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Abstract

The advent of cost-effective DNA sequencing has provided clinics with high-resolution

information about patient’s genetic variants, which has resulted in the need for effi-

cient interpretation of this genomic data. Traditionally, variant interpretation has been

dominated by many manual, time-consuming processes due to the disparate forms of

relevant information in clinical databases and literature. Computational techniques

promise to automate much of this, and while they currently play only a supporting role,

their continued improvement for variant interpretation is necessary to tackle the prob-

lem of scaling genetic sequencing to ever larger populations. Here, we present SSCM-

Pathogenic, a genome-wide, allele-specific score for predicting variant pathogenicity.

The score, generated by a semi-supervised clustering algorithm, shows predictive power

on clinically relevant mutations, while also displaying predictive ability in noncoding

regions of the genome.

1 Introduction

It is estimated that 60-70% of medical decision-making is influenced by diagnostic testing

and screening [38]. Such testing provides patients with actionable information that allows

them to understand their health risks and better plan their future treatment. Accordingly,

more informative and available diagnostic testing promises to not only benefit patients, but

also improve the efficiency of the health care system overall.
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Many clinical screens and diagnostics that have traditionally been based on biochemical

testing are today transitioning to a DNA genetic-testing backend. For example, noninvasive

prenatal screening (using sequencing to count circulating fetal DNA fragments in a pregnant

woman’s bloodstream) is currently supplementing ultrasound- and serum-protein screens for

fetal trisomies [15, 10]. Similarly, sequencing-based tests for inborn errors of metabolism

are used to screen or diagnose newborns with potentially lethal inherited diseases. The

transition towards sequencing-based workflows has been driven economically by the falling

cost of sequencing and technically by the high sensitivity and precision of DNA testing

compared to noisy protein or mass spectrometry assays [22].

However, the high resolution of sequencing data poses a challenge of variant interpreta-

tion: it is likely that in each patient, sequencing will reveal new DNA variants, and the clin-

ician must now determine if these newly-observed DNA variants are likely to be pathogenic.

These classifications drive all further risk calculations and medical counseling. Current stan-

dard methods of variant interpretation [33] are based on a time-consuming, manual inte-

gration of multiple data sources, involving extensive database and literature searches, use of

computational methods, and multiple rounds of review, taking on average nearly an hour per

variant [11, 30]. Frequently, this process does not yield sufficient information, requiring the

curator to classify it as a variant of uncertain significance (VUS). Depending on the disease,

the presence of a VUS may lead a patient to be prescribed additional screening. Naturally,

VUS’s can be a source of anxiety for patients who desire concrete results [26, 28]. Due to

this additional burden on patients, reducing VUS classifications is a paramount concern.

In theory, computational methods for variant classification could significantly reduce

this interpretation burden due to their inherit scalability and objectivity. In fact, the latest

guidelines for variant interpretation in clinical sequencing developed by the American College

of Medical Genetics and Genomics [33] acknowledge that in silico tools can “aid in the

interpretation of sequence variants”. However, they also emphasize that in silico results are

“only predictions” and should not be used as the sole evidence to make a clinical classification.

This recommendation is based on the middling accuracy of current computational tools

(listed in the guidelines as 65 - 80 % accuracy for missense variants and 60-80% specificity for

splicing variants). Improving the accuracy of computational methods is therefore necessary

to expand their usability in clinical sequencing.

1.1 Computational methods for variant classification

Computational methods typically provide a score per variant or region of the genome, which

can then be used to supplement and prioritize the information needed to further classify
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variants. Broadly speaking, these methods can be divided into several classes based both

on their domains of applicability and their biological basis: those that are defined only on

coding sequence, those predicting splice sites only, and those defined genome-wide. Typical

bases for computation are evolutionary conservation (the use of conservation over multiple

species as evidence for functional importance), structure/function (the use of biochemical

modeling or inference to predict effects on protein structure), functional inference (the use

of functional assays like chromatin accessibility to predict functional regions of the genome),

and ensemble techniques (which combine multiple methods to create a more accurate or

broader-domained model). A useful list of methods is presented in reference [33].

Thus far, most attention has been on scoring coding variants, particularly missense single

nucleotide polymorphisms (SNPs), due their frequency and obvious importance on gene

function. Within coding regions, one can use the amino acid translation, reading frame,

and similarity to other homologous sequences to gauge how disruptive a variant might be.

Many of these features have been heavily used in methods such as SIFT [29] and PolyPhen2

[3] which assign a deleteriousness score based on whether a variant disrupts a significantly

conserved region amongst homologous peptide sequences. Recent extensions have also been

made for scoring insertion-deletion (indel) variants (PROVEAN [6] and SIFT Indel [18]).

Often methods rely on simple probabilistic models to generate scores. LRT calculates how

likely a mutation happens given its region [7] and MAPP [37] compares evolutionary variation

via the expectation-maximization algorithm for phylogenetics.

