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Existing methods for quantifying transcript abundance require a fundamental

compromise: either use high quality read alignments and experiment-specific models or

sacrifice them for speed. We introduce Salmon, a quantification method that overcomes this

restriction by combining a novel ‘lightweight’ alignment procedure with a streaming

parallel inference algorithm and a feature-rich bias model. These innovations yield both

exceptional accuracy and order-of-magnitude speed benefits over traditional

alignment-based methods.

Estimating transcript abundance across cell types, species, and conditions is a fundamental

task in genomics. For example, these estimates are used for the classification of diseases and their

subtypes [1], for understanding expression changes during development [2], and tracking the

progression of cancer [3]. Efficient quantification of transcript abundance from RNA-seq data is

an especially pressing problem due to the exponentially increasing number of experiments and the
∗rob.patro@cs.stonybrook.edu
†geet@cs.cmu.edu
‡carlk@cs.cmu.edu

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2015. ; https://doi.org/10.1101/021592doi: bioRxiv preprint 

rob.patro@cs.stonybrook.edu
geet@cs.cmu.edu
carlk@cs.cmu.edu
https://doi.org/10.1101/021592
http://creativecommons.org/licenses/by-nc-nd/4.0/


growing adoption of expression data for medical diagnosis [4]. However, various methods that

address this problem achieve accurate results at the cost of requiring significant computational

resources and do not scale well with the rate at which data is produced [5]. The recently

developed quantification tool Sailfish [6] achieves an order of magnitude speed improvement over

previous approaches, but Sailfish can sometimes produce slightly less accurate estimates for

paired-end data or for stranded protocols and does not take advantage of high quality alignment

information and experiment-specific models.

We introduce a quantification procedure, called Salmon (Supplementary Fig. 1), that

achieves best-in-class accuracy, takes advantage of high quality alignment information and

experiment-specific models and provides the same order-of-magnitude speed benefits as Sailfish.

Using synthetic data from both the RSEM simulator [7] and the Flux Simulator [8] as well as

experimental quantitative PCR data [9], we show that Salmon generally outperforms Sailfish and

eXpress [10] with respect to accuracy (Fig. 1a-b,e; Supplementary Tables 1&2) and is also

faster than Sailfish (Fig. 1c). The transcript abundance estimation problem is particularly difficult

for genes with many isoforms since reads derived from these genes can map to many more

transcripts, and we find that Salmon is also generally more accurate in this case (Fig. 1d). Salmon

is designed to run in parallel so that the procedure scales better with the number of reads in an

experiment. Salmon can quantify abundance either via a lightweight alignment procedure

(Online methods, Lightweight alignment and Supplementary Fig. 2), or using pre-computed

alignments provided in SAM or BAM format — we find that the quantification accuracy is robust to

this choice of input (Supplementary Fig. 3). Salmon is also typically more accurate than a recent

unpublished procedure Kallisto (Supplementary Figs. 4&5, Supplementary Table 1).

An innovation contributing to Salmon’s speed and accuracy is its novel lightweight

alignment procedure. Salmon attempts to find a chain of super-maximal exact matches (SMEMs)

and maximal exact matches (MEMs) to the transcriptome that cover a read. A maximal exact

match is a substring that is shared by the read and reference transcript that cannot be extended in

either direction without introducing a mismatch, and a super-maximal exact match [11] is a MEM
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that is not contained within any other MEM on the query. Salmon’s lightweight alignment

procedure finds co-linear chains of SMEMs. The SMEMS in these chains must be approximately

consistent in the sense that the sizes of the gaps between SMEMs in the read and the transcript

need not be identical (Online methods, Lightweight alignment and Supplementary Fig. 2).

Using a Burrows-Wheeler-based index, this approach allows for the computation of much more

accurate alignments than using k-mers at a speed much faster than full alignment (Fig. 1c). This

approach overcomes potential inaccuracies of using k-mers as in Sailfish while providing some of

the benefits of a full alignment. If errors or mutations are uniformly distributed in a read, very few

k-mers could map to a transcript even if the read and the transcript share a high-quality alignment.

Salmon’s improvement in overall accuracy may be due in large part to lightweight alignment

since a modification of Sailfish that incorporates this type of efficient alignment starts to approach

Salmon’s accuracy (Supplementary Figs. 6&7, Supplementary Table 1). The primary insight

behind lightweight alignment is that achieving accurate quantification of transcript abundance

from RNA-seq data does not require knowing the optimal alignment between the sequenced

fragment and the transcript for every potential locus of origin. Rather, it is sufficient to identify

the transcripts and positions within them that match the fragments reasonably well.

