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Abstract

Spatial structure greatly affects the evolution of cooperation. While in two-
player games the condition for cooperation to evolve depends on a single
structure coefficient, in multiplayer games the condition might depend on sev-
eral structure coefficients, making it difficult to compare different population
structures. We propose a solution to this issue by introducing two simple
ways of ordering population structures: the containment order and the vol-
ume order. If population structure S1 is greater than population structure S2
in the containment or the volume order, then S1 can be considered a stronger
promoter of cooperation. We provide conditions for establishing the contain-
ment order, give general results on the volume order, and illustrate our theory
by comparing different models of spatial games and associated update rules.
Our results hold for a large class of population structures and can be easily
applied to specific cases once the structure coefficients have been calculated
or estimated.
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Introduction

The evolution of cooperation is a fascinating topic that has been studied from different perspec-
tives and theoretical approaches (2, 14, 21, 36). An issue that has led to considerable interest
is the extent to which spatial structure allows cooperation to thrive (1, 7, 10, 19, 20, 22, 27, 29–
31, 38–40, 46, 48, 51, 53, 55–60). Spatial structure can both enhance cooperation by inducing
clustering or assortment (whereby cooperators tend to interact more often with other cooperators
(11, 13, 22)) and oppose cooperation by inducing increased local competition (whereby coopera-
tors tend to compete more often with other cooperators (47)). For two-player games or multiplayer
games with similar strategies, the balance between these two opposing effects is captured by the
“scaled relatedness coefficient” of inclusive fitness theory (31, 46, 59, 60) or the “structure coef-
ficient” of evolutionary game theory (1, 38, 53). These coefficients are functions of demographic
parameters, and take into account the degree of assortment, the effects of density dependence,
and the strength of local competition resulting from spatial interactions (20, 31, 53). Two different
models of spatial structure and associated evolutionary dynamics can be unambiguously com-
pared by ranking their relatedness or structure coefficients: the greater the coefficient, the less
stringent the conditions for cooperation to evolve. Hence, different models of population structure
can be ordered by their potential to promote the evolution of cooperation in a straightforward way.

Despite the theoretical importance of models leading to a single relatedness or structure
coefficient, many examples of social evolution ranging from microbial cooperation (18, 32, 63)
to collective action in humans (23, 35, 43) involve games between more than two players with
distinct strategies (17, 44). In these cases, the effects of spatial structure cannot be captured
by a single coefficient, as higher degrees of association (e.g., “triplet relatedness” (39, 42)) are
required to fully describe the condition under which cooperation is favored (49, 59, 62). The
need to account for several structure coefficients has so far precluded a simple way of comparing
population structures independently of the particular game used to model cooperation.

Here, we propose a framework to order population structures by their potential to promote
cooperation that is also valid in the case of games between multiple players with distinct strate-
gies. Our framework allows the comparison of two population structures without referring to any
concrete game. We will distinguish two cases, depending on the inclusion relation between the
sets of games for which cooperation is promoted under each population structure. (i) The set of
games for which the second population structure promotes cooperation is fully contained in the
set of games for which the first population structure promotes cooperation (Fig. 1A). In this case,
we say that the first population structure is greater than the second in the containment order,
and hence a stronger promoter of cooperation. (ii) The set of games for which one population
structure promotes cooperation is not fully contained in the set of games for which the other pop-
ulation structure promotes cooperation (Fig. 1B). In this case, we say that the population structure
promoting cooperation for a larger volume of games is greater in the volume order, and hence a
stronger promoter of cooperation.

So far, the structure coefficients for general multiplayer games have been calculated only for
few population structures, as such calculations often represent a technical challenge (34). How-
ever, once the structure coefficients are known, the containment and volume orders we propose
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here allow to assess the consequence of population structure on the evolution of cooperation in-
dependently of the game at stake. This way, our approach can help to organize myriads of results
on the promotion of cooperation in spatially structured populations.

Methods and Results

Cooperation games and polytopes

We consider symmetric games between d players with two strategies, A and B. A focal player’s
payoff depends on the player’s own strategy and on the strategies of its d − 1 co-players. If
j co-players play A, a focal A-player obtains aj , whereas a focal B-player obtains bj . These
interactions are represented by the payoff table:

Opposing A-players 0 1 . . . j . . . d− 1

payoff to A a0 a1 . . . aj . . . ad−1

payoff to B b0 b1 . . . bj . . . bd−1 .

It follows that a game is determined by 2d real numbers and can thus be considered as a point in
a 2d-dimensional space.

In which sense can we say that one population structure favors cooperation more than an-
other? To answer this question precisely, we first need to specify what we mean by “cooperation”,
as this could refer to different social behaviors, in particular if we move beyond two-player games
(25). We are interested in a particular subset of games that we call “cooperation games”. In these
games, players decide whether to cooperate (play A) or defect (play B), and payoffs are such
that: (i) players prefer other group members to cooperate irrespective of their own strategy, and
(ii) mutual cooperation is favored over mutual defection. In terms of our payoff parameters, these
conditions imply

aj+1 ≥ aj and bj+1 ≥ bj for j = 0, 1, . . . , d− 2, (1)

as well as
ad−1 > b0. (2)

Conditions (1) and (2) are often used to characterize cooperative strategies in multiplayer social
dilemmas (25), such as the provision of collective goods (46). If we further restrict payoffs to
values between zero and one,

0 ≤ aj ≤ 1 and 0 ≤ bj ≤ 1 for j = 0, 1, . . . , d− 1, (3)

then the set of all cooperation games with d players is given by a (convex) polytope (64) in a
2d-dimensional space, which we denote by P. A polytope is a geometric object with flat sides,
the generalization of a polygon (which is a 2-dimensional polytope) to higher dimensional spaces.
See Supplementary Material for further details.

We need to specify precisely what we mean by “favoring” cooperation. For our purposes, we
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say that cooperation is favored if a single cooperator in a population of defectors has a higher
probability of eventually reaching fixation than a single defector in a population of cooperators
(37). This also means that cooperation is more abundant than defection in a mutation-selection
process in the limit of low mutation (16). For weak selection on homogeneous populations of
constant size, strategy A is favored over B if (62)

d−1∑
j=0

σj (aj − bd−1−j) > 0, (4)

where σ0, . . . , σd−1 are the d structure coefficients. These are independent of payoffs aj and bj ,
but dependent on the type of spatial structure (for instance, where the co-players of a given focal
individual are located) and update rule used to model the evolutionary dynamics. In Table 1,
we provide examples of population structures and their corresponding structure coefficients (see
Supplementary Material for a derivation).

The structure coefficients are uniquely determined up to a constant factor. Setting one of
them to one thus gives a single nontrivial structure coefficient for two-player games (53). We
use the sequence σ to collect the coefficients and note that, if σj ≥ 0 for all j and σj > 0 for at
least one j, we can impose

∑d−1
j=0 σj = 1 without affecting the selection condition (4). For our

purposes, this normalization turns out to be more useful than setting one coefficient to one. In
particular, such normalization allows us to understand the (normalized) structure coefficients as
describing a probability distribution, and to make a straightforward connection with the concept
of assortment as developed for the case of linear public goods games (3, 13). To do so, let us
rewrite the selection condition (4) as

d−1∑
j=0

σjaj >
d−1∑
j=0

σd−1−jbj . (5)

Here, σj plays the role of the “effective” probability of interacting with j individuals of the own type
(and d − 1 − j of the other type). As given by (5), the selection condition states that A is favored
over B if the expected payoff of an A-player is greater than that of a B-player when the “interaction
environments” (13) are distributed according to σ.

