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Abstract

The advent of whole-genome sequencing has generated increased interest in modeling the structure

of strain mixture within clinicial infections of Plasmodium falciparum (Pf). The life cycle of the

parasite implies that the mixture of multiple strains within an infected individual is related to the

out-crossing rate across populations, making methods for measuring this process in situ central to

understanding the genetic epidemiology of the disease. In this paper, we show how to estimate

inbreeding coefficients using genomic data from Pf clinical samples, providing a simple metric for

assessing within-sample mixture that connects to an extensive literature in population genetics and

conservation ecology. Features of the P. falciparum genome mean that some standard methods for

inbreeding coefficients and related F -statistics cannot be used directly. Here, we review an initial

effort to estimate the inbreeding coefficient within clinical isolates of P. falciparum and provide

several generalizations using both frequentist and Bayesian approaches. The Bayesian approach

connects these estimates to the Balding-Nichols model, a mainstay within genetic epidemiology.

We provide simulation results on the performance of the estimators and show their use on ∼ 1500

samples from the PF3K data set. We also compare the results to output from a recent mixture model

for within-sample strain mixture, showing that inbreeding coefficients provide a strong proxy for the
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results of these more complex models. We provide the methods described within an open-source R

package pfmix.

Introduction

While genetic factors play a crucial role in the emergence of drug resistance within (Pf), many

aspects of the genetic epidemiology of the parasite remain obscure (Snow et al., 2005; Tibayrenc,

1998). The beginnings of a global perspective on the genetic structure of parasite populations

emerged from the analysis of whole-genome sequencing data (WGS) derived from ∼ 200 parasite

genomes collected directly from clinical patients in six countries on three continents (Manske et al.,

2012). This study gave further evidence for the widespread presence of within-isolate strain mixture

and significant amounts of variation in its degree across continents. In grappling with the complexity

of WGS data, the study departed from standard approaches by attempting to quantify the amount

of within-sample variation measure using an inbreeding coefficient, fws, a form of F-statistic. Strain

mixture is ordinarily assessed via multiplicity of infection (MOI) (Conway et al., 1991; Hill and

Babiker, 1995; Hill et al., 1995), using methods for inferring the number of strains from single-

nucleotide polymorphisms (SNPs) or other typing technologies applied at a small number of loci.

Researchers have subsequently shown how finite mixture models can infer MOI using WGS but the

under the heading of complexity of infection (COI) as these model can capture additional mixture

features (Galinsky et al., 2015; O’Brien et al., 2015). Still, inbreeding coefficients have a long

connection to population genetics and conservation biology and may be of interest to researchers

connecting Pf studies to other genetic contexts (Hedrick and Kalinowski, 2000; Weir and Cockerham,

1984). This paper presents a collection of statistical methods for estimating fws, details their

connection to COI estimates, and confirms the variation in fws values across countries using the

PF3K data set.

Inbreeding coefficients and the F-statistics from which they derive are measurements of the

departure of allelic heterozygosity observed within a population from those expected at Hardy-

Weinberg equilibrium (HWE) (Weir and Cockerham, 1984; Nei, 1977). HWE specifies the dis-

tribution of alleles assuming panmixia, a population exhibiting perfectly random mating with an

absence of mutation, migration, drift, selection or other effects (Wright, 1965). F-statistics cali-

brate the empirical allele distribution within a subpopulation against those expected under HWE,
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ranging from a value of one (no mixture) to zero (perfect HWE-type mixture). In the context of

comparing the parasites’ genetic diversity within a single infected individual relative to the local

geographic population (and absent any geographic structuring of the population, i.e. the Wahlund

effect), these statistics effectively become inbreeding coefficients. Specifically, the term fws refers to

the inbreeding between a subpopulation w and a sample s; similarly, fiw indicates the amount of

genetic correlation between a larger popultion i and subpopulation w. Since we are only concerned

here with estimates within a single sample relative to the local population, we will deprecate the

paired subscripts and refer to our quantity of interest as f , or fi for a specific sample i.