Splicing-specific predictive models typically involve statistical learning over experimental

splicing data to model the probability that a given mutation will alter the splicing of a tran-

script. Predicting splicing is particularly important because aberrant splicing can create a

very large effect on a downstream protein with a very small nucleotide change (e.g., abroga-

tion of a canonical splice site causing the translation of an extra intron) and because splicing

variants can masquerade as silent or small-effect missense variants if interpreted as acting

through protein changes. A number of methods have been developed in this area, including

MutPred Splice [27], Human Splicing Finder (HSF) [9], MaxEntScan [40], and NNSplice [32].

A major limitation of these methods is the difficulty of predicting noncanonical splice sites,

which are often depleted in available training data.

In addition to specific functional impact (missense or splicing), one can also inspect

whether a variant disrupts a site that has been conserved, or under negative selection, over

long evolutionary time spans. Conservation scores such as GERP [8], PhastCons [35], and

PhyloP [31], which predict evolutionary conservation, have been shown to be nearly as

powerful as competing methods in predicting deleterious variants [21]. Moreover, these

scores can be defined for every base of the genome, enabling genome-wide interpretation

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2015. ; https://doi.org/10.1101/021527doi: bioRxiv preprint 

https://doi.org/10.1101/021527
http://creativecommons.org/licenses/by-nc/4.0/


of variants. However, used in isolation, evolutionary conservation scores do not take into

account a variant’s protein impact and often score regions of the genome, rather than specific

alleles.

Interpretation of non-splicing noncoding (intronic or intergenic) variants is made much

more challenging by our lack of understanding of the functional impact of these regions of the

genome. Newer genome-wide functional assays, such as those performed by the ENCODE

and Epigenome Roadmap projects (e.g. chromatin structure, transcription factor binding,

and DNA methylation) can provide information about the relative functionality of different

regions of the genome [5, 34]. Functional methods such as ChromHMM [12], SegWay [17],

and FitCons [16] use this information to predict whether a variant is likely to have functional

impact.

Finally, a variety of ensemble methods apply consensus over multiple underlying methods

to achieve higher accuracy and broader applicability. For example, the Condel method [14]

combines SIFT, PolyPhen-2 and MutationAssessor to better classify missense variation. A

particularly interesting recent method is CADD, which combines a large number of scores

with a unique training method to achieve high performance [21]. A major challenge in

training computational methods (particularly ensemble methods, which may require more

data to train each sub-method) is ascertainment bias: “easy” or “obvious” cases are likely

to be enriched in databases relative to the entire population of pathogenic variants [39].

CADD avoids this problem by training a classifier to separate known-benign from simulated

variants, since both classes can be obtained with little bias. This results in a strong classifier

for pathogenicity, likely because the simulated variants (drawn from a realistic distribution

of mutation rates without selection) will be enriched for negatively-functional variants versus

an observed population (which would be depleted for negatively-selected variants).

Despite the high performance of its ensemble model, CADD’s methodology has a number

of downsides. It uses a hand-tuned, very-high-dimensional support vector machine (SVM)

to make predictions whose output (distance from separating hyperplane) is not turned into

a final score in a straightforward manner. These scores are also difficult to interpret in a

probabilistic sense; there is no calibration between a hyperplane distance or CADD score

and the probability that a variant is pathogenic. Finally, adding new features into CADD is

not straightforward, as the method multiplied features together in a customized manner to

account for feature correlation and raise the dimensionality of the data [21].
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1.2 A new approach

In this work, we present SSCM, Semi-supervised Clustering of Mutations, a fully proba-

bilistic methodology for producing genome-wide, allele-specific variant pathogenicity scores.

The key idea is to avoid the need for hard-to-obtain fully labeled training data by train-

ing on only partially labeled data. Similar to the ideas introduced by Kircher et al., we

use high frequency variants as a partially labeled benign dataset and employ a simulation

procedure. However, we view the simulated variants as a mixture of benign and pathogenic

(Figure 1b), thus posing the classification problem as semi-supervised clustering. Using this

framework, we derive a new classifier, SSCM, and a new variant score, SSCM-Pathogenic,

that outperforms all of the most popular methods for pathogenicity classification across a

wide variety of large, relevant, and realistic datasets. We find, unlike many other scores,

that SSCM-Pathogenic’s discriminating power extends into many non-coding functional

regions, indicating possible future clinical applications. Interestingly, our score not only

detects pathogenic variants, but also distinguishes them from otherwise benign tolerated

loss-of-function mutations, an important corner case for high specificity. Lastly, our method

is interpretable and extensible allowing for additional future improvements. The source code

for SSCM is available as open source (https://github.com/counsyl/sscm).