A given population structure will favor cooperation only for a subset of cooperation games.
More precisely, for a population structure Si with structure coefficients σi, the set of cooperation
games for which Si favors A over B is given by adding the selection condition (5) to the inequali-
ties defining the polytope of cooperation games, P, i.e., (1), (2), and (3). The selection condition
(5) defines a hyperplane and thus divides the space of games into two: those for which coopera-
tion is favored and those for which defection is favored. This shows that our problem is equivalent
to a geometric problem in 2d dimensions. In the following, we denote by Qi the polytope contain-
ing the cooperation games for which cooperation is favored under population structure Si (see
Supplementary Material).
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Containment order

If the set of games Q2 for which cooperation is favored under population structure S2 is contained
in the setQ1 for which cooperation is favored under population structure S1, then we say that S1 is
greater than S2 in the containment order (12), and we write S1 ≥con S2. The ordering S1 ≥con S2
implies that cooperation cannot be favored under S2 without also being favored under S1.

Establishing the containment order is equivalent to a “polytope containment problem” (24),
consisting on determining whether or not a polytope is contained in another. Polytope containment
problems can be solved numerically by linear programming (15). Here, we describe an alternative
and simpler approach borrowed from the literature on stochastic orders (50). First, assume that
the structure coefficients σj are nonnegative and normalized, so that they define a probability
distribution over j = 0, 1, . . . , d − 1. In this case, the left-hand side of the selection condition
(4) can be interpreted as the expected value E [f(J)], where f(j) ≡ fj = aj − bd−1−j , and J

is the random variable associated to the probability distribution σ. Consider now two population
structures S1 and S2 with structure coefficients σ1 and σ2, and associated random variables J1
and J2, respectively. A sufficient condition leading to the containment order S1 ≥con S2 is hence
that

E [f(J1)] ≥ E [f(J2)] (6)

for all cooperation games.
In order to evaluate this condition, we make use of the usual stochastic order (50). A random

variable J1 is said to be greater than J2 in the stochastic order if and only if E [φ(J1)] ≥ E [φ(J2)]

for all increasing functions φ. This is denoted by J1 ≥st J2. Conveniently, and by (1), the se-
quence fj is always increasing in j, allowing us to apply this idea directly (see Proposition 1 in
Supplementary Material for details). One advantage of expressing the containment order in terms
of the stochastic order is that we can transform our original polytope containment problem into the
problem of finding conditions under which random variables can be stochastically ordered. Some
of these conditions follow from a simple inspection of the sequences of structure coefficients. For
instance, a sufficient condition leading to the stochastic order J1 ≥st J2 (and hence to the con-
tainment order S1 ≥con S2) is that σ1 − σ2 has exactly one sign change from − to + (50). As we
show in Examples, this simple condition allows us to order different existing models of population
structure in a straightforward way.

For the linear public goods game (i.e., a game with payoffs aj = β(j + 1) − c and bj = βj

for some β > γ > 0 where β is the marginal benefit from the public good and γ is the individual
cost of contributing), the selection condition (5) can be put in a form reminiscent of Hamilton’s
rule with (eA − eB) /(n − 1) playing the role of a measure of assortment (or relatedness), where
eA =

∑
j σjj (resp. eB =

∑
j σd−1−jj) is the mean number of cooperators among the d − 1

interaction partners of a cooperator (resp. defector) (3). For more general cooperation games, the
selection condition depends not only on the mean but also on higher moments of the probability
distribution given by σ. The stochastic order we have used for establishing the containment order
is a way of measuring the association between strategies in this general case. Hence, it can be
said that population structures greater in the containment order are those characterized by greater
“effective assortment” and thus more conducive to the evolution of cooperation. In the extreme
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case where σd−1 = 1 (and σj = 0 for j 6= d − 1), we have the case of a completely segregated
population where As only interact with As and Bs only interact with Bs. In this case, the selection
condition reduces to (2), and cooperation is always favored by definition.

It can happen that neither Q1 is entirely contained in Q2 nor Q2 is entirely contained in Q1. In
these cases, S1 and S2 are incomparable in the containment order (i.e., neither S1 ≤con S2 nor
S1 ≥con S2 hold) and we write S1 ‖con S2. We show in Proposition 2 in Supplementary Material
that a sufficient condition leading to such incomparability is that the sequences σ1 and σ2 cross
twice (Fig. 2). In this case, there exist both a subset of cooperation games favored under S1 but
not under S2 and a subset of cooperation games favored under S2 but not under S1.

For the commonly discussed case of two-player games in structured populations (53), the
sequence σ consists of two elements: σ0 (usually set to one) and σ1 (usually denoted by σ

and referred to as “the” structure coefficient). Since two sequences of two elements can only
cross each other at most once, it follows that any two population structures can be ordered in
the containment order if d = 2, i.e., the containment order is a total order for two-player games.
Moreover, the containment order is given by the comparison of the structure coefficients σ, with
larger σ leading to greater containment order. Contrastingly, for d ≥ 3 two sequences σ can cross
twice. In this case, their respective population structures cannot be compared in the containment
order: for multiplayer cooperation games and for the space of all possible population structures,
the containment order is only a partial order (see Proposition 3 in Supplementary Material).

Volume order

In order to address the cases for which two population structures are incomparable in the con-
tainment order, we introduce the “volume order”. We say that S1 is greater than S2 in the volume
order, and write S1 ≥vol S2, if

Vol (Q1) ≥ Vol (Q2) , (7)

where Vol (X ) is the volume of polytope X . In other words, S1 ≥vol S2 means that for a given
d, cooperation is favored under S1 for a greater number of cooperation games than under S2. If
two structures are ordered in the containment order so that S1 ≥con S2, this implies that they are
ordered in the volume order so that S1 ≥vol S2, but the converse is not true.

We find that the volume of all d-player cooperation games P is given by (Proposition 10 in
Supplementary Material; Fig. 3):

Vol (P) = 1

(d!)2
− 1

(2d)!
, (8)

which decreases rapidly with the number of players d. For d = 2, this volume is equal to 5/24.
In this case, the four payoffs a1, a0, b1, and b0 can be ordered in 4! = 24 possible ways, five
of which satisfy inequalities (1) and (2), namely (i) b1 ≥ a1 ≥ b0 ≥ a0 (prisoner’s dilemma), (ii)
b1 ≥ a1 ≥ a0 ≥ b0 (snowdrift game), (iii) a1 ≥ b1 ≥ b0 ≥ a0 (stag hunt), (iv) a1 ≥ b1 ≥ a0 ≥ b0

(harmony game), and (v) a1 ≥ a0 ≥ b1 ≥ b0 (prisoner’s delight (4)). For large d, condition (2)
becomes less important and the volume of cooperation games is approximately 1/(d!2), which is
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the volume of games satisfying conditions (1) and (3).
For some population structures, such as large well-mixed populations updated with a Moran

process, the structure coefficients are symmetric, i.e., σj = σd−1−j for all j. For these cases, the
fraction of cooperation games for which cooperation is favored becomes

Vol(Q)
Vol(P) =

1

2

(2d)!