F-statistics have proven to be an effective and extremely popular means for investigating species’

population structure from both allelic and genomic data (Weir and Cockerham, 1984; Rousset,

1997; Weir and Hill, 2002). However, standard software tools assume specific ploidy structures

incommensurate with WGS data from P. falciparum and so cannot be used directly. The critical

difference is that, within a human host, Pf exists only in the haploid stage of its life-cycle (Hall et al.,

2005). Since short read WGS data cannot yet capture full haplotypes, individual reads cannot be

uniquely identified with their strain of origin. Without being able to associate reads to individual

P. falciparum strains, we cannot see any ’out-of-the-box’ use of standard F -statistics approaches

with this new data.

Still, several earlier works connect the framework of F-statistics to Pf within-sample mixture.

These concepts – while not under the heading of inbreeding coefficients – undergird much of the

seminal work on MOI estimation Hill and Babiker (1995); Hill et al. (1995). More recently, Manske

et al. (2012) provides an initial estimator for inbreeding coefficients using WGS based on the slope of

a modified regression line between the expected heterozygosity assuming population-level HWE and

the observed heterozygosity within a sample. Auburn et al. (2012) explores the connection between

this estimator and standard MOI approaches by comparing these estimates with MOI values inferred

by genotyping the msp-1 and msp-2 genes, showing strong correlation between these values in their

sample sets. This paper seeks to clarify this estimator by placing it more firmly within the larger

statistical tradition around F -statistics. .

This paper proceeds as follows. First, we provide an overview of the data and our notation. We

present the initial estimator employed by (Manske et al., 2012) for estimating fi and provide two ad-

ditional frequentist estimators and detail their connection to classical F statistics. We then proceed
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to describe a Bayesian approach for these statistics that derives from the the Balding-Nichols model.

We compare these estimators in a set of simulations. To consider their empirical performance, we

examine their correlation in 344 Ghanaian samples and compare the Bayesian estimates to COI

estimates. We then present estimates for the PF3K sample set, confirming significant variation in

within-sample mixture across countries. We conclude with a brief discussion of the strengths and

limitations of our approaches, and possible future directions for modeling within-sample mixture

using WGS.

1 Data and models

1.1 Data and preparation

The data used comes from Release 3.0 of the Plasmodium falciparum 3000 Genomes project (PF3K),

a publicly available resource of WGS from over 2600 clinical and laboratory Pf samples. An overview

of this project, collection protocols, and a full sequencing protocol can be found at the consortial

website www.malariagen.net/projects/parasite/pf. For all the samples considered below data come

from Illumina HiSeq sequencing applied to clinical Pf samples collected from 14 countries. Starting

from the publicly available vcf files, we further excluded samples from Nigeria and Senegal due to

sample size and differing sequencing technology, respectively. We further filtered variants by first

segregating samples by country and then including only SNPs that exhibited at least 20x coverage

at more than 80% of variant positions, and removed SNPs that had at least 20x coverage in all

of the remaining samples. This yielded variable number of SNPs within countries, from 1108 in

Cambodia to 6596 in Laos. The number of samples within each country ranged from 35 for Laos to

344 in Ghana.

1.2 Notation

Within a country, we label the samples i = 1, · · · , N and the SNPs by j = 1, · · · ,M . At SNP j

within sample i, we observe rij reads that agree with the reference, and nij reads that are different

from the reference. We write pij for the allele frequency for reference allele for SNP j in sample i and

estimate it via the maximum-likelihood estimator (MLE) for proportions: p̂ij =
rij

rij+nij
. Similarly,

we write pj as population-level reference allele frequency for each SNP and estimate according to
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the across-sample MLE:

p̂j =
N∑
i=1

nij

/ N∑
i=1

(rij + nij). (1)

All MLEs are calculated by country. We provide Table 1 as a reference to the reader for notation.