Salmon also incorporates a rich model of experimental biases, which allows it to account for

the affects of experiment-specific parameters and biases including non-uniform read mapping at

transcript start sites, strand-specific protocols, and the fragment length distribution. These biases

are automatically learned in the online phase of the algorithm, and are encoded in a

fragment-transcript agreement model (Online methods, Fragment-transcript agreement

model). In this model, fragment-transcript assignment scores are defined as proportional to

(1) the chance of observing a fragment length given a particular transcript/isoform of a gene

(2) the chance that a fragment starts at a particular position on the transcript, (3) the concordance

of the fragment aligning with a user-defined sequencing library format (e.g. a paired ended,

stranded protocol), and (4) the chance that the fragment came from the transcript based on a score

obtained from the the lightweight alignment procedure. Salmon additionally incorporates these

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2015. ; https://doi.org/10.1101/021592doi: bioRxiv preprint 

https://doi.org/10.1101/021592
http://creativecommons.org/licenses/by-nc-nd/4.0/


biases and experimental parameters by maintaining ‘rich equivalence classes’ of fragments

(Online methods, Equivalence classes) that contain the information in these models and speed

up the process of estimating transcript abundances.

Salmon’s two-phase parallel inference procedure (Online methods, Online phase and

Offline phase; Illustration of method in Supplementary Fig. 1) allows it to scale well with the

number of reads in an experiment and make use of large multicore machines that are already

commonly used to run bioinformatics pipelines. For example, Salmon can quantify a data set of

approximately 200 million reads in approximately 5 minutes using 64 cores. Unlike the Sailfish

k-mer-based index, the parameters for lightweight alignment (e.g. the fraction of the read required

to be covered, or the minimum length MEMs considered in chains) can be modified without

re-building the index, allowing for rapid experimentation of quantification parameters. As an

alternative to computing lightweight alignments, Salmon’s design also allows the user to provide

alignments that have already been computed and uses an alternative alignment scoring model in

this case (Online methods, Alignment model).

The insight behind Salmon’s lightweight alignment approach and sophisticated inference

model allows for the use of more sequence information in the read and produces some of the most

accurate expression estimates to date. Salmon’s ability to compute high quality estimates of

transcript abundances at the previously prohibitive scale of thousands of experiments will also

enable individual expression experiments to be interpreted in the context of many rapidly growing

sequence expression databases. This will allow for a more comprehensive comparison of the

similarity of experiments across large populations of individuals across different environmental

conditions and cell types.
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Figure 1: (A) Distribution of Spearman correlations between estimated and ground truth expression
for Sailfish, eXpress, and two variants of Salmon across 20 replicates using RSEM-sim simulated
data. Salmon uses lightweight alignment and SalmonAln uses read alignments from the STAR
aligner (SalmonAln). (B) Spearman correlations between estimated and ground truth expression
for Sailfish, eXpress, Salmon, and SalmonAln using Fluxsim synthetic data on both Human and
Zea mays. (C) Running time of Sailfish, Salmon, the STAR Aligner, and SalmonAln. (D) Ac-
curacy of Sailfish, Salmon, and eXpress for sets of human transcripts grouped by the number of
transcripts associated with the gene. Accuracy is computed using the mean absolute relative differ-
ence (MARD) between the estimated expression and ground truth expression (Online methods,
Validation) and is computed on Fluxsim data. We omit single isoform genes, as the methods are
near indistinguishable in this category, and genes with 0 truly-expressed isoforms to mitigate the
effect of the large number of non-expressed genes on the aggregate measurement. Each bar in the
plot represents the distribution of MARDs for all transcripts coming from genes with the given
range of isoforms. We require that each group (except, possibly, the last) have at least 1, 000 ex-
amples. The line at the center of the bar denotes the median of the distribution, and the boxes
themselves extend from the first to the third quartiles of each distribution. (E) Correlation between
qPCR and Salmon estimates of transcript abundance. A scatter plot of expression ranks for Salmon
and qPCR is shown to the left and Spearman correlations qPCR data was obtained from a recent
study by the SEQC consortium.

.
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Online methods

Objectives and models for abundance estimation

Assume that, for a particular sequencing experiment, the underlying true transcriptome is given as

T = {(t1, . . . , tM) , (c1, . . . , cM)}, where each ti is the nucleotide sequence of some transcript (an

isoform of some gene) and each ci is the corresponding number of copies of ti in the sample.

Further, we denote by ` (ti) the length of transcript ti.

The model of the sequencing experiment dictates that, in the absence of experimental bias,

library fragments are sampled proportional to ci · `(ti). That is, the probability of drawing a

sequencing fragment from some position on a particular transcript ti is proportional the total

fraction of all nucleotides in the sample that originate from a copy of ti. This quantity is called the

nucleotide fraction [12]:

ηi =
ci · `(ti)∑M
j=1 cj · `(tj)

.

The true nucleotide fractions, η, though not directly observable, would provide us with a

way to measure the true relative abundance of each transcript in our sample. Specifically, if we

normalize the ηi by the transcript length ` (ti), we obtain a quantity

τi =

ηi
`(ti)∑M
j=1

ηj
`(tj)

,

called the transcript fraction [12]. These τ can be used to immediately compute common

measures of relative transcript abundance like transcripts per million (TPM). The TPM measure

for a particular transcript is the number of copies of this transcript we would expect to exist in a

collection of one million transcripts, assuming this collection had exactly same distribution of

abundances as our sample. The TPM for transcript ti, is given by TPMi = τi106. Of course, in a

real sequencing experiment, there are numerous biases, confounding factors, and sampling effects

that may alter the above assumptions, and accounting for them is important for making inference

accurate, which we will discuss below.
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Given a collection of observations (raw sequenced fragments or alignments thereof), and a

model similar to the one described above, there are numerous approaches to inferring the relative

abundance of the transcripts in the target transcriptome, T . Here we describe two basic inference

schemes, both available in Salmon, which are commonly used to perform inference in models

similar to the one defined above.

