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Abstract

Epistasis plays a significant role in the genetic architecture of many complex phenotypes in

model organisms. To date, there have been very few interactions replicated in human studies

due in part to the multiple hypothesis burden implicit in genome-wide tests of epistasis.

Therefore, it is of paramount importance to develop the most powerful tests possible for

detecting interactions. In this work we develop a new gene-gene interaction test for use in

trio studies called the trio correlation (TC) test. The TC test computes the expected joint

distribution of marker pairs in offspring conditional on parental genotypes. This distribution

is then incorporated into a standard one degree of freedom correlation test of interaction.

We show via extensive simulations that our test substantially outperforms existing tests of

interaction in trio studies. The gain in power under standard models of phenotype is large,

with previous tests requiring more than twice the number of trios to obtain the power of

our test. We also demonstrate a bias in a previous trio interaction test and identify its

origin. We conclude that the TC test shows improved power to identify interactions in

existing, as well as emerging, trio association studies. The method is publicly available at

www.github.com/BrunildaBalliu/TrioEpi.
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INTRODUCTION

Genetic association studies, especially in humans, have focused primarily on marginal effects

of genetic variants. While this approach has successfully identified thousands of variants

associated with hundreds of complex human diseases (Hindorff et al. 2009), it ignores the

role of epistasis in shaping phenotypes. Recent work in model organisms has shown that epis-

tasis is a major contributor to broad sense heritability (Ayroles et al. 2009; Bloom et al.

2013; Ackermann and Beyer 2012) and interactions have been repeatedly posited as a key

component of missing heritability in humans (Zuk et al. 2012; Gibson 2012). Furthermore,

identification of epistatic interactions provides important insights into the functional orga-

nization of molecular pathways (Carlborg and Haley 2004; Brem et al. 2005; Cordell

2009; Ayroles et al. 2009; Ma et al. 2012; Ma et al. 2012; Ma et al. 2013).

One of the major obstacles in the identification of interactions in genetic association

studies is the multiple hypothesis correction penalty induced by the examination of millions

of pairs of SNPs. Therefore, it is of fundamental importance to develop the most powerful

possible test statistic when searching for interactions. In this work we are concerned with

tests for epistasis in trio studies in which mother-father-offspring trios are genotyped and

the offspring is a carrier for the disease of interest, or the phenotype of interest is fitness.

There currently exist three classes of test for interaction between pairs of markers in trio

studies. First, case-only correlation tests have been proposed where the null hypothesis is

no correlation between genotypes at the two loci. While these can easily be performed via

χ2 tests of independence between genotypes, they fail to leverage the information available

from the parents in the trios and are susceptible to inflation from population structure.

Second, pseudo-controls can be created via the non-transmitted parental alleles and used as

matched controls in a conditional logistic regression framework (Cordell 2002; Cordell

et al. 2004; Schwender et al. 2013). These tests account for population stratification that

can induce long range LD between marker pairs and bias the case-only correlation tests.

Third, and most recently, Ackermann and Beyer (2012) proposed the Imbalanced Allele
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Pair frequencies (ImAP) test. Their insight was that the expected counts of offspring alleles

at a pair of SNPs could be computed conditional on parental genotypes. They incorporated

this into a four degrees of freedom (d.f.) correlation test and used permutations to determine

the null distribution (Ackermann and Beyer 2012).

The primary contributions of this work are two-fold. First, we show that in the presence

of marginal effects but absence of interaction effects between pairs of markers, the ImAP

test is biased. We identify that the normalization procedure used in ImAP is the source of

this bias. Second, we develop a new interaction test, called the trio correlation test (TC)

for use in trio studies. Using the insight of the ImAP approach, we begin by computing the

expected distribution of the offspring’s genotype conditional on the parental genotypes and

use this distribution to build a correlation test with one d.f. The TC has several advantages

over previous approaches. First, it has one instead of four d.f. needed for ImAP. Second,

it does not require expensive permutation tests to compute p-values. Third, we show via

extensive simulations that our test is the most powerful among previously proposed tests

under standard disease models. Indeed, in simulations where SNPs contained marginal

and interaction effects, our average test statistic (16.4) was more than double the standard

correlation based test statistic (7.8).

The rest of the paper is organized as follows. In Section 2, we introduce the existing tests

and our proposed TC test. In Section 3, we evaluate the finite sample performance of the

existing and proposed tests using an extensive simulation study. We close with a discussion

in Section 4.

METHODS

Consider a trio study in which n mother-father-offspring trios are genotyped, and the off-

spring are carriers for the disease of interest, or the phenotype of interest is fitness. In this

section we present existing tests for detecting interaction between pairs of markers as well

as our novel TC approach.
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The Standard Independence (SI) Test Consider a pair of bi-allelic markers with possi-

ble genotypes g1, g2 ∈ {0, 1, 2}. Let O(g1, g2) the observed counts for the nine possible geno-

type combinations at these two markers in the offspring. Further, let O(g1) =
∑

g2
O(g1, g2)

and O(g2) =
∑

g1
O(g1, g2) the observed marginal counts of the three possible genotypes at

each marker. Last, let E(g1, g2) the expected counts of all nine possible genotype combina-

tions at the two markers, as computed from the products of the observed marginal counts

at each marker. That is E(g1, g2) = O(g1)×O(g2)/n.

A χ2 test statistic can be obtained by first calculating the squared difference of observed

and expected counts for each genotype combination of the two markers divided by the

corresponding expected counts. The final score for a marker pair is the sum of these values

over all nine possible genotype combinations,

SI =
∑

g1,g2∈{0,1,2}

[O(g1, g2)− E(g1, g2)]
2

E(g1, g2)
(1)

Under the null hypothesis of marker independence, SI is assumed to be asymptotically χ2
4

distributed.