1.3 A previous frequentist estimator for fi, and two alternatives

In Manske et al. (2012), the authors provide an initial approach to estimating fi. We refer to

this estimator as f (m)
i to contrast it with subsequent estimators. For each sample i, the esti-

mator first partitions alleles into 10 equally-spaced bins based on their minor allele frequency:

(0, 0.05), · · · , (0.45, 0.50) . Within each bin, b, the averaged expected heterozygosity assuming

country-level HWE is calculated by

He(b) =
1

Mb

Mb∑
k∈b

2 · p̂k · (1− p̂k), (2)

where Mb is the number of SNPs within bin b. The averaged observed heterozygosity within each

bin and each sample is calculated by

Ho(b, i) =
1

Mb

Mb∑
k∈b

2 · p̂ik · (1− p̂ik). (3)

Finally, f̂ (m)
i is calculated as 1 − β where β is the slope found by regressing the Ho(b, i) values

against He
b values centered within their respective allele frequency bins and constrained to pass

through the origin. This is the initial estimator.

The binning procedure, while stabilizing the estimator against influence from an excess of low

frequency alleles common within samples, may also introduce estimator bias. We can remove this

effect by discarding the binning procedure in favor of directly regressing observed heterozygosity for

each SNP against the expected value, still constrained to pass through the origin. This provides a

closed-form expression for the regressed estimator, f (r)i , as

f̂
(r)
i = 1−

M∑
j=1

p̂j · (1− p̂j) · p̂ij · (1− p̂ij)

M∑
j=1

p̂2j · (1− p̂j)2
. (4)
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We can also create a similar estimator more transparently derived from the ideas underpinning

traditional F -statistics in the following way. For a single SNP j, suppose fi to be the fraction of the

population-level heterozygosity equal to the difference between the population-level heterozygosity,

Hp
j and the sample-level heterozygosity, H i

j that is,

fi ·Hp
j = Hp

j −H
i
j . (5)

Dividing through by Hp
j gives an estimate for fi for the SNP j. Averaging across all SNPs and

taking the ratio of expectations to be the expectation of the ratios gives the estimator

f̂
(d)
i = 1−

M∑
j=1

p̂ij(1− p̂ij)

M∑
j=1

p̂j(1− p̂j)

. (6)

We call this the direct estimator, since it contains the critical ratio of the mean observed het-

erozygosity over the mean expected heterozygosity characteristic of F-statistics.

For each of these estimators, we employ a bootstrap approach to estimate the variance in the

estimates for confidence intervals (?Efron and Tibshirani, 1994). The bootstrap works by assuming

that the empirically observed distribution – here, the allele frequencies – provides a reasonable

approximation to the true empirical distribution. By repeatedly subsampling with replacement

from the observed distribution and recalculating the estimator at each iteration, we build up a

distribution of estimates from which confidence intervals can be calculated.

1.4 Bayesian model framework

We can estimate inbreeding coefficients comparable to the above estimators by employing the

Balding-Nichols model, a widely used method for measuring inbreeding in other genetic contexts

(Balding, 2003). This approach also has strong similarities to previous work in the context of Pf

Hill and Babiker (1995); Hill et al. (1995). In using this model, we make several simplifying as-

sumptions. We treat SNPs as unlinked (i.e. no linkage disequilibrium) and assume that individual

parasites within a sample represent a random sample of the surrounding population. We also as-
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sume that read counts are sampled identically, independently, and represent an unbiased sample of

allele frequency pij .

1.4.1 Likelihood and priors

The approach for the Bayesian estimator adapts the Balding-Nichols model of allele frequency

within inbred subpopulations to the specific context of P. falciparum WGS data (Balding, 2003;

Balding and Nichols, 1994). In P. falciparum the relevant subpopulation is the collection of parasites

within a clinical sample. For sample i and SNP j, Conditional upon an inbreeding coefficient fi and

a population-level allele frequency pj , the Balding-Nichols model gives the allele frequency pij as a

Beta distribution:

pij ∼ B
(
1− fi
fi

pj ,
1− fi
fi

(1− pj)
)
. (7)

Since the read counts are assumed to be identical and independent, pij is drawn from a Beta

distribution, and the probability of the data is binomial, we use the conjugacy of these distributions

to eliminate the dependence on the unknown pij and give a Beta-binomial distribution for the

likelihood at a site j and position j:

P(rij , dij |pj , fi) =

(
rij + nij
nij

)B(nij + 1−fi
fi
pj , rij +

1−fi
fi

(1− pj))