2 Results

2.1 Classification benchmarks

To assess the effectiveness of our approach, we first benchmarked our score, SSCM-Pathogenic,

against the most successful and popular variant pathogenicity scores, including CADD, SIFT,

and PolyPhen2, as well as a purely conservation score, PhyloP. As ground truth, we used

pathogenic classifications from the Human Gene Mutation Database (2013.2, Professional

Edition) [36] and the ClinVar database Feb 2014 [4]. For benign variants, we filtered 1000

Genomes Project [1] variants by derived allele frequency (< 0.95 and ≥ 0.05).

With these benchmarks, we assessed performance across a broad variety of variants.

Within coding variants, missense variants are one of the most common and yet difficult to

classify. For missense variants, we find that SSCM-Pathogenic shows very strong pre-

dictive ability, outperforming the state-of-the-art, CADD, and many other popular protein

scores (Figure 2, Figure S1). This increased performance highlights the strength of our

learning approach, especially given that these method use many of the same features.

For noncanonical splice variants, another difficult yet clinically relevant case, we also

find that SSCM-Pathogenic obtains a significantly better receiver operator characteristics
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Figure 1: Overview of variant classification training and testing. (A) We trained
our model using two datasets: high frequency variants from the 1000 Genomes project,
specifically derived allele frequency (DAF) greater than 95%, which are very likely to be
benign and randomly simulated variants which are likely to be a mixture of benign and dele-
terious variants. By treating the simulated variants as unlabeled data, the model learns the
distributions of benign and deleterious variants without needing an explicit deleterious train-
ing dataset. Classification performance was assessed using distinct test datasets: pathogenic
mutations from HGMD and high frequency 1000 Genomes alleles (5% < DAF < 95%). (B)
The top two principle components of the main SSCM features (verPhyloP, verPhastCons,
GerpS, SIFT, PolyPhen) were determined for randomly simulated missense variants. A ran-
dom subset of variants are shown projected into this space from both the benign (blue) and
pathogenic (red) test datasets, which are fairly well separated in this feature space. In purple
contour lines, a kernel density of the simulated variant distribution is plotted. Notice that
it behaves as a mixture of both the deleterious and benign distributions.
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Variant class Pathogenic Benign SSCM-Pathogenic CADD

Missense HGMD 1000G 0.927 0.917
Missense ClinVar 1000G 0.942 0.930
NC Splice HGMD 1000G 0.914 0.850
NC Splice ClinVar 1000G 0.936 0.883

LoF-tolerant HGMD [23] 0.859 0.640
LoF-tolerant ClinVar [23] 0.868 0.679

Table 1: Area-under-the-curve (AUC) values for the receiver operator charac-
teristics of SSCM-Pathogenic and CADD on various variant classes. Shown are
results for three different variant classes: missense, noncanonical splice altering (NC splice),
and loss of function (LoF) tolerant. Results are fairly consistent across various definitions
for benign and pathogenic test datasets. Benign variants (n = 7, 633, 050) from the 1000
Genomes Project (1000G) were defined as variants with derived allele frequency ≥ 0.05 and
< 0.95. Benign LoF-tolerated variants (n = 228) were obtained from [23]. Pathogenic
variants were obtained from HGMD (n = 150, 460) and ClinVar (n = 47, 007).

(ROC) curve than CADD (Figure 3, Figure S2). This is mostly driven by our inclusion of

splicing scores (Figure S4) as features in our model, whereas CADD is relying mostly on

conservation scores to classify such variants. Interestingly, we find that SSCM-Pathogenic

obtains much higher sensitivity at the lowest false positive rates than all other methods,

including the splicing methods. Looking closer, we found that variants classified correctly

by SSCM-Pathogenic but missed by splicing methods, tended to be predicted based on

their conservation scores, indicating the importance of considering multiple lines of evidence.

Notably, SSCM-Pathogenic did not achieve a strictly higher ROC curve, suggesting more

could be done to better integrate these features.

The results for these methods and variant classes are summarized in Table 1.

2.2 Loss-of-Function tolerant mutations

We also benchmarked SSCM-Pathogenic on several loss-of-function (LoF) tolerant vari-

ants from MacArthur et al. [23]. Following terminology from MacArthur et al. [24], this

class of variants is particularly interesting because although these variants are damaging,

in that they disrupt a gene’s function, they are not pathogenic, so no disease is expressed.

Essentially, they are a group of benign variants that can help distinguish between variant

scores that merely consider whether a variant is damaging, while ultimately misclassifying

the variant’s pathogenicity. We compared SSCM-Pathogenic and CADD in their ability

to classify LoF-tolerated variants versus all pathogenic variants from HGMD. We observed

significant performance gains for SSCM-Pathogenic (Figure 4), indicating that SSCM-

Pathogenic is able to better distinguish between pathogenic and damaging variants, a
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Figure 2: Receiver operator characteristics (ROC) for pathogenic HGMD and
benign 1000 Genome missense variants. We obtained pathogenic variants from HGMD
(n = 63, 363) and benign variants by filtering 1000 Genomes Project variants (n = 20, 133) by
derived allele frequency(≥ 0.05 and < 0.95). SSCM-Pathogenic shows better performance
on both datasets. Area-under-the-curve (AUC) values are given along with 95% confidence
intervals for the AUCs generated by dataset bootstrap sampling.