(2d)!− (d!)2
≥ 1

2
(9)

(Proposition 11 in Supplementary Material; Fig. 3). This fraction is equal to 3/5 for d = 2, and
reduces to 1/2 in the limit of large d.

Examples

Let us now illustrate our approach with particular models of spatial structure and associated up-
date rules. Consider first the baseline scenario of a well-mixed population of size N ≥ d updated
with a death-Birth (Moran) process (17, 37). In the death-Birth process, each time step one
individual is chosen at random to die and another one is chosen proportional to its payoff to
reproduce by making a copy of itself. We find that for any d ≥ 2, well-mixed populations up-
dated with a death-Birth process are ordered in the containment order with respect to the total
population size N , such that larger populations are more conducive to multiplayer cooperation
(Proposition 4 in Supplementary Material). Our result generalizes previous results for two-player
games and multiplayer games with similar strategies according to which smaller population sizes
are less conducive to cooperation because of the stronger local competition among cooperators
(Ref. (53), Eq. 22; Ref. (60), Eq. B.1). In the limit of large N and by Eq. (9), well-mixed pop-
ulations updated with a death-Birth process favor cooperation for exactly one half of all possible
cooperation games.

Consider now the effect of introducing spatial structure while keeping the same update rule.
One of the simplest spatial models is the cycle (10). It has been shown that cycles updated with a
death-Birth process are better promoters of cooperation than well-mixed populations in the case
of two-player games (19, 41), and for several examples of multiplayer social dilemmas (such as
linear public goods games, snowdrift games, and stag hunt games) in the limit of large population
size (61). Our theory allows us to extend these results to all multiplayer cooperation games and
arbitrary population sizes. Indeed, we find that cycles are greater than well-mixed populations in
the containment order for any given population size N (Proposition 6 in Supplementary Material).
This implies that cycles are better promoters of cooperation than well-mixed populations for any
cooperation game, any number of players d, and any population size N .

A second model of spatial structure for which structure coefficients are readily available is
the group splitting model of Ref. (58). In this model, a finite population of size N is subdivided
into m groups, which can grow in size and split with probability q when reaching the maximum
size n. In the limit of rare group splitting (q � 1), all groups are typically of the maximum size
n and the structure coefficients can be calculated analytically for general d-player games (26).
Consider well-mixed and group-splitting populations updated according to a death-Birth process.
If the number of groups is greater than two, the group splitting model is greater than any well-
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mixed population in the containment order (Proposition 7 in Supplementary Material). Moreover,
in the limit of m� n, the structure coefficients of the group splitting model become σd−1 = 1 and
σj = 0 for j 6= d− 1. In this limit, the group splitting model is greater in the containment order than
any other population structure. Hence, it is the population structure that favors cooperation most
among all theoretically possible population structures.

The cycle and the group splitting model are better promoters of cooperation than the well-
mixed population. But which one promotes cooperation under more cooperation games, the cycle
or the group splitting model? Consider cycles of size N and group splitting models with rare group
splitting (q � 1) consisting of m groups of maximum size n, so that the total maximum population
size is equal to N = mn. Assuming that the population size N is large, the containment order
depends on the number of groups m of the group splitting model in the following way (Proposition
8 in Supplementary Material). (i) If the number of groups is small (m ≤ (n + 4d − 6)/(2d − 3))
the group splitting model is smaller than the cycle in the containment order. (ii) If the number of
groups is intermediate ((n + 4d − 6)/(2d − 3) < m < n + 2) the group splitting model and the
cycle are incomparable in the containment order. (iii) If the number of groups is large (m ≥ n+ 2)
the group splitting model is greater than the cycle in the containment order. As a particular
example, consider a cycle of size N = 1000 and a group splitting model with m = 10 groups of
maximum size n = 100 (Fig. 4). In this case, the cycle is greater than the group splitting model
in the containment order if d ≤ 7, while the two population structures are incomparable in the
containment order if d ≥ 8. Concerning the volume order, exact computations and numerical
simulations suggest that the cycle is greater than the group splitting model for d ≤ 12, and smaller
than the group splitting model otherwise.

Up until now we have compared different models of spatial structure (the well-mixed pop-
ulation, the cycle, the group splitting model) with a single update rule (the Moran death-Birth
process). However, the structure coefficients depend both on spatial structure and on the update
rule. For two-player games, different update rules can have important consequences on the evo-
lutionary dynamics, as they lead to different “circles of compensation”, or how far the effects of
density dependence extend from a given focal individual (20). What are the effects of different
update rules on multiplayer cooperation games? As an example, consider well-mixed populations
with two different update rules: the Moran process, where a random individual dies and its neigh-
bors compete for the empty site, and the aspiration dynamics, where a random individual is likely
to switch its strategy if the current payoff does not meet an aspiration level (8, 52). The two update
rules can be ordered in the containment order only if 2d−1(N−d) ≤ d(N−1) (Proposition 9 in Sup-
plementary Material). In this case, aspiration dynamics is greater in the containment order than
the Moran process, meaning that if cooperation is favored under the Moran process it will also be
favored under aspiration dynamics, but not necessarily vice versa. If 2d−1(N − d) > d(N − 1) the
two structures are incomparable in the containment order. However, for any finite population size
N , aspiration dynamics is greater in the volume order: overall, cooperation is favored for more
games under aspiration dynamics than under the Moran process.
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Discussion

Our approach to compare models of population structure sheds new light on how to study and
analyze the evolution of cooperation in spatially structured populations. We have shown how sev-
eral existing results, obtained under the assumptions of pairwise interactions, similar strategies,
or particular classes of multiplayer social dilemmas, generalize to the case of multiplayer coop-
eration games with distinct strategies that we have considered here. Perhaps more importantly,
one can find two population structures such that there is a class of cooperation games for which
cooperation is favored under the first but not under the second, and a class of cooperation games
for which the opposite holds true (Fig. 1B). Thus, arbitrarily choosing one or a few games from
the set of all possible cooperation games to compare the effects of population structure on the
evolution of cooperation can be misleading, even when focusing on the comparison of fixation
probabilities under weak selection. This is different from the case of either two-player games or
multiplayer games with similar strategies, where a ranking of population structures is always pos-
sible in terms of a single real value, and where it is sufficient to focus on a single game without
loss of generality (31, 53).

