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ABSTRACT

A recent genomic characterization of more than 200 Plasmodium falciparum samples isolated from

the bloodstreams of clinical patients across three continents further supports the presence of sig-

ni�cant strain mixture within infections. Consistent with previous studies, these data suggest that

the degree of genetic strain admixture within infections varies sign�cantly both within and across

populations. The life cycle of the parasite implies that the mixture of multiple genotypes within an

infected individual controls the outcrossing rate across populations, making methods for measur-

ing this process in situ central to understanding the genetic epidemiology of the disease. Peculiar

features of the P. falciparum genome mean that standard methods for assessing structure within

a population � inbreeding coe�cients and related F -statistics � cannot be used directly. Here we

review an initial e�ort to estimate the degree of mixture within clinical isolates of P. falciparum

using these statistics, and provide several generalizations using both frequentist and Bayesian ap-

proaches. Using the Bayesian approach, based on the Balding-Nichols model, we provide estimates

of inbreeding coe�cients for 168 samples from northern Ghana and �nd signi�cant admixture in

more than 70% of samples, and characterize the model �t using posterior predictive checks. We

also compare this approach to a recently introduced mixture model and �nd that for a signi�cant
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minority of samples the F-statistic-based approach provides a signi�cantly better explanation for

the data. We show how to extend this model to a multi-level testing framework that can integrate

other data types and use it to demonstrate that transmission intensity sign�cantly associates with

degree of structure of within-sample mixture in northern Ghana.

INTRODUCTION

The protozoan parasite Plasmodium falciparum causes most cases of severe malaria and presents

one of humanity's most signi�cant public health burdens, killing at least half a million people a

year [16, 39]. The parasite's ability to develop resistance to drugs and the rapid spread of that

resistance across geographically-separated populations presents a constant threat to international

control e�orts [23, 27]. While genetic factors play a crucial role in resistance, many aspects of the

genetic epidemiology of the parasite remain obscure [33, 35]. The beginnings of a global perspective

on the genetic structure of this problem emerged from the analysis of whole-genome sequencing

(WGS) data derived from ∼ 200 parasite genomes collected directly from clinicial patients in six

countries on three continents [20]. This study provides strong evidence for sign�cant continental-

scale structure in the amount of genetic variation present within populations, as well as indicating

frequent but variable amounts of within-isolate strain mixture, often referred to as multiplicity of

infection (MOI) [8].

Within-isolate P. falciparum strain mixture may result from a host individual being infected

by a mosquito carrying several distinct strains of the parasite, being infected sucessively by several

mosquitos carrying single strains, or some combination of the two. The parasites's sexual mating

process occurs only in the period immediately after being taken up into the mosquito hindgut

as a bloodmeal implying that mixed infections � either within the host or vector � provide the

essential grist for the maintainance of population-level genetic diversity by creating an opportunity

for outcrossing [15, 7]. The degree of apparent mixture within an infected individual's bloodstream

then would largely depend on the number of infective events and the e�ective population size of the

surrounding P. falciparum population [3]. Other e�ects, such as genetic interactions with the vector,

density-dependent selection, non-random mating and host immune response, may also play a role.

Consequently, reliable techniques for measuring the structure of mixture within clinical infections

will give researchers a quantitative measurement of potential outcrossing � a key determinant of
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genetic epidemiological control � and may provide insight into other important biological e�ects,

such as host immune response. This paper presents a collection of statistical methods for capturing

the amount of mixture within clinical isolates using WGS data.

Historically, the P. falciparum research focuses on MOI, the minimal number of distinct genetic

strains identi�able in a clinical sample. Researchers have largely used microsatellite, RFLP, or SNP

data to infer the number of strains [8, 1, 3, 18] and have associated these values with morbidity

[21, 26], patient age [9, 32], the course of infection in pregnancy [31], the presence of bed nets [10],

and a number of other conditions [6]. The focus on the number of strains naturally follows from the

limits of earlier genotyping techniques since more subtle features, such as the mixture proportions

of strains or recombination events among them, could not be readily identi�ed.