Figure 3: Receiver operator characteristics for pathogenic HGMD and benign
1000 Genome noncanonical splice variants. We obtained pathogenic variants from
HGMD (n = 2658) and benign variants by filtering 1000 Genomes Project variants (n =
6154) by derived allele frequency (≥ 0.05 and < 0.95). SSCM-Pathogenic outscores
CADD on both datasets while offering better sensitivities for higher specificities than the
splice-site scores. Area-under-the-curve (AUC) values are given along with 95% confidence
intervals for the AUCs generated by dataset bootstrap sampling.
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Figure 4: Receiver operator characteristics for pathogenic HGMD and benign
LoF-tolerant variants. We obtained pathogenic variants from HGMD (n = 150, 460)
and MacArthur LoF-tolerant benign variants (n = 228). SSCM-Pathogenic shows better
performance on both datasets. Area-under-the-curve (AUC) values are given along with 95%
confidence intervals for the AUCs generated by dataset bootstrap sampling.

property that is especially important in a clinical setting.

We believe the increased performance comes from SSCM-Pathogenic’s ability to better

weight conflicting information. For the LoF-tolerant variants, the impact scores (PolyPhen

and SIFT) tend favor pathogenicity, while the conservation scores (PhyloP) are in general

quite low indicating mutations should be more tolerated. In fact, conservation alone (verte-

brate PhyloP) is a fairly good classifier for LoF-tolerant variants (Figure 4).

To further investigate SSCM-Pathogenic’s ability to separate pathogenic and damag-

ing mutations, we identified macroscopic genomic trends using our variant-level score. Using

LoF-tolerant and recessive genes as defined in MacArthur et al. [23] and autosomal dominant

genes from the ClinVar gene database [4], we found that SSCM-Pathogenic is lower on

average towards the end of a gene’s transcribed unit, while also finding that different classes

showed a spectrum of pathogenicity (Figure 5). The dominant were the most pathogenic on

average, followed by recessive and LoF-tolerant. We hypothesized that these results were

due conservation features, and showed that vertebrate PhyloP shows the same trend that

SSCM-Pathogenic shows in Figure S3. Furthermore, CADD was unable to produce as

clear a separation between the gene classes in Figure S3, even though it included the same

conservation features.

To better quantify the separation, we generated a gene-level score based on our variant

score. For each gene, we computed a new score, LoFA (loss-of-function average), which is the
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Method Gene classes p value

SSCM-Pathogenic Dominant vs. Recessive 3.198× 10−7

SSCM-Pathogenic Dominant vs. LoF-tolerant 8.313× 10−16

SSCM-Pathogenic Recessive vs. LoF-tolerant 1.089× 10−14

CADD Dominant vs. Recessive 0.002
CADD Dominant vs. LoF-tolerant 0.014
CADD Recessive vs. LoF-tolerant 0.228

Table 2: Two-tailed t-test results (α = 0.05) for distinguishing between gene
classes using “loss-of-function average” (LoFA) for various pathogenicity scores.
SSCM-Pathogenic is able to successfully separate all three gene classes from each other,
indicating SSCM-Pathogenic can distinguish between damaging and pathogenic muta-
tions. In contrast CADD is only able to significantly distinguish dominant genes from the
other classes.

average SSCM-Pathogenic score for all stop-gained variants in the gene. Assuming that

all stop-gained variants were also loss-of-function, this score would reflect the importance of

the gene itself. For example, in a LoF-tolerated gene, all the stop gained mutations should

be benign. We found the LoFA for SSCM-Pathogenic across the same classes of genes

(LoF-tolerant, recessive, and dominant), finding significant separation according to the t-test

(Figure 6, Table 2). These results also agree with Khurana et al.’s results with MultiNet

[20], which showed the same gene classes can be distinguished with a gene-network based

method. CADD, on the other hand, was unable to separate LoF-tolerant from recessive

genes nor recessive from dominant genes according to the same set of t-tests. Interestingly,

vertebrate PhyloP also passed the same t-tests, again suggesting that conservation metrics

are responsible for picking up the difference between damaging and pathogenic variants and

that SSCM-Pathogenic is capitalizing on conservation better than CADD.