Maximum likelihood objective

The first scheme takes a maximum likelihood approach to solving for the quantities of interest.

Specifically, if we assume that all fragments are generated independently and we are given a

vector of known nucleotide fractions η, a binary matrix of transcript-fragment assignment Z

where zji = 1 if fragment j is derived from transcript i, and the set of transcripts T , we can write

the probability of observing a set of sequenced fragments F as:

Pr {F | η,Z, T } =
N∏
j=1

Pr {fj | η,Z, T } =
N∏
j=1

M∑
i=1

Pr {ti | η} · Pr {fj | ti, zji = 1} . (1)

Pr {fj | ti, zji = 1} is the probability of generating fragment j given that it came from transcript

i. We will use Pr {fj | ti} as shorthand for Pr {fj | ti, zji = 1} since Pr {fj | ti, zji = 0} is

uniformly 0. The determination of Pr {fj | ti} is defined in further detail in Fragment-transcript

agreement model. The likelihood associated with this objective can be optimized using the EM

algorithm as in [12].

Bayesian objective

One can also take a Bayesian approach to transcript abundance inference as done in [13, 14]. In

this approach, rather than directly seeking maximum likelihood estimates of the parameters of

interest, we want to infer the posterior distribution of η. In the notation of [13], we wish to infer

Pr {η | F , T ,Z}— the posterior distribution of nucleotide fractions given the transcriptome T
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and the observed fragments F . This distribution can be written as:

Pr {η | F , T ,Z} ∝
∑
Z∈Z

Pr {F | T ,Z} · Pr {Z | η} · Pr {η} , (2)

where

Pr {Z | η} =
M∏
i=1

N∏
j=1

η
zji
j , (3)

and

Pr {F | T ,Z} =
M∏
i=1

N∏
j=1

Pr {fj | ti}zji . (4)

Unfortunately, direct inference on the distribution Pr {η | F , T ,Z} is intractable because its

evaluation requires the summation over the exponentially large latent variable configuration space

Z . Since the posterior distribution cannot be directly estimated, we must rely on some form of

approximate inference. One particularly attractive approach is to apply variational Bayesian (VB)

inference in which some tractable approximation to the posterior distribution is assumed.

Subsequently, one seeks the parameters for the approximate posterior under which it best

matches the true posterior. Essentially, this turns the inference problem into an optimization

problem — finding the optimal set of parameters — which can be efficiently solved by a number

of different algorithms. In particular, variational inference seeks to find the parameters for the

approximate posterior that minimizes the Kullback-Leibler (KL) divergence between the

approximate and true posterior distribution. Though the true posterior may be intractable, this

minimization can be achieved by maximizing a lower-bound on the marginal likelihood of the

posterior distribution [15], written in terms of the approximate posterior. Salmon optimizes the

collapsed variational Bayesian objective [13] in its online phase and the full variational Bayesian

objective [14] in the variational Bayesian mode of its offline phase (see Offline phase).
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Fragment-transcript agreement model

We model the conditional probability Pr {fj | ti} for generating fj given ti using a number of

auxiliary terms. These terms come from auxiliary models whose parameters do not explicitly

depend upon the current estimates of transcript abundances. Thus, once the parameters of these

these models have been learned and are fixed, these terms do not change even when the estimate

for Pr {ti | η} = ηi needs to be updated. Salmon uses the following auxiliary terms:

Pr {fj | ti} = Pr {` | ti} · Pr {p | ti, `} · Pr {o | ti} · Pr {a | fj, ti, p, o, `} (5)

Where Pr {` | ti} is the probability of drawing a fragment of the inferred length given ti, and is

evaluated based on an observed empirical fragment length distribution. Pr {p | ti, `} is the

probability of the fragment starting at position p on ti, computed using an empirical fragment start

position distribution as defined in [12]. Pr {o | ti} is the probability of obtaining a fragment

aligning with the given orientation to ti. This is determined by the concordance of the fragment

with the user-specified library format. It is 1 if the alignment agrees with the library format and a

user-defined prior value pō otherwise. Finally, Pr {a | fj, ti, p, o, `} is the probability of

generating alignment a of fragment fj , given that it is drawn from ti, with orientation o, and

starting at position p and is of length `; this term is defined as the coverage score (see Algorithms,

Lightweight Alignment) for lightweight alignments, and is given by equation (6) for traditional

alignments. The parameters for all auxiliary models are learned during the streaming phase of the

inference algorithm from the first N ′ observations (5, 000, 000 by default). These auxiliary terms

can then be applied to all subsequent observations.