The introduction of WGS data naturally enforces a generalization from MOI into more complex

measures of mixture, since, in a strict sense, we �nd �nd evidence for some level of MOI in nearly

all of our samples. For instance, we present four samples in Figure 1 with within-sample observed

allele frequency plotted against the population-level allele frequency for all relevant SNPs. The left

plot shows little apparent mixture. Previous technologies limited measurement of the number of

genetic types to small regions of the genome, e�ectively bounding the maximum number of strains

that could be identi�ed. This has led to considerations of complexity of infection (COI), where

a strain mixture model is used to explain these within sample mixture levels [11], expanding on

traditional methods for inferring MOI [17]. Below, we show below that this model, while powerful

in modeling patterns within some isolates, is not su�cient to explain observed mixture within all

samples.

F-statistics, measurements of the departure of allelic heterozygosity observed within a popula-

tion from those expected at Hardy-Weinberg equilibrium (HWE), make for a natural approach to

quantifying the structure within mixed samples [37, 24]. HWE speci�es the distribution of alleles

assuming panmixia, a population exhibiting perfectly random mating with an absence of mutation,

migration, drift, selection or other e�ects [40]. F-statistics calibrate the empirical allele distribution

within a subpopulation against those expected under HWE, ranging from a value of one (no mix-

ture) to zero (perfect mixture). In the context of comparing the parasites' genetic diversity within

a single infected individual relative to the local geographic population (and absent any geographic

structuring of the population, i.e. the Wahlund e�ect), these statistics e�ectively become inbreeding
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coe�cients. For a sample, i, we refer to this value as fi.

These methods have proven to be an e�ective and extremely popular means for investigating

species' population structure from both allelic and genomic data [37, 30, 38]. However, standard

methods assume speci�c ploidy structures incommensurate with WGS data from P. falciparum and

so cannot be used directly. The critical di�erence is that, within a human host, P. falciparum exists

only in the haploid stage of its life-cycle [15]. Since short read WGS data cannot yet capture full

haplotypes, individual reads cannot be uniquely identi�ed with their strain of origin. Without being

able to associate reads to individual P. falciparum strains, we cannot see any 'out-of-the-box' use

of standard F -statistics approaches with this new data.

[20] provides an initial estimator for inbreeding coe��cents using WGS based on the slope of a

modi�ed regression line between the expected heterozygosity assuming population-level HWE and

the observed heterozygosity within a sample. [3] explores the connection between this estimator

and standard MOI approaches by comparing estimates from WGS with MOI values inferrred by

genotyping the msp-1 and msp-2 genes, showing strong correlation between these values in their

sample sets. They note that the correlation is strongest at high fi and low MOI values, where

samples are close to being unmixed, with weaker correlation among more mixed samples, suggesting

increasing divergence between these models. This estimator, while providing an e�ective �rst e�ort,

does not clearly connect to the larger statistical tradition around F -statistics. This paper seeks to

clarify this estimator by placing it more �rmly within this larger discussion.

This paper proceeds as follows. First, we provide an overview of data collection and layout

our notation. We present the initial estimator employed by [20] for estimating fi and provide

two additional frequentist estimators and detail their connection to classical F statistics. We then

proceed to describe a Bayesian approach for these statistics that builds on the Baldings-Nichols

model together with an inference scheme and framework for hierarchical modeling. We use this

construction to show that observed transmission intensity, a measure of the amount of infective

mosquito activity in the surrounding environment, sign�cantly associates with changes in mixture

among 168 norhtern Ghanian samples. We then show that, in comparison with a COIL-like approach

[11], the Bayesian F -statistic is a more powerful explanatory model for a substantial fraction of

samples. We conclude with a discussion of the strengths and limitations of our approaches, and

possible future directions for modeling within-sample mixture using WGS.
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1 Model and Data

1.1 Data and preparation

The WGS data come from Illumina HiSeq sequencing applied to P. falciparum extracted from 235

clinical blood samples collected from infected patients from the Kassena-Nankana district (KND)

region of northern Ghana. Collection occurred over approximately 2 years, from June 2009 to June

2011. The full sequencing protocol and collection regime are described in [20, 2]. After quality

control measures, sequencing was performed on 235 samples, and, following a documented protocol

using comparison against world-wide variation, 198, 181 single-nucleotide polymorphisms (SNPs)

were called within each sample [20]. Each call provides the number of reference and non-reference

read counts observed at each variant position within the genome, mapped to the 3D7 reference [12].