2.3 Noncoding regions

Although noncoding region mutations are currently more difficult to interpret relative to mis-

sense and splice mutations, we investigated the behavior SSCM-Pathogenic for such vari-

ants in order better understand the score’s generality. SSCM-Pathogenic includes three

independent ENCODE features (H3K27Ac, H3K4Me3, and H3K4Me1), which we expect to

provide the most power in noncoding regions, since these marks are often good predictors

of active enhancer and promoter regions. Computing the average SSCM-Pathogenic over

simulated intronic, intergenic, and untranslated regions (UTRs), we found that 5’ UTRs

were enriched for functional elements, resulting in more pathogenicity, followed by 3’ UTRs,

intronic, and intergenic regions (Figure 7). These results are largely consistent with those
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Figure 5: The average SSCM-Pathogenic by coding sequences (CDS) distance
away from the end of the exon. We expected variants towards the end of genes to
be less pathogenic, and this trend is reflected by SSCM-Pathogenic across a variety of
gene classes. Interestingly, the various gene classes show significantly different levels of
pathogenicity and they follow the inheritance patterns (LoF-tolerant the least pathogenic
and dominate the most).

Figure 6: Average SSCM-Pathogenic LoFA scores for three different classes of
genes. LoF-tolerant, recessive, and dominant genes were significantly distinguished accord-
ing to the t-test (α = 0.05). The clear separation of LoF-tolerant and recessive genes shows
SSCM-Pathogenic’s ability to distinguish between damaging and pathogenic mutations,
a property shared by conservation metrics like PhyloP, but not CADD.
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Figure 7: Distribution of SSCM-Pathogenic over different noncoding regions.
SSCM-Pathogenic shows a clear difference among UTRs, intronic, and intergenic regions
and supports results that the 5’ UTRs are enriched whereas intronic and intergenic regions
are depleted for pathogenicity. Note that all values are within [0, 1] even though the density
curve extends slightly outside these bounds.

found by Gulko et al. [16], who found that 3’ and 5’ UTRs are more likely to affect the

fitness of an organism than intronic and intergenic regions. One difference, however, was

that Gulko et al. found that 3’ UTRs are more likely to affect fitness than 5’ UTRs.

2.4 Comparison to supervised model

We also compared our methodology against a simple, supervised learning approach. We fitted

a model using the same features, except we performed a maximum likelihood fit to HGMD

pathogenic mutations and 1000 Genomes benign mutations, rather than clustering partially-

labeled simulated data. This model performs marginally better than SSCM-Pathogenic

on ClinVar missense and splice mutations (Figure S5), which was expected given the overall

similarity between mutations in ClinVar and HGMD, resulting in test data very similar to the

training. However, on LoF-tolerant mutations, SSCM-Pathogenic slightly outperformed

the supervised model (Figure S6). Further examining the supervised model revealed the

distributions it found had lower variance and its scores tended to be more extreme, which is

typical of overfitting.
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3 Materials and Methods

3.1 Training data and features

The first step in our statistical learning method was to obtain data. Our training datasets

mimicked those used by Kircher et al. First we defined a “known benign” data set by filtering

variants from the 1000 Genomes Project [2] by high derived allele frequency (≥ 0.95), as we

assumed that alleles with extremely high frequency were benign, resulting in a set of 881,924

SNPs. Next, we generated a “simulated” data set of 1,405,358 variants using CADD’s variant

simulation software (http://cadd.gs.washington.edu/static/NG-TR35288_Supp_File1_

simulator.zip, downloaded Feb 9, 2014). The program mutates a locus according to local

mutation rates in a sliding 1.1Mb window. These local mutation rates were obtained by

comparing the human genome to an inferred human-chimpanzee ancestor and bases were

changed according to a genome wide-determined substitution matrix. For all analyses, we

used the same simulation parameters as listed in the supplement of [21]. See Figure 1a for

an overview of the training and testing datasets and workflow.

All variants were annotated with features from Ensembl’s Variant Effect Predictor version

68 [25]. These annotations cover a wide range of scores, from conservation features (Phast-

Cons, phyloP, GERP++, etc.) [35, 31, 8] and missense variant scores (SIFT, PolyPhen2)

[29, 3] to an array of regulatory scores (ENCODE) [5]. We added three splice site features

to the datasets, namely HSF, NNSplice, and MaxEnt, provided by Interactive Biosoftware’s

Alamut Batch v1.1.11 [9, 32, 40, 19].

Although VEP provides 63 annotations for each variant, our final model only included

12 features total (Table 3). Many features were initially not included because they had no

immediate tie to pathogenicity (e.g. GC count). To select out of the remaining features,

we first allocated a portion of the HGMD and ClinVar pathogenic variants and a portion

of the 1000 Genomes benign variants into a validation set. We chose the set of features

that maximized the validation score, resulting in a set of 9 features from the original 63

annotations, plus the three additional splice features.