We made use of the theory of stochastic orders (50) to provide conditions under which two
population structures are comparable or incomparable in the containment order. Within social
evolution theory, stochastic orders have been also recently used to tackle the question of whether
variability in the group size distribution would lead to less stringent conditions for the evolution
of cooperation in multiplayer social dilemmas (45). Our use of stochastic orders in this paper
relies on the assumption (fulfilled by all the population structures we used as examples) that
the structure coefficients can always be normalized to define a probability distribution. It would
be interesting to investigate under which general conditions such assumption is valid. Another
open question is whether two population structures incomparable in the containment order could
favor cooperation in disjoint subsets of cooperation games. If the structure coefficients define a
probability distribution, this will never be the case, as it will always be possible to find a cooperation
game for which the selection condition holds for any two population structures. Consider for
instance a game for which aj = α and bj = 0 for all j, with α > 0 (a mutualistic game where the
group optimal action A is also individually optimal). In this case, and provided that the structure
coefficients are nonnegative, the selection condition (4) is always satisfied.

We considered a very broad definition of cooperation and a particular measure of evolutionary
success, and investigated subset containment relations and volumes of the resulting polytopes.
In this respect our approach is related to a classical study by Mattesi and Jayakar (33), who first
defined an “altruism domain” from a set of linear inequalities involving “local fitness functions”
and then investigated the problem of finding and measuring the relative volume of the “subset of
the altruism domain in which A is more fit than B on average, that is, altruism can evolve”. We
note, however, that our definition of cooperation is different from the definition of altruism adopted
by Matessi and Jayakar: the “multi-level interpretation” of altruism, in the sense of Kerr et al.
(25). In particular, we only focused on the group benefits, not the individual costs, associated
to expressing the cooperative action A. Such costs could be introduced by adding further sets
of inequalities to the ones we used here, for instance by requiring that aj ≤ bj for some or all j
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(25, 46). Since we did not specify any costs, our class of cooperation games contains a relatively
large set of mutualistic games for which group beneficial behaviors are also individually benefi-
cial. Our measure of evolutionary success is also different, as we focused on the comparison of
fixation probabilities in the limit of weak selection, whereas Matessi and Jayakar focused on the
one-step change in frequency. Finally, Matessi and Jayakar limited themselves to “linear fitness
functions” (equivalent to linear games in our setup) while we considered more general multiplayer
games. The differences between our study and the one by Matessi and Jayakar pinpoint possi-
ble future work along these lines. For instance, alternative definitions of cooperation that take in
consideration the cost of cooperation (6, 25) and exclude mutualistic games could be explored,
possibly together with alternative measures of evolutionary success (54). As long as it is possible
to write all conditions as a set of linear inequalities (and hence as polytopes) involving the payoffs
of the game, our definitions can be used and adapted to these cases. It would be interesting to
see the extent to which comparisons of different population structures based on the containment
and volume orders defined here are robust to changes on the way cooperation and evolutionary
success are defined and implemented.

Appendix

Computing volumes

There are many exact methods for computing volumes of polytopes, including triangulation meth-
ods (5) and signed decomposition methods (28). Computing the exact volume of a polytope is
however known to be #P-hard (9), and a simple task only for low dimensions. We calculated ex-
actly the volumes in Fig. 4 for d ≤ 6 using the function volume of the class Polyhedron of the
mathematics software Sage (version 6.5). For d ≥ 7, we used a Monte Carlo method for approx-
imating the volumes. For each value of d, we randomly generated 106 increasing sequences aj
and bj , and retained only those which fulfilled (2). We then checked how many of these sequences
verified the selection condition (4). The fraction of cooperation games was then approximated by
the ratio between these two numbers.

Our source code in Python is publicly available on GitHub (https://github.com/jorgeapenas/
ordering).

Supplementary Material

Supplementary Methods: Ordering structured populations in multiplayer cooperation games (PDF).
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A B

Figure 1: Containment and volume orders of cooperation. The set of d-player cooperation
games is defined by a set of linear inequalities (dashed lines) defining a polytope in a
2d-dimensional space. A given population structure (e.g., S1 or S2) is characterized by
a selection condition defining a further linear inequality (solid lines). Here, we show a
pictorial representation of the projection of such multidimensional objects to the plane,
where polytopes are polygons. (A) The set of games for which cooperation is favored
under S2 is contained in the set of the games for which cooperation is favored under S1.
Hence, we say that S1 is greater than S2 in the containment order (and write S1 ≥con S2).
(B) S1 and S2 cannot be ordered in the containment order as there are both games for
which S1 favors cooperation but not S2 (purple polygon), and games for which S2 favors
cooperation but not S1 (orange polygon). In both panels, S1 favors cooperation for more
games than S2 does. Hence, we say that S1 is greater than S2 in the volume order (and
write S1 ≥vol S2).
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Figure 2: Comparability in the containment order. The structure coefficients σ1 and σ2

cross exactly once, implying that S1 and S2 are comparable in the containment order.
Moreover, σ1 crosses σ2 from below; hence S1 is greater than S2 in the containment
order (S1 ≥con S2). Likewise, S1 ≥con S3. Contrastingly, the structure coefficients σ2 and
σ3 cross exactly twice, implying that S2 and S3 are incomparable in the containment order
(S2 ‖con S3), i.e., neither S2 ≤con S3 nor S2 ≥con S3. For such cases, the volume order
provides an alternative way to order these structures. Here, S1 is a group splitting model
with m = 10 groups of maximum size n = 6 and rare probability of splitting (q � 1), S2 is
a cycle of size N = 60, and S3 is a group splitting model with m = 6, n = 10, and q � 1.
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Figure 3: Fraction of cooperation games for which cooperation is favored in population
structures with symmetric structure coefficients (main figure) and volume of cooperation
games (inset figure) as functions of the number of players d. As d increases, the probabil-
ity that a population structure with symmetric structure coefficients promotes cooperation
for a randomly chosen cooperation game quickly approaches 1/2. At the same time, the
probability that a randomly chosen game is a cooperation game quickly goes to zero, an
effect that seems to be underappreciated in the literature emphasizing the importance of
cooperation in evolution.

Table 1: Structure coefficients for some population structures.

Model Structure coefficients Refs.

Moran process on a well-mixed population σj =

{
1 if 0 ≤ j ≤ d− 2
N−d
N if j = d− 1

(17)

Aspiration dynamics on a well-mixed population σj =
(
d−1
j

)
(8)

death-Birth process on a cycle (d ≥ 3) σj =


1 if j = 0
2N
N+1 if 1 ≤ j ≤ d− 3
2N−1
N+1 if j = d− 2
3(N−d)
N+1 if j = d− 1

(61)

Moran process on a group splitting model (rare group splitting) σj =

{
1 if 0 ≤ j ≤ d− 2

1 + d(m−2)
n if j = d− 1

(26)

Parameters d and N refer to the number of players and population size, respectively. In the group
splitting model, m is the number of groups and n is the group size. The structure coefficients
shown here are not normalized; for our purposes it is useful to normalize them so that

∑
j σj = 1.
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Figure 4: Normalized volumes of cooperation for two different population structures: a
cycle of size N = 1000 (S1) and a group splitting model with m = 10 groups of maximum
size n = 100 (S2). Volumes are calculated exactly for small values of d (squares) and
approximately using a Monte Carlo method (circles); see Appendix. The cycle is greater
than the group splitting model in the volume order for d ≤ 12 and smaller in this sense
for d ≥ 13. We can also show that the cycle is greater than the group splitting model
in the containment order (S1 ≥con S2) for d ≤ 7, but the two population structures are
incomparable in the containment order (S1 ‖con S2) for d ≥ 8.
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4 Volume order 11