B(1−fifi
pj ,

1−fi
fi

(1− pj))
, (8)

where B( · , ·) is the beta function. Since we assume independence by site and by sample, the

complete likelihood of the data, D conditional upon the inbreeding coefficients for all samples

within the population, f = (f1, · · · , fN ) and the allele frequency for all SNPs p = (p1, · · · , pM )

becomes

P(D|f ,p) =
N∏
i=1

M∏
j=1

P(rij , rij |fi, pj). (9)

The only prior information we have about the fi values suggests that high levels of inbreeding are

common but not obligatory in west African populations, and we quantitatively interpret this as a

uniform prior on each fi between zero and one. We place a uniform prior distribution on each allele

frequency, although we have eliminated rare variants as part of data cleaning described in Section

2.1.
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1.4.2 Inference

Since the posterior distribution is not known in closed form, we employ a standard random-walk

Metropolis-Hastings Markov chain (MCMC) approach to numerically approximate it (?Gelman

et al., 2013). The Metropolis-Hastings algorithm constructs a discrete-time Markov chain over

the parameter space in such a way that the posterior distribution of the chain is the stationary

distribution of the chain. This requires that at a given iteration in the chain we move from the

current parameter state x to new parameter state x′ with probability α given by

α = min
(
P(x′|D)
P(x|D)

· P(x
′ → x)

P(x→ x′)
, 1

)
= min

(
α1 · α2, 1

)
. (10)

The first ratio is that the posterior probabilities of x and x′, and we write this as α1. The second

ratio, α2, gives probability of choosing the current state from the proposed state over the reverse

move. Since α1 constitutes assessment of the likelihood and the prior functions that can be calculated

directly from the specifications above, we only describe the calculation for α2. We denote proposed

parameters with an apostrophe.

• f - We randomly select i and propose fi from B(αci , βci), leading to α2 =
B(fi|αci ,βci )

B(f ′i |αci ,βci )
.

• p - We randomly select j and then draw the proposed parameter pj from the uniform prior,

leading to α2 = 1.

• α, β - For both of these parameters, we randomly select individual components and propose

new values directly from the prior distribution, leading to α2 = exp (−x)
exp (−x′) where x and x′ are

the current and proposed state of the relevant component.

The autocorrelation of the log-posterior has minimal lag (Supplementary Figure ??). As a secondary

check, we ran chain for all of the chromosomes individually and compared values with the complete

data set. Since we treat SNPs as independent, the performance of the model should be unaffected

if the model performs similarly across chromosomes. We find that across all chromosomes perfor-

mance is nearly identical, with greater than 95% correlation among maximum a posteriori (MAP)

estimates.
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1.5 Implementation

All code was implemented in the R computational environment (R Core Team, 2014). The set of

scripts implementing each of the estimators, the MCMC algorithm, visualizations, data simulations,

and filtered data sets are available at github.com/jacobian1980/pfmix. This repository includes a

tutorial and workflow for completing analyses using these approaches. All materials are released

under a Creative Commons License.

2 Results

2.1 Simulations

To compare the qualities of the four estimators, we performed a simualtion study under a range of

parameter values to capture how estimator performance may vary with the quality of data collected

in the field. We considered the number of SNPs, the number of read counts at each SNP, the degree

of skew in the allele frequency distribution, and the amount of inbreeding. For each parameter set,

we simulated 100 replicate data sets. The full set of parameters are listed in Table 2.

[ TABLE 1 GOES HERE ]

We simulated data by first fixing the inbreeding coefficient f and the allele frequency distribution.

We parameterized the allele frequency as a Beta distribution with parametes α and β. α was fixed

to one, while β was varied according to the simulation to induce differening degrees of skew. As

β increases, the distribution becomes increasingly right-skewed: when β = 1 then 1% of alleles

have less than a 0.01 frequency while when β = 1000 more than 99% of allele have less than a

0.01 frequency. For a fixed β and f , we then sample M alleles from the distribution and generated

observed within-sample allele frequencies according to Equation 7. The read counts were then

simulated according to a binomial distirbution with those within-sample allele frequencies.