3.2 Generative model for mutations

We first designed a generative model for the simulated dataset, specified as follows. Let X =

{xi}Ni=1 represent the simulated variants. We assume two clusters in the data: pathogenic

and benign, and then assume a hidden variable zi which represents a variant’s assignment

to either the pathogenic cluster or benign cluster. Each variant has a set of D features

associated with it, xi = {fij}Dj=1. Features for a variant, which could be either vector
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Feature Name Description

verPhyloP Vertebrate PhyloP is a conservation score gen-
erated by comparing alleles to those generated
by a neutral phylogenetic evolution model for
vertebrate species. Coverage: genome-wide

verPhastCons Vertebrate PhastCons is a conservation score
generated by an alignment with a phylo-
genetic hidden Markov model. Coverage:
genome-wide

Gerp++ RS Gerp++ RS is a conservation score gener-
ated by taking a multiple sequence alignment
and finding “constrained elements”, or regions
where fewer substitutions occur. Coverage:
genome-wide

SIFT SIFT predicts the probability a variant will af-
fect protein function by comparing the amino
acid sequence to similar sequences in other
proteins. Coverage: missense

PolyPhen2 PolyPhen2 predicts whether a mutation is
damaging to protein structure by using fea-
tures extracted from sequence alignment.
Coverage: missense

HSF HSF predicts the effect of mutations in splice
sites by comparing sequences to known motifs.
Coverage: splice sites

MaxEnt MaxEnt uses maximum entropy modeling to
discover 3’ and 5’ splicing sites. Coverage:
splice sites

NNSplice NNSplice uses a neural network to predict
splie site locations. Coverage: splice sites

ENCODE H3K27Ac A histone marker from the ENCODE project
that predicts enhancer and promoter sites.
Coverage: genome-wide

ENCODE H3K4Me3 A histone marker from the ENCODE project
that predicts enhancer and promoter sites.
Coverage: genome-wide

ENCODE H3K4Me1 A histone marker fom the ENCODE project
that predicts promoter sites. Coverage:
genome-wide

Table 3: List of all the features used in our method that resulted in the largest validation
accuracy.
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or scalar, are conditionally independent given the cluster assignment zi and each have a

specific distribution drawing its parameters from the parameter matrix θ, pj(fij|θzi,j). We

also assumed a multinomial distribution on zi with parameter π with a Dirichlet prior on π

with hyperparameter α. This generative model is pictured in Figure 8:

π|α ∼ Dirichlet
( α
K
,
α

K
, . . . ,

α

K

)
zi|π

i.i.d.∼ Multinomial(1,π)

fij|zi, θ
ind.∼ pj(fij|θzij)

We assigned univariate Gaussian or multinomial distributions to each of the D features. We

found these distributions to be both convenient To mitigate the effect of the naive Bayes

assumption, we allowed grouping features into vectors and assigning a multivariate Gaussian

distribution to the compound feature vector. To find clusters in this generative model, we

used the expectation-maximization algorithm to estimate the parameters π and θ. EM

iteratively calculates posterior probabilities of the hidden variable zi for each variant and

then updates the values of the parameters π and θ to maximize the likelihood of the data

given the soft assignments of zi.

τ
k(t)
i = p(zi = k|xi,π(t), θ(t)) (1a)

The updates for the parameter π = [π1, π2, ..., πK ] were:

π
(t+1)
k =

α
K
− 1 +

∑N
i=1 τ

k(t)
i

N −K + α
(1b)

For a Gaussian feature for the cluster assignment zi = a and feature j = b, the updates are:

µ
(t+1)
ab =

∑N
i=1 τ

a(t)
i fib∑N

i=1 τ
a(t)
i

(1c)

σ
2(t+1)
ab =

∑N
i=1 τ

a(t)
i

(
fib − µ(t+1)

ab

)2
∑N

i=1 τ
a(t)
i

(1d)

For a multinomial feature for the cluster assignment zi = a and feature j = b, the updates

for each component v of the parameter vector pab = [pab0, pab1, . . . , pabL] are:

p
(t+1)
abv =

∑N
i=1 I(fib = v)τ

a(t)
i∑L

l=1

∑N
i=1 I(fib = l)τ

a(t)
i

(1e)
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α

π

zi θ

fij

D
N

Figure 8: A generative model for a simulated variant dataset with independent
features. Conditioned on its assigned cluster zi (e.g. benign, deleterious), a variant i has
several independent features fij (e.g. conservation, amino-acid features, functional scores).
These features each have their own distribution, either a multinomial or multivariate Gaus-
sian, which combined have parameters θ. Cluster assignments are modeled with a multi-
nomial prior of mixing weights π, which in turn has a Dirichlet prior with hyperparameter
α.