1 Polytopes

A (convex) polyhedron can be defined as the intersection of finitely many closed halfspaces in Rn,
i.e., as the set of solutions to a system of m linear inequalities

Tx ≤ c, (1)

where T is a real m × n matrix, and c a real vector of size m. A (convex) polytope is a bounded
polyhedron. When given by a system of linear inequalities such as (1), a polytope is said to be
given in its H-representation (18).
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We consider symmetric games with two pure strategies (A and B) between d players. A focal
player’s payoff depends on its own strategy and on its d − 1 co-players’. If j co-players play A,
a focal player obtains aj if it plays A or bj if it plays B. We focus on a subset of games that we
call “cooperation games”. In these games A represents cooperation; B, defection; and payoffs
are such that: (i) irrespective of its own strategy, a focal player prefers co-players to cooperate,
and (ii) mutual cooperation is favored over mutual defection. In terms of the payoffs of the game,
these conditions respectively imply

aj+1 ≥ aj and bj+1 ≥ bj for j = 0, 1, . . . , d− 2, (2)

and
ad−1 > b0. (3)

We further restrict payoffs to values between 0 and 1, so that

0 ≤ aj ≤ 1 and 0 ≤ bj ≤ 1 for j = 0, 1, . . . , d− 1. (4)

The previous inequalities give the H-representation of a polytope that we denote by P.
For weak selection, strategy A is favored over B if (17)

d−1∑
j=0

σj (aj − bd−1−j) > 0, (5)

where σ0, . . . , σd−1 are the d structure coefficients of the population structure (and associated
update rule) under consideration. For a given population structure Si with vector of structure
coefficients σi, inequalities (2), (3), and (4) together with the selection condition (5) give the H-
representation of a polytope that we denote by Qi.

2 Structure coefficients

The structure coefficients σ of a given model of population structure can be calculated from the
condition ρA > ρB , where ρX denotes the fixation probability of a single mutant playing X (either
A or B) in a population of residents playing the opposite strategy (9). This condition can be writ-
ten in terms of selection coefficients (dependent on the payoffs of the game and the demographic
parameters of the model) and expected coalescence times under neutrality (12). However, the
expected coalescence times required for calculating the structure coefficients of general d-player
games can be difficult to obtain (5, 12). At least for simple population structures, the condition
ρA > ρB can be more easily calculated from first principles, and the structure coefficients ex-
tracted from the resulting expressions. This is the approach we followed here.
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2.1 Moran process on a well-mixed population

The condition ρA > ρB is given by (ref. (2), Eq. S19)

d−1∑
j=0

(Naj − ad−1) >
d−1∑
j=0

(Nbj − b0) ,

which can be rewritten as

d−2∑
j=0

N (aj − bd−1−j) + (N − d) (ad−1 − b0) > 0.

Dividing both sides of the inequality by N and comparing with the selection condition (5), we
obtain

σj =

{
1 if 0 ≤ j ≤ d− 2
N−d
N if j = d− 1

.

2.2 Aspiration dynamics on a well-mixed population

The condition ρA > ρB is given by (ref. (1), Eq. 3.3)

d−1∑
j=0

(
d− 1

j

)
(aj − bj) > 0.

Due to the symmetry of binomial coefficients
(
d−1
j

)
=
(
d−1
d−1−j

)
, this can be rewritten as

d−1∑
j=0

(
d− 1

j

)
(aj − bd−1−j) > 0.

Comparing this last expression with the selection condition (5), we obtain

σj =

(
d− 1

j

)
.

2.3 death-Birth process on a cycle

Let us consider the model of population structure discussed in ref. (14). Each individual is placed
on the node of a cycle. Every sequence of d players defines the participants in a d-player game.
Individuals accumulate the payoffs from the d games they are involved in, each with d players.
These payoffs are transformed to “fitness” via an exponential payoff-to-fitness mapping (11). Each
time step, a randomly chosen individual is selected to die and its two neighbours compete for the
vacant spot with a probability proportional to fitness.

If the population starts with a single mutant, mutants form a single connected cluster in the
cycle at any time. The state of the population can hence be captured by the number of A-players
in this cluster, i. Denote by f0A(i) (f0B(i)) the payoff of an A-player (B-player) lying immediately
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at the boundary of a cluster of B-players (A-players), and by f1A(i) (f1B(i)) the payoff of an A-
player (B-player) right next to it (Fig. 1). Let T±i be the probability that the number of A-players
increases (+) or decreases (−) in one time step, when there are i A-players in the population.
Hence T−1 = T+

N−1 = 1
N and

T+
i =

2

N

exp(ωf0A(i))

exp(ωf0A(i)) + exp(ωf1B(i))
, 1 ≤ i ≤ N − 2, (6a)

T−i =
2

N

exp(ωf0B(i))

exp(ωf0B(i)) + exp(ωf1A(i))
, 2 ≤ i ≤ N − 1, (6b)

where ω is a parameter measuring the strength of selection. Strategy A is favored if ρA > ρB ,
which is equivalent to (6)

N−1∏
i=1

T+
i

T−i
> 1. (7)

For weak selection, condition (7) is equivalent to

d

dω

N−1∏
i=1

T+
i

T−i

∣∣∣∣∣
ω=0

> 0. (8)

Replacing (6) into (8), we get

d

dω

N−1∏
i=1

T+
i

T−
i

∣∣∣∣∣
ω=0

=
N−1∑
i=1

d

dω

T+
i

T−i

∣∣∣∣∣
ω=0

=
N−1∑
i=1

N

(
d

dω
T+
i −

d

dω
T−i

)∣∣∣∣∣
ω=0

=
1

2

N−1∑
i=1

f0A(i) +
1

2

N−1∑
i=2

f1A(i)−
1

2

N−1∑
i=1

f0B(i)−
1

2

N−2∑
i=1

f1B(i). (9)

The above expression is a linear combination of the payoff entries aj and bj . Further, by the
selection condition (5), the coefficients of aj are the same as those of bd−1−j . Thus it is only
necessary to calculate the coefficients of aj , which only depend on the first two terms of (9).
Using the expressions for f0A(i) and f1A(i) (see ref. (14), Appendix B) we finally obtain:

σj =


1 if j = 0
2N
N+1 if 1 ≤ j ≤ d− 3
2N−1
N+1 if j = d− 2
3(N−d)
N+1 if j = d− 1

. (10)

It is noteworthy that the expression

(a0 − b0) + 2
d−2∑
i=1

(ai − bi) + 3(ad−1 − bd−1) > 0,
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f1
A(4)

f1
B(4)

f0
B(4)

f0
A(4)

A

A

B B

Figure 1: Example of the death-birth process on a cycle. The population is embedded on
a cycle of size N = 14. There are i = 4 A-players. f0A(i) (resp. f0B(i)) is the payoff of an
A-player (resp. B-player) next to the boundary between A-players and B-players. f1A(i)
(resp. f1B(i)) is the payoff of an A-player (resp. B-player) second-to-next to the boundary
between A-players and B-players.

obtained in ref. (14) is a sufficient condition for strategy A to be more abundant than strategy B.
Our result (5) with structure coefficients given by (10) is the necessary and sufficient condition.
In addition, we note that our result holds for general payoff-to-fitness mapping f , provided that
f ′(0) is non-vanishing (16). Finally, we note that the stricture coefficients given in (10) are valid
for d ≥ 3. For d = 2, they are given by σ0 = 1 and σ1 = (3N − 8)/N (see Eq. 38, Ref. (9)).

