes that must be made to the sequence of a read in 340 

order for it to perfectly match the contig sequence. Here the edit distance of an aligned read 𝑟!" ∈ 𝑅! is 341 

denoted as 𝑒!!" and the set of reads that cover nucleotide 𝑘 (𝑘 ∈ [1, 𝑛]) as 𝜚𝑘. The maximum possible 342 

edit distance for an alignment is limited by the read alignment algorithm (described in the Read 343 

alignment section above) and is denoted as 𝑒. The support for the contig provided by the reads is then 344 

evaluated as 1 −
!!!"
!

 for each 𝑟! ∈ 𝜚𝑘, and the mean of all support values is used to calculate 𝑠(𝐶!"#). 345 

Calculation of 𝒔(𝑪𝒄𝒐𝒗)  346 
This score is evaluated as the fraction of nucleotides in the contig that receive at least one mapped 347 

read irrespective of the agreement between the read and the contig.  348 

Calculation of 𝒔(𝑪𝒐𝒓𝒅)  349 
The pairing information of the mapped reads is used to evaluate this score. To determine the 350 

parameters of the read library preparation a randomly selected sub-sample of 1% of all mapped read 351 

pairs are analyzed. From these alignments the orientation of the paired end reads is determined and 352 

the mean and standard deviation of the fragment size is inferred. All read pair alignments are then 353 
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classified according to whether they are plausible given the estimated parameters of the library 354 

preparation and assuming that the assembled contig is correct. A read pair is considered correct if the 355 

following criteria are met: (a) both reads in the pair align to the same contig, (b) the relative orientation 356 

of the reads in the pair is consistent with the inferred library preparation parameters, (c) the relative 357 

position of the reads is consistent with the mean and standard deviation of the inferred fragment size. 358 

𝑠(𝐶!"#) is then evaluated as the proportion of all mapped read pairs that are correct. 359 

Calculation of 𝒔(𝑪𝒔𝒆𝒈)  360 
The per-nucleotide read coverage data is used to evaluate this score. To evaluate the probability that 361 

the contig originates from a single transcript (i.e. it is not chimeric) a Bayesian segmentation analysis 362 

of the per-nucleotide coverage depth is performed. For a correctly assembled contig it is assumed that 363 

the distribution of per-nucleotide coverage values in that contig is best described by a single Dirichlet 364 

distribution. i.e. all nucleotides in the same transcript should have the same expression level and thus 365 

should be best modelled as a stochastic sample from a single distribution. In contrast, a contig that is 366 

a chimera derived from concatenation of two or more transcripts will have per-nucleotide coverage 367 

values that are best described by two or more different Dirichlet distributions. The probability that the 368 

distribution of per-nucleotide read coverage values comes from a single Dirichlet distribution is 369 

evaluated using a Bayesian segmentation algorithm previously developed for analysis of changes in 370 

nucleotide composition (Liu and Lawrence, 1999). To facilitate the use of this method, the per-371 

nucleotide coverage along the contig is encoded as a sequence of symbols in an unordered alphabet 372 

by taking log2 of the read depth rounded to the nearest integer. As the probability will be a value 373 

between 0 and 1, this probability is used directly as 𝑠(𝐶!"#). 374 

TransRate assembly score 375 
The aim of the TransRate assembly score is to provide insight into the accuracy and completeness of 376 

any given assembly. Thus the assembly score weights equally a summary statistic of the TransRate 377 

contig scores and the proportion of the input reads that are contained within this assembly. We note 378 

here that alternative methods for summarizing contig scores (such as weighting contig scores by their 379 

expression level) would produce different results. However, such schemes would not be consistent 380 
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with the problem definition and aim of TransRate: to assess the accuracy and completeness of a de 381 

novo assembled transcriptome using only the input reads. This score assumes that an ideal assembly 382 

will contain a set of contigs that represent unique and complete transcripts to which all of the reads 383 

used to assemble those transcripts can be mapped. The TransRate assembly score (T) is evaluated 384 

as the geometric mean of the mean contig score and the proportion of read pairs that map to the 385 

assembly such that 386 

𝑇 = 𝑠(𝐶)
!

!!!

!
!

𝑅!"#$% 

Where 387 

𝑠 𝐶 =   𝑠(𝐶!"#   )𝑠(𝐶!!"  )𝑠(𝐶!"#)𝑠(𝐶!"#) 

Analysis of assemblies generated from real reads 388 
To demonstrate the utility TransRate contig and assembly scores using real data, TransRate was 389 

applied to publicly available benchmark assemblies from two previous analyses (Davidson and 390 

Oshlack, 2014; Xie et al., 2014). One set comprised different assemblies generated for rice (Oryza 391 

sativa) and mouse (Mus musculus) using the Oases, Trinity, and SOAPdenovo-Trans assemblers (Xie 392 

et al., 2014). The other set comprised assemblies for human (Homo sapiens) and yeast 393 

(Saccharomyces cerevisiae) that had been assembled with Oases and Trinity (Davidson and Oshlack, 394 