[ TABLE 2 GOES HERE]

Figures 1 summarizes the comparison of fi point estimates made by the initial, regressed, direct,

and Bayesian estimators across the simulated data. Performance is recorded as inferred/simulated

value. Across all parameter values, the estimators performed similarly, with the Bayesian estimate
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showing the least bias and highest accuracy. The number of SNPs proves the largest determinant of

performance, with 50 SNPs sufficient to ensure reasonable performance in most cases. Very low f

values (f < 0.5) correspond to noticeable bias for the frequentist estimators. The initial estimator

is largely robust to large skew in the allele frequency distribution, while the other two estimators

are noticeably biased by it at high levels of mixture. We emphasize that the data was simulated

under the Balding-Nichols model.

Figure 2 shows that estimator standard deviation was similar for the three frequentist estimators

and markedly smaller in the Bayesian case. For each of the parameter regimes in Figure 1, we

performed 100 bootstrap resamplings, even in the Bayesian case. The standard deviation is largely

diminished with increasing numbers of SNPs, with read counts and beta values playing little role.

We note that bias for the frequentist estimators increases with increasing f values.

[ FIGURE 1 GOES HERE ]

[ FIGURE 2 GOES HERE ]

2.2 Comparison in empirical data

Since the underlying Balding-Nichols model within the simulations is likely misspecified relative

to empircal data, we examine the performance of the estimators applied to the WGS from 344

Ghanaian samples. The results shown in Figure 3 show very strong correlation between the three

frequentist estimators, with correlation better thant 0.95. For the Bayesian estimate, we report the

maximum a posteriori (MAP) estimate. The Bayesian estimator is still highly correlated (>0.9)

with the other estimators but is significiantly more variable in its estimates. Highly mixed and

highly unmixed samples (f ≈ 0 and f ≈ 1) appear to have the most correlation, with moderately

mixed samples deviating the most from the other three estimators.

[ FIGURE 3 GOES HERE ]

2.3 Comparison with COI

As noted in the introduction, two recent efforts have extended MOI to WGS and introduced the

concept of COI (Galinsky et al., 2015; O’Brien et al., 2015). Both methods use finite mixture models

to model the underlying number of strains in the sample. For comparison here, we employ the model
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of O’Brien et al., as it allows for more careful inference of the number of underlying strains and is

more robust to errors in the read count data. We apply this model to the 344 Ghanaian samples

and for each take the maximum a posteriori number of strains as the estimate. Figure 4 shows the

correlation between the inferred number of strains and the F-statistic. We calculate a Spearman

correlation of 0.83. While complex mixture models may provide a more penetrating understanding

of within-sample variance, F-statistics appear to capture much of the same information in a single

quantity.

[ FIGURE 4 GOES HERE ]

2.4 PF3K data set

We grouped the PF3k clinical samples outlined in the Data section by country and used the direct

estimator to calculate the inbreeding coefficient for each sample. Figure 5 summarizes the results,

showing relatively low fi values throughout west Africa, with the noticeable exception of The Gam-

bia. This may be due to the geographic segregation of the sampling locations by the Gambia River.

The median values of south and southeast Asian countries exhibit distinctly less mixture (higher

fi values) than in West Africa. This is consistent with previous reports of highly variable amounts

within-sample mixture across countries (Manske et al., 2012). Interestingly, while the median level

of mixture mixture varies significantly across countries, highly mixed samples (f < 0.5) and unmixed

samples (f > 0.95) are present everywhere.

[ FIGURE 5 GOES HERE ]

3 Discussion

This work presents a number of related approaches to inferring inbreeding coefficients for clinical Pf

isolates using WGS, using both frequentist and Bayesian approaches. These metrics connect MOI

to a broader set of work within population genetics and conservation ecology that may be helpful

in control efforts (??). We also show that these metrics strongly correlate with more complex

mixture models for inferring COI. While we don’t intend for these approaches to supplant these

more involved methods for investigating the within-sample mixture, this additional tool can assist

researchers in connecting Pf population genetics to a larger literature. To assist other researchers,
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we also provide the attendant code as an R package, pfmix, with additional tutorials and datasets

in an open-source context. These are available at the site https://github.com/jacobian1980/pfmix.