2.4 Moran process on a group splitting model

Consider the following multiplayer extension (4) of the group splitting model of ref. (10). The
population is subdivided into m groups. Each population is allowed to grow to its maximum size n,
then splits with probability q. Within populations, random groups of d individuals form and interact
in a d-player game. When group splitting is rare (q � 1) and the mapping between payoffs and
fitness is given by an exponential function, the ratio of fixation probabilities is given by (ref. (4),
Eq. 15):

ρA
ρB

= exp

m+ n− 2

d
w
d−1∑
j=0

(Cj + κBj)

 , (11)

where

Cj = aj − bj ,

Bj = j (aj − aj−1) + (d− 1− j) (bj+1 − bj) ,
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are, respectively, the “direct” and “indirect” gains from switching from strategy A to strategy B (see
ref. (7), Eqs. 6 and 7), and

κ =
m− 2

m+ n− 2
(12)

can be interpreted as the “scaled relatedness coefficient” of this model when the migration rate is
zero (see ref. (13), Eq. B.4).

From (11), a necessary and sufficient condition for ρA > ρB is that:

d−1∑
j=0

(Cj + κBj) > 0, (13)

which can be rearranged in terms of payoffs and structure coefficients in the form of the left hand
side of (5):

d−1∑
j=0

(Cj + κBj) =
d−1∑
j=0

aj −
d−1∑
j=0

bj + κ

dad−1 − d−1∑
j=0

aj − db0 +
d−1∑
j=0

bj

 .
Hence, condition (13) can be written as:

(1− κ)
d−2∑
j=0

(aj − bd−1−j) + (1− κ+ κd) (ad−1 − b0) > 0.

After dividing both sides of the inequality by 1 − κ, inserting the value of κ given in (12), and
comparing with (5), we obtain

σj =

{
1 if 0 ≤ j ≤ d− 2

1 + d(m−2)
n if j = d− 1

.

2.5 Normalized structure coefficients

For all population structures discussed in this section and listed in Table 1 of the main text, the
structure coefficients are nonnegative. This is also true for many other population structures,
at least for d = 2 (9). In these cases, the structure coefficients can be normalized so that the
containment order can be investigated using stochastic orders (8). Henceforth, we refer to the
normalized structure coefficients by σ = (σ0, . . . , σd−1). Table 1 lists the normalized structure
coefficients for the examples of population structures previously discussed.

3 Containment order

3.1 A sufficient condition leading to the containment order

Consider two population structures S1 and S2 characterized by the (normalized) structure coeffi-
cients σ1 and σ2, and associated random variables J1 and J2, respectively. Let us also define the
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Model Normalized structure coefficients

Moran process on a well-mixed population σj =

{
N

d(N−1) if 0 ≤ j ≤ d− 2
N−d
d(N−1) if j = d− 1

Aspiration dynamics on a well-mixed population σj =
(d−1

j )
2d−1

death-Birth process on a cycle (d ≥ 3) σj =


N+1

d(2N−3) if j = 0
2N

d(2N−3) if 1 ≤ j ≤ d− 3
2N−1
d(2N−3) if j = d− 2
3(N−d)
d(2N−3) if j = d− 1

Moran process on a group splitting model σj =

{
n

d(m+n−2) if 0 ≤ j ≤ d− 2
n+d(m−2)
d(m+n−2) if j = d− 1

Table 1: Normalized structure coefficients for multiplayer evolutionary game models.

sequence of “gains from flipping”:

f(j) ≡ fj = aj − bd−1−j , (14)

i.e., the gains in payoff experienced by a focal B-player interacting with j A-players (and d− 1− j
B-players) after all players in the group, including the focal, flip their strategies (A-players become
B-players and vice versa).

Because of condition (2), the gains from flipping are increasing. Hence, a sufficient condition
for S1 to be greater than S2 in the containment order is that

E [φ(J2)] ≥ 0⇒ E [φ(J1)] ≥ 0, for all increasing functions φ : R→ R. (15)

A sufficient condition for this is that

E [φ(J1)] ≥ E [φ(J2)] , for all increasing functions φ : R→ R, (16)

which is fulfilled by definition if J1 is greater than J2 in the (usual) stochastic order, denoted by
J1 ≥st J2 (ref. (8), p. 4).

There are many conditions leading to the stochastic ordering of two random variables (ref.
(8), ch. 1). For instance, it is known that J1 ≥st J2 if and only if (ref. (8), p. 4)

ς1,k ≤ ς2,k for all k = 0, 1, . . . , d− 1, (17)

where ς is the distribution function corresponding to σ, i.e.,

ςk = Pr(J ≤ k) =
k∑
j=0

σj , for k = 0, 1, . . . , d− 1. (18)

A simple sufficient condition leading to the set of inequalities given by (17) and hence to J1 ≥st J2

is that S−(σ1 − σ2) = 1 (where S−(a) is the number of sign changes of the sequence a) and
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the sign sequence is −,+ (ref. (8), p. 10). That is, if the structure coefficients σ1 “put more
weight” in larger values of j than the structure coefficients σ2, then J1 ≥st J2. We summarize this
observation in the following proposition.

Proposition 1 (A sufficient condition leading to the containment order). Let S1 and S2 be two
population structures with (normalized) structure coefficients σ1 and σ2, respectively. If S−(σ1 −
σ2) = 1 and the sign sequence is −,+, then S1 ≥con S2.

3.2 A sufficient condition leading to the incomparability in the contain-
ment order

Given two population structures S1 and S2, it could be that neither S1 ≥con S2 nor S1 ≤con S2
holds true. We are also interested in establishing a simple sufficient condition leading to such
incomparability in the containment order, that we denote by S1 ‖con S2. In order to derive this,
suppose that the structure coefficients of S1 and S2 cross each other twice, i.e., that

S−(σ1 − σ2) = 2. (19)

Condition (19) implies that S−(ς1 − ς2) = 1 (ref. (15), p. 621) and hence that (17) does not hold
true. This in turn implies that J1 and J2 are incomparable in the stochastic order, i.e., J1 ‖st J2.
Showing that (19) also implies S1 ‖con S2 however requires some additional arguments. Indeed,
note that J1 ‖st J2 does not necessarily imply S1 ‖con S2: the stochastic order is a sufficient but
not a necessary condition leading to the containment order (cf. (15) and (16)).