2014). These assemblies were chosen as they have previously been independently used in 395 

benchmark comparisons and each of the species has a completed annotated reference genome 396 

available. In all cases, TransRate was run with the published reads and the published assembly as 397 

input.  398 

Independence of score components 399 
Correlation between the contig score components was measured for the assemblies from real data. 400 

To prevent larger assemblies from biasing the results, 5,000 contigs were sampled at random from 401 

each assembly. These contigs were used to calculate a Spearman’s rank correlation coefficient using 402 
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R version 3.1.1 (R Core Team, 2014). The correlation between any two score components was taken 403 

as the mean of the correlation across all datasets. 404 

Identification of reconstructed reference transcripts 405 
The full set of coding and non-coding transcripts for each species were downloaded from Ensembl 406 

Genomes version 25 (ftp://ftp.ensemblgenomes.org/pub/release-25/). Assembled contigs were then 407 

identified by BLAST searching the reference dataset for the corresponding species using bidirectional 408 

blastn local alignment with an e-value cutoff of 10-5 (BLAST+ version 2.2.29 (Camacho et al., 2009)). 409 

Only reciprocal best hits were retained for further analysis.  410 

Assembly from simulated read data 411 
For each species, a total of 10 million mRNA molecules were simulated from the full set of annotated 412 

mRNAs from the Ensembl reference with exponentially distributed expression values using the flux 413 

simulator v1.2.1 (Griebel et al., 2012). mRNA molecules were uniform-randomly fragmented and then 414 

size-selected to a mean of 400 nucleotides and standard deviation of 50 nucleotides. From the 415 

resulting fragments, 4 million pairs of 100bp reads were simulated using the default error profile 416 

included in flux-simulator. An assembly was generated from these simulated reads using 417 

SOAPdenovo-Trans with default parameters. 418 

Calculation of contig accuracy 419 
Accuracy was calculated by comparing contigs assembled from simulated data to the set of transcripts 420 

from which the read data were simulated. Reciprocal best BLAST hits were identified and the 421 

accuracy of each contig assembled from simulated read data was evaluated as the contig F-score 422 

where 423 

𝐶𝑜𝑛𝑡𝑖𝑔  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠  𝑖𝑛  𝑐𝑜𝑛𝑡𝑖𝑔

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠  𝑖𝑛  𝑐𝑜𝑛𝑡𝑖𝑔
 

𝐶𝑜𝑛𝑡𝑖𝑔  𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠  𝑖𝑛  𝑐𝑜𝑛𝑡𝑖𝑔

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠  𝑖𝑛  𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
 

𝐶𝑜𝑛𝑡𝑖𝑔  𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2  
(𝑐𝑜𝑛𝑡𝑖𝑔  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑐𝑜𝑛𝑡𝑖𝑔  𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑐𝑜𝑛𝑡𝑖𝑔  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑐𝑜𝑛𝑡𝑖𝑔  𝑟𝑒𝑐𝑎𝑙𝑙)
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Spearman’s rank correlation coefficient between the contig F-score and the TransRate contig score 424 

was calculated using R version 3.1.1. The same contigs were also subject to analysis using RSEM-425 

eval and the relationship between contig impact score and contig F-score analyzed using the same 426 

method. 427 

Constructing a benchmark dataset of TransRate scores 428 
A survey of the range of assembly scores for published de novo transcriptome assemblies was 429 

conducted by analyzing a sub-set of transcriptome assemblies from the Transcriptome Shotgun 430 

Archive (http://www.ncbi.nlm.nih.gov/genbank/tsa). De novo assembled transcriptomes were used in 431 

this analysis only if paired-end reads were provided, the assembler and species were named in the 432 

metadata, and the assembly contained at least 5,000 contigs (TransRate has no minimum or 433 

maximum contig requirements but a minimum number of 5,000 was imposed to ensure sufficient raw 434 

data was available for analysis). For each of these test datasets, the assembly and reads were 435 

downloaded. TransRate was run on all assemblies and FastQC version 2.3 (Andrews, 2010) was used 436 

to evaluate the quality of the read datasets. 437 

Analysis implementation 438 
The experimental and analysis code, implemented in Ruby and R, are available under an MIT license 439 

at https://github.com/Blahah/transrate-paper. 440 
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Supplemental file legends 498 
Supplemental file 1. CSV. Spearman’s rank correlation between the contig F-score, the TransRate 499 

contig score, and the RSEM-eval contig impact score, for all contigs in simulated assemblies. 500 

Supplemental file 2. PDF. Visualisation of alignment evidence for lowest scoring 30 contigs 501 

according to each score component in Trinity assembly of yeast. 502 

Supplemental file 2. CSV. TransRate results and read analysis summary statistics for Transcriptome 503 

Shotgun Database assemblies. 504 

Supplemental Figure 1. PNG. Example of the global optimisation method used to learn the 505 

automated contig score cut-off. Here, the optimal cut-off is the value that maximises the TransRate 506 

assembly score. 507 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2015. ; https://doi.org/10.1101/021626doi: bioRxiv preprint 

https://doi.org/10.1101/021626
http://creativecommons.org/licenses/by/4.0/