.
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For a multivariate Gaussian feature for the cluster assignment zi = a and feature j = b, the

updates are:

µ
(t+1)
ab =

∑N
i=1 τ

a(t)
i fib∑N

i=1 τ
a(t)
i

(1f)

Σ
(t+1)
ab =

∑N
i=1 τ

a(t)
i

(
fib − µ

(t+1)
ab

)(
fib − µ

(t+1)
ab

)T
∑N

i=1 τ
a(t)
i

(1g)

To incorporate the labeled known benign dataset into the algorithm, we obtained maxi-

mum likelihood estimates of the parameters from the data and initialized the parameters of

the first cluster in the EM to these estimates. We also held the parameters of the benign

cluster constant throughout the algorithm, allowing only the pathogenic cluster’s parameters

to be updated on every iteration.

We ran EM until convergence, a process that took about 8.5 hours on a single core of a

2.9GHz Linux server. Multiple random initializations of the parameters ended up with the

same set of parameter values, implying that EM terminated at a reasonable local maximum.

Scores for unknown variants were generated by calculating the posterior probability of as-

signment to each of the clusters; for interpretability and comparability, we often used the

negative posterior log probability of belonging to the benign cluster to match the scale of

CADD.

3.3 Handling Missing Data

Both the simulated dataset and the known benign dataset had large amounts of missing data;

over 50% of values in the files were N/A. This was largely due to features being defined only

in certain regions of the genome. For example, SIFT is only defined on missense variants

whereas PhyloP and PhastCons are defined on a majority of the genome. To account for

these missing values in a Bayesian manner, we integrated out the features that were not

present in a particular variant. Due to the naive Bayes assumption, calculating the posterior

probability of a mutation belonging to a cluster only involved using likelihoods of features

present at a locus. We believe this was a reasonable way to treat the missing data, as the

probabilistic model calculated a posterior probability conditioned on only the data available.

We also modified the updates for the multivariate Gaussian parameters by calculating

the mean vector and covariance matrix on a feature by feature basis, rather than in a vector-

ized manner to handle missing data. Due to the missing data, there was the possibility of a

non-positive semidefinite covariance matrix, which we corrected by computing the eigende-

composition, setting the negative eigenvalues to a slightly positive number, and regenerating
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the matrix. However, this problem only occurred when there were very small amounts of

data.

4 Discussion

The growing use of genome sequencing in the clinic has presented many challenges, one

of the most prominent being the need to accurately and thoroughly interpret a patient’s

genetic variants and their influence on disease status or risk. While many other aspects

of genomic testing are undergoing dramatic improvements in efficiency and performance,

current approaches to variant classification are manually intensive and time-consuming, thus

creating an “interpretation bottleneck” within the overall genomic work flow. Motivated

by this challenge, we have introduced a new computational method for classifying variant

pathogenicity, which we have demonstrated out-performs all of the most popular current

approaches.

We have obtained these improvements by carefully posing the problem as semi-supervised

learning, which avoided the long-standing challenge of obtaining unbiased training data.

While there are large, growing databases of variant classifications, such as HGMD and Clin-

Var, these datasets are still dominated by fairly obvious cases. Accordingly, we have found

that directly training on such data overfits on variants for which classification is already

easiest (Figure S6). While it has been possible for quite sometime to obtain comprehensive

benign variant examples by conditioning on high allele frequency in public databases, such as

1000 Genomes [1] and the Exome Sequencing Project (ESP) [13], comprehensive pathogenic

variants have been hard to come by. We overcame this challenge by simulating variants

across the genome using a model of realistic mutation rates. This produced a distribution

of variants in the absence of natural selection, thus enriching for pathogenic variants. We

found that this simulated distribution in combination with a labeled benign dataset provided

enough information to learn a classifier for pathogenicity that showed far less bias than a

fully supervised model.

To better understand our performance gains, we inspected the power of each of our

features. Overall, we found that evolutionary conservation consistently contributed to our

score’s performance. This was the case in distinguishing merely damaging loss-of-function

variants from pathogenic (Figure 4) and in general trends such as the depletion of pathogenic

truncating variants from the 3’-end of genes (Figure S3). This is consistent with the obser-

vation that conservation plays a significant role in the CADD method’s performance [16].

However, in the case of SSCM-Pathogenic there are many instances where other features

play a more important role. For missense mutations, SSCM-Pathogenic benefits from
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missense-specific features such as SIFT and PolyPhen2 and outperforms the pure conserva-

tion score PhyloP (Figure 2) and in intronic and intergenic regions benefits from ENCODE

features (Figure 7).

Although, we have demonstrated clear performance gains, this work still only provides

one piece of the total evidence needed to properly classify a variant in a clinical setting [33].

Going forward, additional work will be needed to fully realize the potential for computational

methods to address the interpretation bottleneck that exists in current genomic testing.

A major benefit of our parametric generative model is its simplicity and interpretabil-

ity. However, given that this approach uses simulated data, large amounts of data can be

obtained, and thus non-parametric techniques are likely feasible. For example, approaches

such as Dirichlet-process mixture models or kernel density estimation may be able to better

capture the complex boundaries between benign and pathogenic clusters.