Alignment model

When Salmon is given read alignments as input, it can learn and apply a model of read alignments

to help assess the probability that a fragment originated from a particular locus. Specifically,

Salmon’s alignment model is a spatially varying first-order Markov model over the set of CIGAR
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symbols and nucleotides. To account for the fact that substitution and indel rates can vary

spatially over the length of a read, we partition each read into a fixed number of bins (4 by

default) and learn a separate model for each of these bins. This allows us to learn spatially

varying effects without making the model itself too large (as if, for example, we had attempted to

learn a separate model for each position in the read). Given the CIGAR string s = s0, . . . , s|s| for

an alignment a, we compute the probability of a as:

Pr {a | fj, ti, p, o, `} = Pr {s0}
|s|∏
k=1

Pr
(Mk)
{sk−1 → sk | fj, ti, p, o, `} (6)

where Pr {s0} is the start probability and Pr(Mk) {·} is the transition probability under the model

at the kth position of the read (i.e., in the bin corresponding to position k). To compute these

probabilities, Salmon parses the CIGAR string s and moves appropriately along both the fragment

fj and the reference transcript ti, and computes the probability of transitioning to the next

observed state in the alignment (a tuple consisting of the CIGAR operation, and the nucleotides in

the fragment and reference) given the current state of the model. The parameters of this Markov

model are learned from sampled alignments in the online phase of the algorithm (see

Algorithm 1). When lightweight alignments are used instead of user-provided alignments,

Pr {a | fj, ti, p, o, `} is taken to be proportional to the normalized coverage of fragment fj on

transcript ti: coverage(fj, ti)/maxk coverage(fj, tk).

Algorithms

Salmon consists of three components: a lightweight-alignment model, an online phase that

estimates initial expression levels and model parameters and constructs equivalence classes over

the input fragments, and an offline phase that refines the expression estimates. The online and

offline phases together optimize the estimates of α which is a vector of weighted estimates of

read counts. Each method can compute η directly from these parameters.

The online phase uses a variant of stochastic, collapsed variational Bayesian inference [16].
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The offline phase applies the variational Bayesian EM algorithm [15] over a reduced

representation of the data represented by the equivalence classes until a data-dependent

convergence criterion is satisfied. An overview of our method is given in Supplementary Fig. 1,

and we describe each component in more detail below.

Lightweight alignment

A key computational challenge in inferring relative transcript abundances is to determine the

potential loci-of-origin for a sequenced fragment. To make the optimization tractable, all

positions cannot be considered. However, if the sequence of a fragment is substantially different

from the sequence of a given transcript at a particular position, it is very unlikely that the

fragment originated from this transcript and position — these positions will have their probability

truncated to 0 and will be omitted from the optimization. Determining a set of potential

loci-of-origin for a sequenced fragment is typically done by aligning the reads to the genome or

transcriptome using tools like Bowtie2 [17], STAR [18], or HISAT [19]. While Salmon can

process the alignments generated by such tools (when they are given with respect to the

transcriptome), it provides another method to determine the potential loci-of-origin of the

fragments directly, using a procedure that we call lightweight alignment.

The main motivation behind lightweight alignment is that achieving accurate quantification

of transcript abundance from RNA-seq data does not require knowing the optimal alignment

between the sequenced fragment and the transcript for every potential locus of origin. Rather,

simply knowing which transcripts (and positions within these transcripts) match the fragments

reasonably well is sufficient. Formally, we define lightweight-alignment as a procedure that, given

the transcripts T and a fragment fi, returns a set of 3-tuples A (T , fi) = {(ti1 , pi1 , si1) , . . . , }.

Each tuple consists of 3 elements: a transcript ti′ , a position pi′ within this transcript, and a score

si′ that summarizes the quality of the match between fi and ti′ at position pi′ .

We describe, here, the lightweight-alignment approach for a single read (it extends naturally

to paired-end reads by looking for lightweight-alignments for read pairs that are appropriately
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positioned on the same transcript). Salmon attempts to find a chain of super-maximal exact

matches (SMEMs) and maximal exact matches (MEMs) that cover a read. Recall, a maximal

exact match is a substring that is shared by the query (read) and reference (transcript) that cannot

be extended in either direction without introducing a mismatch. A super-maximal exact

match [11] is a MEM that is not contained within any other MEM on the query.

Salmon attempts to cover the read using SMEMs. Differences — whether due to read errors

or true variation of the sample being sequenced from the reference — will often prevent SMEMs

from spanning an entire read. However, one will often be able to find approximately consistent,

co-linear chains of SMEMs that are shared between the read and target transcripts. A chain of

SMEMs is a collection of 3-tuples c = {(q1, t1, `1) , . . . } where each qi is a position on the query

(read), ti is a position on the reference (transcript), and `i is the length of the SMEM. If∑
i |(qi+1 − qi)− (ti+1 − ti)| = 0, then we say that the chains are consistent — the space

between the location of SMEMs on the query and the reference are the same. If, instead, we

require that
∑

i |(qi+1 − qi)− (ti+1 − ti)| ≤ δ, then we say that the chain is approximately

consistent, or δ-consistent. Consistent chains can deal only with substitution errors and mutations,

while δ-consistent chains can also account for indels. Supplementary Fig. 2 shows an example.