Positions that exhibited no variation within the KND samples, any level of missingness (no read

counts observed), or minor allele frequency less than 0.05 were excluded. Samples that possesed

more than 4000 SNPs called with fewer than 10 read counts were also excluded, following an

observed in�ection point. These cleaning measures left 1470 SNPs in 168 samples. We observe little

apparent population structure among the samples, evidenced either principal components analysis

or a neighbor-joining tree of the pairwise di�erence among samples, as in Supplementary Figure S1.

1.2 Notation

We label the samples i = 1, · · · , N and the SNPs by j = 1, · · · ,M , with N = 194 and M = 1, 470

if all samples and all SNPs are considered. In some contexts below M may be the number of SNPs

within a chromosome, which should be clear by context. At SNP j within sample i, we observe rij

reads that agree with the reference, and nij reads that are di�erent from the reference. We write pij

for the allele frequency for reference allele for SNP j in sample i and estimate it via the maximum-

likelihood estimator (MLE) for proportions: p̂ij =
rij

rij+nij
. Similarly, we write pj as population-level

reference allele frequency for each SNP and estimate according to the across-sample MLE:

p̂j =
N∑
i=1

nij

/ N∑
i=1

(rij + nij).

To slightly streamline our notation, we relabel the inbreeding coe�cient, Fis, for each sample i as

fi. We provide Table 1 as a reference to the reader for notation.
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1.3 A previous estimator for fi, and two alternatives

In [20], the authors provide an initial approach to estimating fi. We refer to this estimator as f
(m)
i

to contrast it with subsequent estimators. This method relies on minor allele frequencies rather than

reference allele frequency, which we mark with a tilde so that pj becomes p̃j . The two quantities

are naturally related so that p̃j = pj if pj < 0.5 and p̃j = 1 − pj otherwise. p̃ij and pij are related

in the same fashion and we continue to use hats to denote estimates. The estimator f
(m)
i proceeds

sample by sample, so we will consider a generic sample i. The estimator �rst partitions alleles into

11 equally-spaced bins based on their minor allele frequency: (0, 0.05), · · · , (0.45, 0.50) . Within

each bin, b, the averaged expected heterozygosity assuming population-level HWE is calculated by

He(b) =
1

Mb

Mb∑
k∈b

2 · ˆ̃pk · (1− ˆ̃pk),

where Mb is the number of SNPs within bin b. The averaged observed heterozygosity within each

bin and each sample is calculated by

Ho(b, i) =
1

Mb

Mb∑
k∈b

2 · ˆ̃pik · (1− ˆ̃pik).

Finally, f̂
(m)
i is calculated as 1 − β where β is the slope found by regressing the Ho(b, i) values

against He
b values centered within their respective allele frequency bins and constrained to pass

through the origin.

The binning procedure stablizes the estimator against in�uence by the low frequency alleles

that dominate the samples. Consequently, this has the result of biasing the estimates towards high

frequency alleles. We can remove this e�ect by discarding the binning procedure in favor of directly

regressing observed heterozygoity for each SNP against the expected value, still constrained to pass

through the origin. This provides a closed for expression for a new estimator, f
(r)
i , as

f̂
(r)
i = 1−

M∑
j=1

ˆ̃pj · (1− ˆ̃pj) · ˆ̃pij · (1− ˆ̃pij)

M∑
j=1

ˆ̃p2j · (1− ˆ̃pj)
2

.

We can also create a similar estimator but one more transparently derived from the ideas un-

derpinning traditional F -statistics in the following way. For a single SNP j, suppose fi to be the
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fraction of the population-level heterozygosity equal to the di�erence between the population-level

heterozygosity, Hp
j and the sample-level heterozygosity, H i

j that is,

fi ·Hp
j = Hp

j −H
i
j .