In order to prove that (19) leads to S1 ‖con S2, we make use of two other stochastic orders: the
increasing convex order and the increasing concave order (ref. (8), p. 181). A random variable J1
is said to be greater than J2 in the increasing convex (resp. concave) order, denoted by J1 ≥icx J2

(resp. J1 ≥icv J2), if

E [φ(J1)] ≥ E [φ(J2)] , for all increasing convex (resp. concave) functions φ : R→ R. (20)

A simple condition leading to these orders is given in the following lemma.

Lemma 1 (A sufficient condition leading to the increasing convex (resp. concave) order). Let X
and Y be two random variables with density functions p and q respectively. If

S−(p− q) = 2 with sign sequence +,−,+ (resp. −,+,−) (21)

then X ≥icx Y (resp. X ≥icv Y ).

Proof. Denote by P and Q the distribution functions associated to X and Y , respectively. Condi-
tion (21) implies (ref. (15), p. 621)

S−(P −Q) = 1 with sign sequence +,− (resp. −,+). (22)
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Since (22) implies the increasing convex (resp. concave) order (ref. (8), p. 194), this completes
the proof.

Let us now consider two population structures S1 and S2 whose structure coefficients sat-
isfy (19). Without loss of generality, suppose that the sign pattern is +,−,+. By Lemma 1, it
follows that J1 ≥icx J2 and J2 ≥icv J1. This suggests that there might be both (i) games with in-
creasing and convex gains from flipping fj for which S1 (but not S2) fulfills the selection condition
(5), and (ii) games with increasing and concave gains from flipping fj for which S2 (but not S1)
fulfills the selection condition (5).

As an example of such games, consider a club goods game between cooperators (A) and
defectors (B), where cooperators pay a cost c > 0 in order to provide an excludable collective
good that only cooperators can use, while defectors refrain from contributing and hence from
using the good (7). This game is characterized by the payoff sequences:

aj = vj+1,

bj = c,

where vk gives the value of the collective good as a function of the total number of cooperators,
k = j + 1, and c is the payoff defectors obtain. We further assume that vk is given by

vk = v

k−1∑
`=0

u` = v
1− uk

1− u
,

where v > 0 is some baseline value, and u > 0 is a synergy or discounting parameter (3).
Furthermore, we require that v/c > γ, where 1/γ = (1− ud)/(1− u), so that (3) is fulfilled.

The gains from flipping of this game are then given by

fj = vj+1 − c.

Let us first impose the condition:

E [f(J1)] > 0 > E [f(J2)] (23)

so that S1 but not S2 satisfies the selection condition (5). Condition (23) is satisfied if

1

γ1
<
v

c
<

1

γ2
(24)

where

γi = E

[
1− uJi+1

1− u

]
, for i = 1, 2.

Note that (24) is satisfied if u > 1, because in this case (1−uj+1)/(1−u) is increasing and convex
and J1 ≥icx J2. Additionally, 1/γ ≤ 1/γ1 always holds.
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Let us now impose the condition:

E [f(J2)] > 0 > E [f(J1)] (25)

so that S2 but not S1 satisfies the selection condition (5). In this case, (25) is satisfied if

1

γ2
<
v

c
<

1

γ1
, (26)

which holds true if 0 < u < 1, as in this case (1 − uj+1)/(1 − u) is increasing and concave and
J2 ≥icv J1. Additionally, 1/γ ≤ 1/γ2 always holds.

We summarize the previous observations in the following proposition.

Proposition 2 (A sufficient condition leading to the incomparability in the containment order).
Let S1 and S2 be two population structures with (normalized) structure coefficients σ1 and σ2,
respectively. If S−(σ1 − σ2) = 2 then S1 ‖con S2, i.e., neither S1 ≥con S2 nor S1 ≤con S2 hold
true. Moreover, if the sign sequence of σ1 − σ2 is +,−,+ (resp. −,+,−) then it is possible to
find cooperation games with convex (resp. concave) gains from flipping fj such that the selection
condition (5) is satisfied for S1 but not for S2 (resp. for S2 but not for S1) and cooperation games
with concave (resp. convex) gains from flipping fj such that the selection condition (5) is satisfied
for S2 but not for S1 (resp. for S1 but not for S2).

3.3 The containment order is a total order for d = 2 but a partial order for
d ≥ 3

Propositions 1 and 2 allow us to prove the following result.

Proposition 3 (The containment order is total for d = 2 but partial for d = 3). Consider the set of
all possible population structures {S} for a given group size d. {S} is totally ordered under ≤con

for d = 2 but only partially ordered under ≤con for d ≥ 3.

Proof. For d = 2, the probability mass function given by the normalized structure coefficients σ
consists of only two points. Consequently, σ1 − σ2 has either (i) no sign changes (i.e., σ1 = σ2),
which implies S1 =con S2; (ii) a sign change from − to +, which implies S1 ≥con S2; or (iii) a sign
change from + to −, which implies S1 ≤con S2. For d ≥ 3, the probability mass function given by
the normalized structure coefficients σ consists of d ≥ 3 points. In this case, it is always possible
to find S1 and S2 such that σ1 − σ2 has two sign changes. In this case, neither S1 ≥con S2 nor
S1 ≤con S2 hold true.

3.4 Examples

In the following, we state several results concerning the containment order for the population struc-
tures listed in Table 1. We omit the proofs, as they are straightforward applications of Propositions
1 and 2 above.
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Proposition 4 (Containment order for well-mixed populations updated with a Moran process).
Denote by Swell−mixed

N a well-mixed population of size N with a Moran process as updating rule.
Then Swell−mixed

N ≤con Swell−mixed
N+1 for all N ≥ d.

Proposition 5 (Containment order for cycles updated with a Moran death-Birth process). Denote
by ScycleN a cycle of size N with death-Birth updating. Then ScycleN ≤con ScycleN+1 for all N ≥ d.

Proposition 6 (Containment order for cycles and well-mixed populations updated with a Moran
death-Birth process). Let ScycleN and Swell−mixed

N be respectively a cycle and a well-mixed popu-
lation of size N , both updated with a Moran death-Birth process. Then, for all d and all N > d,
ScycleN ≥con Swell−mixed

N .

Proposition 7 (Containment order for group splitting models and well-mixed populations, both
updated with a Moran death-Birth process). Let Sgroup−splittingm,n be a group splitting model with m
groups of maximum size n and rare group splitting (q � 1), and Swell−mixed

N a well-mixed popula-
tion of size N , both updated with a Moran death-Birth process. We have that Sgroup−splitting1,N =con

Swell−mixed
N , Sgroup−splitting2,n =con Swell−mixed

∞ for any n, and Sgroup−splittingm,n ≥con Swell−mixed
∞ for

m ≥ 3 and any n.