While the discussion above is in terms of SMEMs, the chains constructed by Salmon

typically consist of a mix of SMEMs and MEMs. This is because, like BWA-mem [11], Salmon

breaks SMEMs that are too large (by default, greater than 1.5 times the minimum required MEM

length), to prevent them from masking potentially high-scoring MEM chains. In order for Salmon

to consider a read to match a transcript locus sufficiently well, there must be a δ-consistent chain

between the read and the transcript sequence, beginning at the locus, that covers a user-specified

fraction of the read (65% by default).

Using this procedure, Salmon implements lightweight alignment by finding, for a fragment

fi, all transcript position pairs (ti′ , pi′) that share a δ-consistent chain with fi covering at least

fraction c of the fragment. The score, si′ , of this lightweight alignment is simply the fraction of

the fragment covered by the chain.
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Salmon searches for SMEMs using the FMD-index [20]. Specifically, Salmon uses a

slightly-modified version of the BWA [20] index, replacing the default sparse sampling with a

dense sampling to improve speed. When Salmon is run in lightweight alignment mode, one must

have first prepared an index for the target transcriptome against which lightweight alignment is to

be performed. The Salmon index is built using the index command of Salmon. Unlike

k-mer-based indices (e.g. as used in Sailfish [6] or Kallisto [7]), the parameters for

lightweight-alignment (e.g. the fraction of the read required to be covered, or the minimum length

MEMs considered in chains) can be modified without re-building the index. This allows one to

easily modify the sensitivity and specificity of the lightweight-alignment procedure without the

need to re-create the index (which often takes longer than quantification).

Online phase

The online phase of Salmon attempts to solve the variational Bayesian inference problem

described in Objectives and models for abundance estimation, and optimizes a collapsed

variational objective function [13] using a variant of stochastic collapsed Variational Bayesian

inference [16]. The inference procedure is a streaming algorithm that updates estimated read

counts α after every small group Bτ (called a mini-batch) of observations. The pseudo-code for

the algorithm is given in Algorithm 1.

The observation weight for mini-batch Bτ , vτ , in line 15 of Algorithm 1 is an increasing

sequence sequence in τ , and is set, as in [10], to adhere to the Robbins-Monroe conditions. Here,

the α represent the (weighted) estimated counts of fragments originating from each transcript.

Using this method, the expected value of η can be computed directly from α using equation (16).

We employ a weak Dirichlet conjugate-prior with α0
i = 0.01 for all ti ∈ T . As outlined in [16],

the SCVB0 inference algorithm is similar to variants of the online-EM [21] algorithm with a

modified prior. The procedure in Algorithm 1 is run independently by as many worker threads as

the user has specified. The threads share a single work-queue upon which a parsing thread places

mini-batches of alignment groups. An alignment group is simply the collection of all alignments
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Algorithm 1 Laissez-faire SCVB0
1: while Bτ ← pop(work-queue) do
2: x̂← 0
3: for read r ∈ Bτ do
4: x← 0
5: for alignment a of r do
6: y ← the transcript involved in alignment a
7: xy ← xy + αy · Pr {a | y} . Add a’s contribution to the local weight for transcript
y

8: end for . Normalize the contributions for all alignments of r
9: for alignment a of r do

10: y ← the transcript involved in alignment a
11: x̂y ← x̂y + xy∑

y′∈r xy′

12: end for
13: Sample a ∈ r and update auxiliary models using a
14: end for
15: α← α+ vτ · x̂ . Update the global weights with local observations from Bτ

16: end while

(i.e. all multi-mapping locations) for a particular read. The mini-batch itself consists of a

collection of some small, fixed number of alignment groups (1, 000 by default). Each worker

thread processes one alignment group at a time, using the current weights of each transcript and

the current auxiliary parameters to estimate the probability that a read came from each potential

transcript of origin. The processing of mini-batches occurs in parallel, so that very little

synchronization is required, only an atomic compare-and-swap loop to update the global

transcript weights at the end of processing of each mini-batch — hence the moniker laissez-faire.

This lack of synchronization means that when estimating xy, we can not be certain that the most

up-to-date values of α are being used. However, due to the stochastic and additive nature of the

updates, this has little-to-no detrimental effect [22]. The inference procedure itself is generic over

the type of alignments being processed; they may be either regular alignments (e.g. coming from

a bam file), or lightweight-alignments generated as described in Lightweight alignment above.

After the entire mini-batch has been processed, the global weights for each transcript α are

updated. These updates are sparse; i.e. only transcripts which appeared in some alignment in

mini-batch Bτ will have their global weight updated after Bτ has been processed. This ensures,
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as in [10], that updates to the parameters α can be performed efficiently.

Equivalence classes

During its online phase, in addition to performing streaming inference of transcript abundances,

Salmon also constructs a highly-reduced representation of the sequencing experiment.

Specifically, Salmon constructs “rich” equivalence classes over all of the sequenced fragments.