Dividing through by Hp
j gives an estimate for fi for the SNP j. Averaging across all SNPs, and

taking the ratio of expections to be the expectation of the ratios, gives the estimator

f̂
(d)
i = 1−

M∑
j=1

p̃ij(1− p̃ij)

M∑
j=1

p̃j(1− p̃j)

.

For each of these estimators, a corresponding variance calculation is possible. For f
(i)
i and

f
(r)
i these can be made by recoursing to known properties of regression lines. For f

(d)
i , a delta

approximation can be used. However, we instead employ a more convenient bootstrap approach to

capture the variance in the estimates for con�dence intervals. For the Bayesian estimates presented

below, we can establish credible intervals based on the inferred posterior distribution.

Figures 1 and Table 2 compare the fi estimates made by the initial, regressed and direct esti-

mators. In Figure 1, we present the estimates for four samples, together with the SNP data and the

binned values from the initial estimator. For the direct estimator, we construct the line shown by

connecting the origin with the (x, y) point of the denominator and numerator of Equation 1.3. The

other two estimators' lines come naturally from their regression procedure. The slope of each line

is 1− fi for that estimator. As shown in Table 2, the correlation of the three estimators is greater

than 0.98. In particular, the direct and regressed estimates di�er by at most 1% across all samples.

The initial estimator produces values that are almost invariably slightly lower than the two other

estimates, by as much as 15% of the higher value for highly mixed samples.

Despite these di�erences, these estimators provide strongly consistent portraits of the fi values

for the samples in our data. However, they all possess two less-than-desirable properties: they

rely on a separate estimate of the allele frequency; and cannot be easily incorporated into a more

involved analysis for use in hypothesis testing. Researchers will presumably seek to use estimates of

fi as a means of testing clinical or epidemiological di�erences between subpopulations. A preferable

approach would simultaneously allele frequency across all SNPs and the inbreeding coe�cient for
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each sample, as well as permitting extension to more complex modeling contexts. We submit that

our Bayesian models below satisify these requirements.

1.4 Bayesian model framework

We present two models, with the second as a multi-level extension of the �rst. In the �rst, we

estimate inbreeding coe�cients comparable to the above estimators but employing the Baldings-

Nichols model [4]. In the second model, we show how we can exploit the more �exible Bayesian

approach to estimate these values inside of a nested structure that allows us to test how di�erent

transmission regimes a�ect inbreeding coe�cients. In both cases, we make several simplifying

assumptions. We treat SNPs as being unlinked (i.e. no linkage disequilibrium) and assume that

individual parasites within a sample respresent a random sample of the surrounding population.

We also assume that read counts are sampled identically, independently, and represent an unbiased

sample of variation at each position. We will discuss the evidence for and against these assumptions

and possibilities for modeling extensions in the discussion.

1.4.1 Likelihood and priors

Our approach adapts the Balding-Nichols model of allele frequency within inbred subpopulations

to the speci�c context of P. falciparum WGS data [5]. In P. falciparum the relevant subpopulation

is the collection of parasites within a clinical sample. For sample i and SNP j, we assume that

each read count arises as an identical and independent Bernoulli process with the probability of a

reference read given by the unobserved reference allele frequency pij . Conditional upon an inbreeding

coe�cient fi and a population-level allele frequency pj , the Balding-Nichols model gives the allele

frequency pij as a Beta distribution:

pij ∼ B
(
1− fi
fi

pj ,
1− fi
fi

(1− pj)
)
.