The model underlying the inbreeding coefficient makes a number of assumptions about the

underlying structure of the read count data and the biological mixing process that may affect

our inference. For the read count data, we assume that read counts are unbiased and the SNPs

are unlinked. While short read data can be biased in several ways, previous research indicates

that mixture proportions calculated by read count ratios are largely unbiased (for instance, see

(Manske et al., 2012) supporting information). However, P. falciparum exhibits significant linkage

disequilibrium on scales significantly larger than the average distance between neighboring SNPs in

our data. We do not expect this violation to bias our estimates as this absence of independence

occurs (roughly) evenly across the genome. However, inference from a small region of the genome

will likely exhibit bias.

A perhaps more troublesome assumption is embedded in the underlying structure of the F -

statistic. An F -statistic measures the departure of the observed number of heterozygotes relative to

those expected under Hardy-Weinberg equilibrium. In the context of mixed P. falciparum infections,

the equilibrium assumptions – random mating, no selection, large population size, genetic isolation

– are likely each violated at some level. For example, the mixture within a sample may be the

result of a small number of founding individuals or be strongly selected by the human immune

system. Without a more general approach to understanding the mixing process, we cannot anticipate

the robustness of our estimates to this sort of misspecification. However, we do find that the

PF3K samples from Cambodia that possess quite significant population structure still exhibit strong

correlation between fi and the inferred number of strains.

As genomic data enables more elaborate statistical models for mixed infections and a broader

understand of Pf genetic epidemiology, it will still be useful for field researchers to connect their

work with population genetics and ecology through simple metrics. Inbreeding coefficients, which

have a history going back to the beginnings of modern genetics, connect to a number of population

genetic quantities such as effective population size and genetic drift (Hedrick and Kalinowski, 2000;

Lande and Barrowclough, 1987; Nei and Tajima, 1981) and may serve to complement traditional

MOI values and newer models to this end. This work meets this need by providing a basis for

calculating these quantities and a suite of open-source tools for researchers.
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Tables

Parameter Description

j = 1, · · · ,M Index over number of SNPs, M

i = 1, · · · , N Index over number of samples, N

rij , nij Reference/non-reference read count data in sample i at variant j

dij = (rij , nij) Read count data in sample i at variant j

pj (p̂j) Population-level non-reference allele frequency for SNP j (estimate)

pij ,p̂ij Within-sample non-reference allele frequency for SNP j in sample i, and estimate

fi Inbreeding coefficient for sample i

Ho(b, i) Observed heterozygosity for sample i in bin b.

He(b) Expected heterozygosity for bin b.

f̂∗i Estimator of fi by method ∗.

f ,p Vector of fi and pj ’s in Bayesian model.

Table 1: Notation for parameters used throughout the manuscript.
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Parameter Description Simulation values

M Number of SNPs 10, 50, 150, 500, 1500

C Total read counts per SNP 10, 100, 1000, 10000

f Inbreeding coefficient 0.01, 0.1, 0.5, 0.9, 0.99

β Controls skew in allele frequency 1, 10, 100, 1000

Table 2: Parameter values for simulated data sets. For each parameter set, 100 replicate data sets

were generated.
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Figure 1: Inferred value over simulated value for each estimator across a range of parameter values.

Each boxplot represents 100 replicate data sets with the same parameters.
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Figure 2: Boostrap standard deviation for each estimator for the same parameter values as Figure

1. Each boxplot represents 50 samples each with 100 replicate data sets.
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Figure 3: Correlation in inferred fi value for the four estimators. For the Bayesian case, the MAP

value is reported. Each point represents a clinical isolate from Ghana.
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Figure 4: Boxplot of fi for each sample grouped by number of inferred strains using the mixture

model of (O’Brien et al., 2015).
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Figure 5: Boxplot of 1− fi for each sample grouped by country of origin for 12 countries from the

PF3K, arranged from west to east. The more intuitive 1 − fi is used to emphasize where low and

high levels of mixture are prevelant.
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Supplementary figures

Figure S1: Log-likelihood trace (left) and autocorrelation for MCMC chain for the Bayesian model.
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