We define an equivalence relation ∼ over fragments. Let M (fx) = {ti | (ti, pi, si) ∈ A (T , fi)}

be the set of transcripts to which fx maps according to alignments A. We say fx ∼ fy if and only

if M (fx) = M (fy). Related, but distinct notions of alignment-based equivlance classes have

been introduced previously (e.g. [23]), and shown to greatly reduce the time required to perform

iterative optimization such as that described in Offline phase. Fragments which are equivalent

can be grouped together for the purpose of inference. Salmon builds up a set of fragment-level

equivalence classes by maintaining an efficient concurrent cuckoo hash map [24]. To construct

this map, we associate each fragment fx with tx = M (fx), which we will call the label of the

fragment. Then, we query the hash map for tx. If this key is not in the map, we create a new

equivalence class with this label, and set its count to 1. Otherwise, we increment the count of the

equivalence class with this label that we find in the map. The efficient, concurrent nature of the

data structure means that many threads can simultaneously query and write to the map while

encountering very little contention. Each key in the hash map is associated with a value that we

call a “rich” equivalence class. For each equivalence class Cj , we retain a count dj = |Cj|, which

is the total number of fragments contained within this class. We also maintain, for each class, a

weight vector wj . The entries of this vector are in one-to-one correspondence with transcripts i in

the label of this equivalence class such that

wji =

∑
f∈Cj Pr {f | ti}∑

tk∈tj
∑

f∈Cj Pr {f | tk}
. (7)
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That is, wji is the average conditional probability of observing a fragment from Cj given ti over all

fragments in this equivalence class. Since the fragments in Cj are all exchangeable, the pairing

between the conditional probability for a particular fragment and a particular transcript need not

be maintained, as the following series of equalities holds:

wji =

∑
f∈Cj Pr {f | ti}∑

f∈Cj
∑

tk∈t Pr {f | tk}
=

∑
f∈Cj Pr {f | ti}∑

f∈Cj 1
=

1

dj

∑
f∈Cj

Pr {f | ti}

 (8)

Thus, the aggregate weights stored in the “rich” equivalence classes gives us the power of

considering the conditional probabilities specified in the full model, without having to

continuously reconsider each of the fragments in F .

Offline phase

In its offline phase, which follows the online phase, Salmon uses the “rich” equivalence classes

learned during the online phase to refine the inference. Given the set C of rich equivalence classes

of fragments, we can use an expectation maximization (EM) algorithm to optimize the likelihood

of the parameters given the data. The abundances η can be computed directly from α, and we

compute maximum likelihood estimates of these parameters which represent the estimated counts

(i.e. number of fragments) deriving from each transcript, where:

L{α | F ,Z, T } =
N∏
j=1

M∑
i=1

η̂i Pr {fj | ti} (9)

and η̂i = αi∑
j αj

. If we write this same likelihood in terms of the equivalence classes C, we have:

L{α | F ,Z, T } =
∏
Cj∈C

∑
ti∈tj

η̂iw
j
i

dj

. (10)

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2015. ; https://doi.org/10.1101/021592doi: bioRxiv preprint 

https://doi.org/10.1101/021592
http://creativecommons.org/licenses/by-nc-nd/4.0/


EM update rule. This likelihood, and hence that represented in equation (9), can then be

optimized by applying the following update equation iteratively

αu+1
i =

∑
Cj∈C

dj

(
αui w

j
i∑

tk∈tj α
u
kw

j
k

)
. (11)

We apply this update equation until the maximum relative difference in the α parameters satisfies:

∆
(
αu,αu+1

)
= max

∣∣αui − αu+1
i

∣∣
αu+1
i

< 1× 10−2 (12)

for all αu+1
i > 1× 10−8. Let α′ be the estimates after having achieved convergence. We can then

approximate ηi by η̂i, where:

η̂i =
α′i∑
j α
′
j

. (13)

Variational Bayes optimization. Instead of the standard EM updates of equation (11), we can,

optionally, perform Variational Bayesian optimization by applying VBEM updates as in [14], but

adapted to be with respect to the equivalence classes:

αu+1
i =

∑
Cj∈C

dj

(
eγ

u
i wji∑

tk∈tj e
γukwjk

)
, (14)

where:

γui = Ψ
(
α0
i + αui

)
−Ψ

(∑
k

α0
k + αuk

)
. (15)

Here, Ψ (·) is the digamma function, and, upon convergence of the parameters, we can obtain an

estimate of the expected value of the posterior nucleotide fractions as:

E {ηi} =
α0
i + α′i∑
j α

0
j + α′j

=
α0
i + α′i
α̂0 +N

, (16)

where α̂0 =
∑M

i=1 α
0
i . Variational Bayesian optimization in the offline-phase of Salmon is

selected by passing the --useVBOpt flag to the Salmon quant command.
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Sampling from the posterior

After the convergence of the parameter estimates has been achieved in the offline phase, it is

possible to draw samples from the posterior distribution using collapsed, blockwise Gibbs

sampling over the equivalence classes. Samples can be drawn by iterating over the equivalence

classes, and re-sampling assignments for some fraction of fragments in each class according to

the multinomial distribution defined by holding the assignments for all other fragments fixed.