Since the read counts are assumed to be i.i.d, pij is drawn from a Beta, and the probability of

the data is binomial, we use the conjugancy of these distributions to eliminate the dependence on

the unknown pij and give a Beta-binomial distribution for the likelihood:

P(rij , dij |pj , fi) =

(
rij + nij
nij

)
B(nij +

1−fi
fi
pj , rij +

1−fi
fi

(1− pj))

B(1−fifi
pj ,

1−fi
fi

(1− pj))
, (1)
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where B( · , ·) is the beta function. Since we assume independence by site and by sample, the

complete likelihood of the data, D, conditional upon the inbreeding coe�cients for all samples,

f = (f1, · · · , fN ) and the allele frequency for all SNPs p = (p1, · · · , pM ) becomes

P(D|f ,p) =
N∏
i=1

M∏
j=1

P(rij , rij |fi, pj).

In this �rst model, where we seek to estimate only the inbreeding coe�cients for a set of samples,

prior speci�cation is straight-forward. The only prior information we have about the fi values

suggests that high levels of inbreeding are common but not obligatory in west African populations,

and we quantitatively interpret this as a uniform prior on each fi. We place a uniform prior on

each allele frequency, although we have eliminated rare variants as part of data cleaning described

in Section 2.1.

1.4.2 A hierarchical extension

For nearly all samples we posssess additional metadata on the assessed transmission intensity (TI)

in the KND area at the time of P. falciparum sample collection. Field researchers categorize TI as

low, medium or high based on the percevied probability of infection from observed mosquito counts,

temperature, precipitation, and number of malaria cases entering area clinics. We write ci for the

TI of sample i, with ci ∈ {0, 1, 2, 3}, with 0 representing no record and 1, 2, and 3 denoting low,

medium and high transmission, respectively. The collection of all ci's we write as c.

We extend the previous model to also model the relationship between the distrbution of in-

breeding coe�cients and TI by constructing a model of the inbreeding coe�cients in terms of the

c. Conditional upon ci, we assume that each fi is drawn independently from a Beta distribution

with parameters αci and βci . There are consequently four α values and four β values and we label

the vectors α and β. We then decompose the posterior distribution of the unobserved parameters

conditional upon the read count data and TI values by noting that

P(f ,p,α,β|D, c) ∝ P(D, c|f ,p,α,β) · P(f ,p,α,β)

P(D|c, f ,p,α,β) · P(c, f ,p,α,β). (2)

As the introdcution of the additional structure does not a�ect the probability of the read count

data, we retain the same likelihood as in Equation 3.
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The dependency of f on c,α, and β we speci�ed above. Together with the assumption that the

remaining parameters are otherwise independent of each other these facts decompose Equation 2 to

P(f ,p,α,β|D, c) ∝ P(D|f ,p) · P(f |c,α,β) · P(p) · P(c) · P(α) · P(β).

It remains to specify the four prior terms on the right-hand side of the equation. We assume that

the prior distribution should be the same as in the previous model. We take the observations of c

to have probability one since they are the researchers' own assessment technique. For α and β, we

assume that they are drawn independently from an exponential distribution with mean one, except

α0 and β0, corresponding to the unrecorded category. For those parameters we �x the values to

one, ensuring a uniform prior on the corresponding fi's.

1.4.3 Inference

We use a Metropolis-Hastings Markov chain (MCMC) approach to inference. The Metropolis-

Hastings ratio gives the probability that a proposed parameter update x′ will be accepted from a

current state x with probability α such that

α = min

(
P(x′)
P(x)

· P(x
′ → x)

P(x→ x′)
, 1

)
= min

(
α1 · α2, 1

)
.

The �rst ratio is that the posterior probabilities of x and x′, and we write this as α1. The second

ratio gives probability of choosing the current state from the proposed state over the reverse move

and we write this α2. Since α1 constitutes assessment of the likelihood and the prior functions that

can be calculated directly from the likelihood and priors above, we subsequently only consider α2.

We denote proposed parameters with an apostrophe.

f - We randomly select i and propose fi from B(αci , βci), leading to α2 =
B(fi|αci ,βci )

B(f ′i |αci ,βci )
.

p - We randomly select j and then draw the proposed parameter pj from the uniform prior, leading

to α2 = 1.

α,β - For both of these parameters, we randomly select individual components and propose new

values directly from the prior distribution, leading to α2 =
exp (−x)
exp (−x′) where x and x′ are the current

and proposed state of the relevant component.