Proposition 8 (Containment order for cycles and group splitting models, both updated with a
Moran death-Birth process). Let Sgroup−splittingm,n be a group splitting model with m groups of max-
imum size n and rare group splitting (q � 1), and Scycle be a cycle of size N , both updated with a
Moran death-Birth process. In the limit of large N = mn we have:

1. If m ≤ n+4d−6
2d−3 then Sgroup−splittingm,n ≤con ScycleN .

2. If n+4d−6
2d−3 < m < n+ 2 then Sgroup−splittingm,n ‖con ScycleN .

3. If m ≥ n+ 2, then Sgroup−splittingm,n ≥con ScycleN .

Proposition 9 (Aspiration dynamics vs. Moran process in well-mixed populations). Let Saspiration

and SMoran
N be well-mixed populations of size N ≥ d, updated with aspiration dynamics and a

Moran process, respectively. We have:

1. If 2d−1(N − d) ≤ d(N − 1) then SMoran
N ≤con Saspiration.

2. If 2d−1(N − d) > d(N − 1) then SMoran
N ‖con Saspiration.

4 Volume order

In the following, we give a formula for the volume of cooperation games, as defined by inequalities
(2)–(4). For this, we find convenient to define I as the polytope given by inequalities (2) and (4),
and J as the polytope given by inequalities (2), (4), and ad−1 ≤ b0 (which is the opposite of (3)).
The volumes of these two polytopes are easy to calculate exactly using probabilistic arguments.
Indeed, we have the following two lemmas.
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Lemma 2 (Volume of I). We have that

Vol (I) = 1

(d!)2
.

Proof. Calculating the volume of I is equivalent to calculating the probability that two sequences
(a0, . . . , ad−1) and (b0, . . . , bd−1), with elements randomly and independently drawn from the in-
terval [0, 1], are such that a0 ≤ a1 ≤ . . . ≤ ad−1 and b0 ≤ b1 ≤ . . . ≤ bd−1. For each sequence, the
probability of having a randomly ordered sequence of length d is 1/d!, since d! is the number of
permutations of d distinct objects and only one of such permutations will be given in the specified
order. Since the two sequences are independent, the total probability is given by 1/(d!)2.

Lemma 3 (Volume of J ). We have that

Vol (J ) = 1

(2d)!
.

Proof. Calculating the volume of J is equivalent to calculating the probability that the sequence

(a0, . . . , ad−1, b0, . . . , bd−1)

with elements randomly and independently drawn from the interval [0, 1] is such that a0 ≤ a1 ≤
. . . ≤ ad−1 ≤ b0 ≤ b1 ≤ . . . ≤ bd−1. Following the same argument as in the proof of Lemma 2, this
probability is equal to 1/(2d)!.

Making use of these two lemmas, we can find an expression for the volume of P, the polytope
of cooperation games. We state this result in the following proposition.

Proposition 10 (Volume of cooperation games). The volume of cooperation games is given by

Vol (P) = 1

(d!)2
− 1

(2d)!

Proof. Follows from Lemmas 2 and 3 upon noticing that P = I − J .

Some population structures, such as large well-mixed populations updated with a Moran pro-
cess, and finite well-mixed populations updated with the aspiration dynamics, are such that their
structure coefficients are symmetric, i.e., σj = σd−1−j for all j. We are intereted in calculating
the fraction of cooperation games for which such population structures favor strategy A. In order
to calculate this result, we need the following lemma. The lemma may appear to be obvious for
symmetry reasons, but the additional requirement that we are dealing with cooperation games
(and hence a subset of the hypercube of all possible games) adds a further complication.

Lemma 4. Let S be a population structure with symmetric structure coefficients, i.e., σj = σd−1−j

for all j. Let also I+ be the subset of I for which A is favored over B. Then

Vol(I+)
Vol(I)

=
1

2
.
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Proof. Denote by I− and I0 the subsets of I such that
∑d−1
j=0 σj(aj−bd−1−j) < 0 and

∑d−1
j=0 σj(aj−

bd−1−j) = 0, respectively. Then we arrive at a partition of set I, namely I = I+ ∪ I0 ∪ I−. Since
there must exist a j∗ such that σj∗ 6= 0, the solution space of

∑d−1
j=0 σj(aj − bd−1−j) = 0 is of lower

dimension than 2d, and hence Vol(I0) = 0. Thus Vol(I) = Vol(I+) + Vol(I−).
In the following, we prove that Vol(I+) = Vol(I−). For this, we define the mapping

ψ((a0, a1, · · · , ad−1, b0, b1, · · · , bd−1)) = (b0, b1, · · · , bd−1, a0, a1, · · · , ad−1). (27)

For every (a0, a1, · · · , ad−1, b0, b1, · · · , bd−1) ∈ I+,
∑d−1
j=0 σj(aj − bd−1−j) > 0 holds, which

implies that
∑d−1
j=0 σj(bd−1−j − aj) < 0 holds. Since σj = σd−1−j , we have

∑d−1
j=0 σd−1−j(bd−1−j −

aj) =
∑d−1
j=0 σj(bj − ad−1−j) < 0. This implies that ψ((a0, a1, · · · , ad−1, b0, b1, · · · , bd−1)) ∈ I−.

Thus ψ(I+) ⊂ I−. Similarly, we have ψ(I−) ⊂ I+. Therefore ψ(I+) = I−. This leads to

Vol(I−) =

∣∣∣∣∣
∫
I−
dx

∣∣∣∣∣ =
∣∣∣∣∣
∫
ψ(I+)

dx

∣∣∣∣∣ . (28)

In addition, since ψ2 is the identity mapping (ψ2 = I), ψ is invertible and the inverse mapping is
the mapping itself, i.e., ψ−1 = ψ. This leads to

Vol(I−) =

∣∣∣∣∣
∫
I+
dψ−1(x)

∣∣∣∣∣ =
∣∣∣∣∣
∫
I+
dψ(x)

∣∣∣∣∣ =
∣∣∣∣∣
∫
I+

det(ψ)dx

∣∣∣∣∣ . (29)

Here det(ψ) is the determinant of the Jacobian matrix of the transformation ψ at x. Further,
considering that ψ is a linear mapping, ψ2 = I implies |det(ψ)| = 1. Thus (29) yields

Vol(I−) =

∣∣∣∣∣
∫
I+
dx

∣∣∣∣∣ = Vol(I+). (30)

Therefore Vol(I) = Vol(I+) + Vol(I−) = 2Vol(I+), or

Vol(I+)
Vol(I)

=
1

2
.

With this lemma, we can prove the following proposition.

Proposition 11. Let S be a population structure with positive symmetric structure coefficients,
i.e., σj = σd−1−j for all j, and Q the polytope asociated to all cooperation games for which A is
favored over B under S. Then

Vol(Q)
Vol(P)

=
1

2

(2d)!

(2d)!− (d!)2
,

which is a decreasing function of d, and is equal to 1/2 in the limit of large d.

Proof. It is easy to check that for every (a0, a1, · · · , ad−1, b0, b1, · · · , bd−1) ∈ J ,
∑d−1−j
j=0 σj(aj −

bd−1−j) ≤ (ad−1 − b0)
∑d−1−j
j=0 σj = (ad−1 − b0) < 0 holds true, which implies J ⊂ I−. Since
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J ⊂ I− and I = I− ∪ I0 ∪ I+, then Q = I+. Moreover P = I − J . Hence

Vol(Q)
Vol(P)

=
Vol(I+)

Vol(I)−Vol(J )
,

and by Lemma 4
Vol(Q)
Vol(P)

=
1

2

Vol(I)
Vol(I)−Vol(J )

.

Using Lemmas 2 and 3, we finish the proof.
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