Many samples can be drawn quickly, since many Gibbs chains can be run in parallel. Further, due

to the accuracy of the preceding inference, the chains begin sampling from a good position in the

latent variable space almost immediately. These posterior samples can be used to obtain estimates

for quantities of interest about the posterior distribution, such as its variance, or to produce

confidence intervals. When Salmon is passed the --useGSOpt parameter, it will draw a number

of posterior samples that can be specified with the --numGibbsSamples parameter.

Validation

Metrics for accuracy

We compute three different metrics that summarize the agreement of the predicted number of

reads originating from each transcript with the known (simulated) read counts. While these

different measures generally give consistent results in our testing, they measure different

properties of the underlying estimates. We choose to evaluate these error measures on the

estimated read counts to minimize the effect of differences in the manner in which different

methods normalize expression estimates by the transcript length (e.g. differences in effective

length calculations).

The first measure is the mean absolute relative difference (MARD), which is computed using
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the absolute relative difference ARDi for each transcript i:

ARDi =


0 if xi = yi = 0

|xi−yi|
0.5|xi+yi| otherwise

, (17)

where xi is the true value of the number of reads, and yi is the predicted value. The relative

difference is bounded above by 2, and takes on a value of 0 whenever the prediction perfectly

matches the truth. To compute the mean absolute relative difference, we simply take

MARD = 1
M

∑M
i=1 ARDi. The second measure is the proportionality correlation, which Lovell et

al. [25] argue is a good measure for relative quantities like mRNA expression. The proportionality

correlation is defined as:

ρp =
2Cov{logx, log y}

Var{logx}+ Var{log y}
. (18)

As ρp is undefined when either true or estimated measurements take on values of 0, we choose to

add a small, positive constant (1× 10−2) to all values when computing the proportionality

correlation. The ρp measure varies from −1 to 1, with a value of 1 being representative of perfect

proportional correlation. Finally, we also compute the Spearman correlation coefficient between

the true number of reads deriving from each transcript and the number of reads estimated by each

quantification method. Salmon and Kallisto, by default, truncate very tiny expression values to 0.

For example, any transcript estimated to produce < 1× 10−8 reads is assigned an estimated read

count of 0. However, eXpress does not perform such a truncation, and very small, non-zero values

may have a negative effect in some of the accuracy metrics we compute. To mitigate such effects,

in all of our experiments, we first truncate to 0, in the output of eXpress, all values smaller than

the minimum non-zero prediction observed in the output of the other methods.

Ground truth simulated data

To assess accuracy in a situation where the true expression levels are known, we generate

synthetic data sets using both the Flux Simulator [8] and the RSEM-sim procedure used in [7].
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The Flux Simulator attempts to model the different stages of an RNA-seq experiment (e.g.

amplification, fragmentation, etc.), and it adopts various mathematical models for different stages

of the simulation. However, it does not assume the same generative model used by any of the

quantification tools tested here, and thus may be a more unbiased simulation method. The Flux

Simulator data consisted of 75 million 76bp paired-end reads on a transcript population of

5 million molecules for two separate species: Homo Sapiens and Zea Mays. To generate data with

RSEM-sim, we follow the procedure used in [7] — RSEM was run on sample NA12716 7 of the

Geuvadis RNA-seq data [26] to learn model parameters and estimate true expression, and the

learned model was then used to generate 20 different simulated datasets, each consisting of 30

million 75 bp paired-end reads. All tests were performed with eXpress v1.5.1, Kallisto v0.42.1,

Salmon v0.4.2 and STAR v2.41d. The flag --useErrorModel was passed to alignment-based

Salmon. Reads were aligned with STAR using the parameters --outFilterMultimapNmax

200 --outFilterMismatchNmax 99999 --outFilterMismatchNoverLmax

0.2 --alignIntronMin 1000 --alignIntronMax 0 --outSAMtype BAM

Unsorted. Otherwise, default parameters were used unless noted.

qPCR data

We compared quantification performance of the methods using qPCR data from the SEQC

consortium [9]. We obtained normalized Prime PCR estimates for genes from

http://abrf.masonlab.net/Files.html and compared abundance estimates of Sample A (Universal

Human Reference RNA) with abundance estimates on RNA-seq data from sample A obtained at

the BGI site (SEQC ILM BGI A 1, GEO ID: GSE47792). While all tested methods for

quantifying abundance seem to produce high concordance with qPCR-based estimates, we find

that Salmon performs better than most other methods (Supplementary Table 2).
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Comparison with Stringtie

We also performed accuracy analyses using a recent transcript assembly and quantification

program Stringtie [27]. After quantifying with Stringtie, we noticed that many transcripts that are

highly expressed in the ground truth and by other quantifiers are shown as unexpressed in the

Stringtie output, resulting in low overall correlation with the ground truth. This may be due to

Stringtie’s conservative approach. It requires that each exon-intron-exon junction is supported by

at least one spliced read in order to be considered in the pool of expressed transcripts. For longer

genes with many introns, it may therefore be more likely that transcripts associated with this gene

are discarded. We chose not to include these results here to not penalize methods like Stringtie

that will attempt to reconstruct rather than just quantify transcripts.
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Supplementary Figure 1: Overview of Salmon’s method and components.
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Supplementary Figure 1: Overview of Salmon’s method and components. Salmon excepts either
raw (green arrows) or aligned reads (blue arrow) as input, performs an online inference when pro-
cessing fragments or alignments, builds equivalence classes over these fragments and subsequently
refines abundance estimates using an offline inference algorithm on a reduced representation of the
data.
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Supplementary Figure 2: Illustration of a chained SMEM alignment.