We examined the autocorrelation of the log-posterior and �nd that the lag was minimal (Sup-

plementary Figure S2). As a secondary check, we ran chains both for all of the chromosomes
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individually, as well as all together. Since we treat SNPs as independent, the performance of the

model should be una�ected if indeed the model performs similarly across chromosomes. We �nd

that across all chromosomes performance is nearly identical, with greater than 95% correlation

among estimates.

1.5 Implementation

All code was implemented in the R computational environment [28]. The set of scripts implementing

each of the estimators, the MCMC algorithm, and visualizations, together with subsets of the

data sets are available at github.com/jacobian1980/pfmix. This repository includes a manual and

work�ow for completing analyses using these approaches. All materials are released under a Creative

Commons License.

2 Results

2.1 Comparison with frequentist estimates

In Table 2 we compare between the Bayesian model estimates and each of the frequentist estimators

for each of the 168 samples, observing strongly consistent estimates for all samples. We note that

the least consistency among estimates on highly mixed samples, although still strongly similar. The

Bayesian estimates are noticeably more distinct from the frequentist estimates than they are from

each other. In general, the Bayesian estimates are less extreme than their frequentist comparators,

likely due to mitigated in�uence from low-frequency variants. We also observe consistent estimates

of variation among the two estimation procedures. For the Bayesian estimate, variation was deter-

mined using the maximum a posteriori (MAP) parameters and the properties of the Beta-binomial

distribution. For the frequentist estimators, we employed 250 bootstrap samples on the set of SNPs.

2.2 Temporal changes in Northern Ghana

We describe above additional metadata collected at the time of the samples, the perceived tranmis-

sion intensity (PTI). This categorical data gives a measure of the frequency of malaria transmission

and incorporates the rate of malaria cases presenting at the clinic, amount of standing water, ir-

rigation status, and other factors. Given the role that transmission intensity is believed to play
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in the process of outcrossing, researchers may naturally hypothesize that the fi value of samples

is partially determined by PTI. Similar e�ects have been reported in a variety of investigations

[14, 29].

We plot the 95% credible interval of 1 − fi values for each sample across the two year period

of collection with the PTI coded by the color (Figure 2). We �nd evidence for signi�cant mixture

(fi > 0.95) in more than 70% of samples (119/168). We plot 1 − fi to show highly mixed sample

as having high 1 − fi values. The plot suggests that the PTI at samples collection corresponds to

fi, with high PTI yielding low values, low PTI giving high values, and moderate PTI somewhere in

between. In a frequentist framework, this hypothesis could be tested either by pairwise comparison

of means or by ANOVA. Grouping samples by PTI, we plot the distribution of MAP fi values in

Figure 3(upper right), noting that there appears some di�erence in distribution across the groups.

However, pairwise comparison of the mean or variance between groups indicates no di�erence among

the groups, even at a liberal sign�cance level of 0.1.

In Figure 2, we see the distribution of α and β values for each PTI suggests the posterior

distribution di�ers between categories, although in a more complex way than a simple shift in

mean. Our hierarchical model allows us to test this hypothesis in a di�erent fashion, using Bayes

factors, a measure of the support provided in the data for comparable models [19]. We can consider

the hypothesis as a comparison between two models that we label M0 and M1. Under M0, the α

and β values are equal for all categories of PTI, i.e. α1 = α2 = α3 and β1 = β2 = β3. This describes

the sitatuation where the distribution for fi is constant across PTI categories. Under M1, the α

and β values are unconstrained, and the fi distribution may vary by PTI class. Notice that M0

is nested within M1. Because of this, we may use the Savage-Dickey ratio to calculate the Bayes

factor. Using the methods set forth in [36], we calculate the Bayes factor using a standard kernel

density estimator, as in [34]. The Bayes factor is 11.52, indicating M1 provides a a moderately

preferable explanation for the data relative to M0.