Although we classified two clusters in this work (benign and pathogenic) there are signs

that multiple distinct clusters may be present (Figure 1, Figure S7, Figure S8). For example,

there may be multiple kinds of pathogenic variants, each with their own characteristics. With

unsupervised learning techniques, we could discover new classes of variants or learn more

about known variants.

Two important aspects of SSCM are its reproducibility and extensibility. The choice of

datasets to train and test on is of utmost importance and all projects should be open about

these decisions to avoid overlapping datasets in the process. To help with this aspect, we

are open-sourcing our method and have been explicit about all training and testing datasets.

We also aimed to make our score as extensible as possible. Our naive Bayes assumption and

treatment of missing data allows for any annotation to be a part of the process. This enables

future scores to be added with ease.
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5 Supplementary Material

Figure S1: Receiver operator characteristics (ROC) for pathogenic ClinVar and
benign 1000 Genomes missense variants. We obtained pathogenic variants from Clin-
Var (n = 18783) and benign variants by filtering 1000 Genomes Project variants (n = 20133)
by derived allele frequency (0.05 ≤ DAF < 0.95). Area-under-the-curve (AUC) values are
given along with 95% confidence intervals for the AUCs generated by dataset bootstrap
sampling.
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Figure S2: Receiver operator characteristics (ROC) for pathogenic ClinVar and
benign 1000 Genomes noncanonical splice variants. We obtained pathogenic variants
from ClinVar (n = 290) and benign variants by filtering 1000 Genomes Project variants
(n = 6158) by derived allele frequency (0.05 ≤ DAF < 0.95). Area-under-the-curve (AUC)
values are given along with 95% confidence intervals for the AUCs generated by dataset
bootstrap sampling.

A B

Figure S3: The average vertebrate PhyloP and CADD score in terms of cod-
ing (CDS) distance upstream of the gene’s stop codon. (A) Conservation appears
to explain much of SSCM-Pathogenic’s ability to identify macroscopic gene trends (see
Figure 5). (B) In contrast, CADD does not as clearly distinguish such genes either overall
or along the length of the coding sequence.
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Figure S4: Receiver operator characteristics (ROC) for pathogenic HGMD and
benign 1000 Genomes noncanonical splice variants. We obtained pathogenic variants
from HGMD (n = 2658) and benign variants by filtering 1000 Genomes Project variants
(n = 6154) by derived allele frequency (0.05 ≤ DAF < 0.95). This particular ROC shows
the same model used with and without the inclusion of splice features (HSF, MaxEntScan,
NNSplice). In this scenario, the inclusion of splice features increases performance. Area-
under-the-curve (AUC) values are given along with 95% confidence intervals for the AUCs
generated by dataset bootstrap sampling.
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Figure S5: Receiver operator characteristics (ROC) for pathogenic HGMD and
benign 1000 Genomes missense variants. We obtained pathogenic variants from HGMD
Pro (n = 63363) and benign variants by filtering 1000 Genomes Project variants (n =
20133) by derived allele frequency(≥ 0.05 and < 0.95). SSCM-Pathogenic shows better
performance on both datasets. This ROC compares models trained with semisupervised
learning and with supervised learning. Area-under-the-curve (AUC) values are printed along
with 95% confidence intervals for the AUCs generated by dataset bootstrap sampling.
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Figure S6: Receiver operator characteristics (ROC) for a LoF-tolerant mutations
with semi-supervised learning model and a supervised learning model. We ob-
tained pathogenic variants from HGMD (n = 150460) and MacArthur LoF-tolerant benign
variants (n = 228). This particular ROC shows the same model trained with semi-supervised
learning and with supervised learning. In this scenario, the semi-supervised model performs
marginally better. Area-under-the-curve (AUC) values are given along with 95% confidence
intervals for the AUCs generated by dataset bootstrap sampling.

Figure S7: PCA plot of NC splice mutations. The top two principal components of
the main SSCM features (verPhyloP, verPhastCons, hsf, GerpS, MaxEntScan, NNSplice)
were determined for randomly simulated NC splice variants. A random subset of variants
are shown projected into this space from both the benign (blue) and pathogenic (red) test
datasets. In purple contour lines, a kernel density of the simulated variant distribution is
plotted.
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Figure S8: PCA plot of noncoding-region mutations. The top two principle compo-
nents of the main SSCM features (verPhyloP, verPhastCons, GerpS, ENCODE H3K27Ac,
ENCODE H3K4Me3, ENCODE H3K4Me1) were determined for randomly simulated inter-
genic, regulatory and intronic variants. A random subset of variants are shown projected
into this space from both the benign (blue) and pathogenic (red) test datasets. In purple
contour lines, a kernel density of the simulated variant distribution is plotted.
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