q1 q2g1 g2

t1 t2g'1 g'2transcript  
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Supplementary Figure 2: A δ-consistent chain of matches to a transcript that covers a read. Here,
the coverage (score) of the chain is s = `1+`2

`1+g1+`2+g2
, and δ = |(t2 − t1)− (q2 − q1)| = |g′1 − g1|.
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Supplementary Figure 3: Quantification accuracy for Salmon variants using

RSEM-sim data
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Supplementary Figure 3: Analogous to Fig. 1a, this plot compares various the quantification accu-
racy of various modes of Salmon. Specifically, the distribution of Spearman correlation coefficients
across 20 replicates of RSEM-sim data are shown for each variant: Salmon, Salmon with a Vari-
ational Bayes offline component (VB), Salmon using read alignments from STAR (SalmonAln),
and SalmonAln with a Variational Bayes offline component.
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Supplementary Figure 4: Quantification accuracy for Kallisto using

RSEM-sim data.
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Supplementary Figure 4: Analogous to Fig. 1a, this plot compares various the quantification ac-
curacy of Kallisto with Salmon. Specifically, the distribution of Spearman correlation coefficients
across 20 replicates of RSEM-sim data are shown for both methods.
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Supplementary Figure 5: Timing for Kallisto using Fluxsim data
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Supplementary Figure 5: Analogous to Fig. 1c, this plot compares the run time in seconds of
Kallisto with Salmon. Kallisto runs in single thread while Salmon is designed specifically for
multi-threaded use and uses 20 threads. In single-threaded mode, Kallisto is 4–6 times faster than
Salmon.
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Supplementary Figure 6: Quantification accuracy for Sailfish with

Quasi-alignment using RSEM-sim data
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Supplementary Figure 6: Analogous to Fig. 1a, this plot compares various the quantification ac-
curacy of Sailfish using Quasi-alignments with Sailfish, eXpress, Salmon, and SalmonAln. The
distribution of Spearman correlation coefficients across 20 replicates of RSEM-sim data are shown
for each method. Sailfish with Quasi-mapping is a wrapper around Sailfish that uses techniques
similar to lightweight alignment to obtain fragment-transcript mappings. Sailfish then computes
its Expectation-Maximization optimization using these mappings. Given that Sailfish with Quasi-
alignment approaches the accuracy of Salmon, the quality of the alignment procedure may be most
directly related to overall accuracy.
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Supplementary Figure 7: Timing for Sailfish with Quasi-alignment using

Fluxsim data
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Supplementary Figure 7: Analogous to Fig. 1c, this plot compares the run time in seconds of Sail-
fish with Quasi-alignments with Sailfish and Salmon. Sailfish with Quasi-mapping is a wrapper
around Sailfish that uses techniques similar to lightweight alignment to obtain fragment-transcript
mappings. Sailfish then computes its Expectation-Maximization optimization using these map-
pings. Sailfish (Quasi) is approximately 3 times faster than Sailfish and more than twice as fast as
Salmon. All methods use 20 threads.
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Supplementary Table 1: Quantification accuracy of the different methods on

the synthetic data generated with the Flux Simulator.

H. sapiens

Kallisto Sailfish Sailfish (Quasi) Salmon Salmon (VB) SalmonAln SalmonAln (VB) eXpress

Proportionality corr. 0.76 0.74 0.76 0.78 0.79 0.76 0.78 0.75
Spearman corr. 0.69 0.70 0.69 0.72 0.73 0.70 0.72 0.63
MARD 0.20 0.21 0.20 0.17 0.14 0.19 0.15 0.25

Z. mays

Proportionality corr. 0.91 0.90 0.91 0.92 0.92 0.91 0.91 0.89
Spearman corr. 0.89 0.90 0.89 0.91 0.91 0.89 0.90 0.85
MARD 0.20 0.29 0.20 0.17 0.17 0.20 0.19 0.34

Supplementary Table 1: Spearman correlation of abundances for each method with ground truth
abundances. The experiments consist of reads generated from Fluxsim, and the data was simulated
for both the H. sapiens and Z. mays transcriptomes. The accuracy is assessed via the three differ-
ent metrics described above. Sailfish with Quasi-mapping is a wrapper around Sailfish that uses
techniques similar to lightweight alignment to obtain fragment-transcript mappings. Sailfish then
computes its Expectation-Maximization optimization using these mappings.
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Supplementary Table 2: Quantification accuracy of different methods using

qPCR data.

H. sapiens

Sailfish Kallisto Salmon eXpress

Spearman corr. 0.831 0.837 0.845 0.853

Supplementary Table 2: Spearman correlation of abundances for each method with ground truth
abundances derived from qPCR data obtained from the SEQC consortium [9].
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