2.3 Comparison with COI model

A recently introduced mixture model attempts to model within-sample allele frequency variation,

in keeping with the MOI tradition within Pf genetics [11, 17]. To contrast this model with the one

presented here, we use the BIC to compare model �t between the two for each of the 168 clinical
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samples. Unfortunately, the implementation of this model was not designed for WGS data, so we

rely on a reduced version of the model in [25] that amounts to an equivalent model, detailed in the

Appendix. For each sample,

2.4 Posterior predictive assessment

While F statistics provide a convenient way to summarize the degree of heterogeneity in a clinical

sample, researchers may also be interested in the degree that the model captures the complexities

of the biological mixture process. We examine this discrepancy using posterior predictive checks

(PPC) [22, 13]. PPCs measure the discrepancy between predictive data and the observed data by

some discrepancy measure, for which here we take as a χ2 statistic. For each point in the posterior,

we generate a realization of data from that model. By sampling from the posterior and generating

data for each sample, we create a predictive data distribution, ypred. We then use the χ2 statistic

to generate a p-value comparing the observed data. For each SNP, we also plot the distribution

of predicted SNP data versus and the observed value, across the allele frequency (see Figure 4 for

examples).

The PPCs indicate that the model performs best for nearly unmixed samples and a subset of

highly mixed samples, where �t appears strong. For a majority of samples, the �t is reasonable for

a large section of SNPs but poor for a noticeable subset of variants. The PPCs also indicate that a

zero-in�ation in the data is not fully accounted for within the model. Taken across all samples, this

suggest that the F -statistic model is insu�cient to fully capture the within-sample heterogeneity.

However, the model provides strong �t, better even than the COI model above, for a certain subset

of samples and SNPs, indicating that a similar admixture process likely contributes to observed

data patterns.

3 Discussion

This work presents a number of related approaches to inferring inbreeding coe�cients, and connects

them to an extensive body of research on multiplicity of infection (MOI) in P. falciparum suggesting

the importance of MOI in characterizing the epidemiology of malaria. We provide the attendant

code and work�ows in an open-source platform for other researchers to implement these methods.

In developing the model, we make a number of assumptions about the underlying structure of
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the read count data and the biological mixing process that may a�ect our inference. For the read

count data, we assume that read counts are unbiased and the SNPs are unlinked. While short read

data can be biased in several ways, previous research indicates that mixture proportions calculated

by ratios of read counts is largely unbiased [20]. However, P. falciparum exhibits signi�cant linkage

disequilibrium on scales signi�cantly larger than the average distance between neigboring SNPs in

our data. While we do not expect this violation to bias our estimates as this absence of independence

likely occurs roughly evenly across the genome.

A more troublesome assumption is embedded in the underlying structure of the F -statistic.

An F -statistic measures the departure of the observed number of heterozygotes relative to those

expected under Hardy-Weinberg equilibrium. In the context of mixed P. falciparum infections, the

equilibrium assumptions � random mating, no selection, large population size, genetic isolation � are

likely each violated at some level. For example, the mixture within a sample may be the result of a

small number of founding individuals or be strongly selected by the human immune system. Without

a more general approach to understanding the mixing process, we cannot anticipate the robustness

of our estimates to this sort of misspeci�cation. While looking at the SNP plots (e.g. Figure ??)

indicate that the fi values inferred do correspond qualitatively to their apparent degree of mixture,

the PPC analysis suggests that the model does not always capture the data's full complexity.

We suspect that as the genomic data enables more elaborate statistical models for mixed in-

fections to develop that these considerations will become increasingly important to the biological

community. In our presentation of PPCs, we only discuss model �t in a statistical fashion although

there may be biological implications as well. Genes or regions of the genome that are either more

or less mixed relative to the levels observed in the remainder of the genome could indicate either

positive or negative selective pressure from the host immune system, intraspeci�c competition, or

other processes. Examining the PPCs produced we �nd no strong indications of these e�ects. This

may be because there is no signal to be discovered, or because the underlying model is too simple

to allow these distinctions to emerge or the signature is not apparent without more involved sta-

tistical approaches. The COIL approach and other recent work [11, 25] indicate that strain-based

mixtures may be a complementary line of inquiry. However, the substantial minority of samples

for which the inbreeding model did provide the most powerful explanation, strongly suggests that

considerations of inbreeding or similar processes will have to be included in the next generation of
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statistical models.

Appendix: COI inference

Following the approach in [11], we implemented a �nite mixture model for the data. As the method

described there does not easily accomodate the amount of data in our samples ( ∼ 1, 500 SNPs),

we relied on a reduced version of the model presented in [25]. As in [11], the model presumes that

a �nite number of strains K give rise to 2K `bands' of the within-sample allele frequency owing

di�erent combinations of the present strains. Following the presentation in [25], for SNP j within

sample i showing read counts (rij , nij), the within-sample allele frequency within band r is given by

qijr =
K∑
k=1

wk · 1{sk∈r},

where wk is the sample proportion for strain sk and 1. is an indicator function. Supposing that

read counts are i.i.d. conditional upon their band of origin, this leads to Beta-binomial likelihood

given r,

P(nij , rij |r, qijr, ν) =

(
nij + rij
nij

)
· B(nij + qijr · ν, rij + (1− qijr) · ν)

B(qijr · ν, (1− qijr) · ν)
, (3)

where B is the beta function and ν is an inverse variance parameter. Assuming no population

structure within the local population, we can then write the probability of a SNP being in band

r as binomial random variable with Cr being the number of non-reference allele states present in

band r, that is, P(SNP j ∈ band r|pj) = pCr
j · (1 − pj)2

K−Cr . By summing over all bans, we get a

likelihood independent of r,

P(rij , nij |qij., pj , ν,K) =
2K∑
r=1

pCr
j · (1− pj)

2K−Cr · P(nij , rij |r, qijr, ν).

Assuming independence across SNPs yields a product over j as the full data likelihood. Inference

is performed in a Bayesian fashion using standard MCMC approaches, detailed in [25].
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Tables

Parameter Description

j = 1, · · · ,M index over number of SNPs, M

i = 1, · · · , N index over number of samples, N

dij = (rij , nij) Read count data in sample i at variant j for reference and non-reference counts.

pj population-level non-reference allele frequency for SNP j

p̂j estimate of non-reference allele frequency for SNP j

p̃j minor-allele frequency for SNP ĵ̃pj estimate of minor allele frequency for SNP j

pij within-sample non-reference allele frequency for SNP j in sample i

fi Inbreeding coe�cient

Ho(b, i) Observed heterozygosity for sample i in bin b.

He(b) Expected heterozygosity for bin b.

f̂∗i Estimator of fi by method ∗.

f ,p Vector of fi and pj 's.

αi, βi Parameters of beta distribution by tranmission intensity group i.

c Vector of parameters for PTI.

Table 1: Notation for parameters used throughout the manuscript. Note that additional parameters

in the Appendix are not included.

Initial Regressed Direct Bayesian

1.000 0.999 0.996 0.930

- 1.000 0.998 0.930

- - 1.000 0.929

- - - 1.000

Table 2: Correlation coe�cient among the four inbreeding estimators across 168 samples.
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Figures

Figure 1: Raw SNP data for four representative samples with initial, regressed, and direct estimates

of fi overlaid. Grey dots represent individual SNPs with x-axis showing expected heterozygosity

under HWE and y-axis showing observed heterozygosity.
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Figure 2: 95% credible intervals for 1− f over the study interval, colored by tranmission intensity.

Unmixed samples correspond tot 1− f < 0.05 (grey dashed line).
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Figure 3: Comparisons of the inferred f values under mild, moderate and high transmission intensity.

(Upper left) Frequency of binned f values by tranmission intensity. (Upper right) Boxplot of f

values by transmission intensity. (Bottom) 90% credible interval of posterior density by transmission

intensity.
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Figure 4: Posterior predictive distributions for two representative samples: f = 0.45 above; f = 0.54

below.
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Figure S1: Observed population structure by principal components (upper left, upper right, lower

left panels) and neighbor-joining tree.
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Figure S2: Log-likelihood for thinned MCMC chain (left) and autocorrelation for same chain (right).
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