The Imbalanced Allele Pair Frequencies (ImAP) Test Ackermann and Beyer

(2012) proposed to calculate the expected counts in the children using the parental genotypes

and the laws of Mendelian inheritance. Under Mendelian segregation, the offspring inherits

alleles randomly from its parents and the expected genotype of each marker can be derived

from the genotypes of the parents. The resulting probabilities for all possible parental

genotype combinations are shown in Table 1.

[Table 1 about here.]

Let Gm
i ,Gf

i , G
c
i the genotypes of the mother, father and child of trio i at a marker.

Moreover, let

Pi(g1) = P (Gc
i = g1 | Gm

i , G
f
i ) (2)
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the probability of the offspring having genotype g1 conditional on the parental genotypes,

as calculated using the probabilities in Table 1. For example, if Gc
i = 1, Gm

i = 1 and Gf
i = 2

then Pi(0) = .25, Pi(1) = .5, Pi(2) = .25.

If the offspring are selected based on a phenotypic designation such as disease status, then

a SNP increasing risk for the disease will be non-randomly inherited by the offspring. In

order to correct for such main effects Ackermann and Beyer (2012) proposed to multiply

each offspring’s expected genotype by the ratio of the sample-wide observed and expected

counts for the corresponding marker, that is

P ′i (g1) = Pi(g1)
O(g1)∑n
i=1 Pi(g1)

. (3)

The above computation of P ′i (g1) does not guarantee that
∑

g1
P ′i (g1) = 1. Ackermann

and Beyer (2012) proposed to use the following normalization:

P ∗i (g1) =
P ′i (g1)∑

g1∈{0,1,2}
P ′i (g1)

. (4)

Subsequently, the expected counts of each genotype combination using the adjusted for

main effects and normalized genotype counts can be calculated as

Ep(g1, g2) =
n∑
i=1

P ∗i (g1)× P ∗i (g2).

The corresponding ImAP statistic is given as,

ImAP =
∑

g1,g2∈{0,1,2}

[O(g1, g2)− Ep(g1, g2)]2

Ep(g1, g2)
. (5)

Because this χ2-like test statistic is not properly calibrated under the null hypothesis, Ack-

ermann and Beyer (2012) assess the significance via a permutation approach. ImAP is

nearly χ2
4 distributed and we use this approximation to compute p-values in addition to the

permutation approach. However, we show in Section 3 that in the presence of main effects

the ImAP test statistic is inflated, even when the permutation approach is used to compute

the p-values. The source of this inflation is the normalization step (4) (see Supplementary

Text).
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The Standard Correlation (SC) Test Let µ1 =
∑

g1∈{0,1,2}
g1×O(g1)/n the expected value

of the genotype at a marker and let σ1
2 =

∑
g1∈{0,1,2}

[g1
2 ×O(g1)/n] − µ1

2 the corresponding

variance. Moreover, let σ12 =
∑

g1,g2∈{0,1,2}
(g1 − µ1)× (g2 − µ2)×O(g1, g2)/n the covariance of

genotypes at the two markers and ρ = σ12/
√
σ12σ22 their Pearson’s correlation coefficient.

The test statistic is given as

SC = n× ρ2. (6)

Under the null hypothesis, SC is assumed to be asymptotically χ2
1 distributed.

The Trio Correlation (TC) Test Let Ep(g1) =
∑n

i=1 Pi(g1) the expected genotype counts

of genotypes at each of the two markers in the pair, computed based on the un-adjusted for

main effects and un-normalized conditional genotype counts of the offspring in (2). In order

to extend the standard correlation test based on the Pearson’s correlation coefficient such

that information from parental genotypes is incorporated, we propose to compute µ1 and

µ2 from the expected counts Ep(g1) and Ep(g2), rather than the observed genotype counts

O(g1) and O(g2).

Let µ∗1 =
∑

g1∈{0,1,2}
g1×Ep(g1)/n the new expected value and σ∗1

2 =
∑

g1∈{0,1,2}
[g21 ×O(g1)/n]−

µ∗1
2 the new variance. Moreover, let σ∗12 =

∑
g1,g2∈{0,1,2}

(g1−µ∗1)(g2−µ∗2)×O(g1, g2)/n the new

covariance and ρ∗ = σ∗12/
√
σ∗1

2σ∗2
2 the new correlation coefficient. Then the TC test statistic

is given as

TC = n× ρ∗2 (7)

Under the null hypothesis, TC is assumed to be asymptotically χ2
1 distributed. Unlike the

ImAP test we do not utilize the normalized conditional probabilities and so we do not suffer

from this source of inflation.

Conditional Logistic Regression with Pseudo-controls (CLRPC) In addition to

the correlation and independence based tests described above, tests based on CLRPC have

been proposed for detecting epistasis in trio studies. Briefly, fifteen pseudo-controls are
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constructed via the Mendelian genotype realizations, given the parents’ genotypes at the

two loci, which are then used as matched controls in a CLRPC. Here we consider two types

of tests based on CLRPC. First, interactions might be tested with a likelihood ratio test such

as the one proposed by Cordell (2002). In this case, two conditional logistic regression

models are fitted to the cases and the respective matched pseudo-controls, one consisting of

two coding variables for each of the two SNPs, and the other additionally containing the four

possible interactions of these variables. Then, p-values can be computed by approximation

to a χ2 distribution with four d.f. We refer to this test as CLRPC1.

Alternatively, a more simple approach can be used in which interactions might be tested

with a likelihood ratio test comparing a conditional logistic regression model containing one

parameter for each SNP and one parameter for the interaction of these two SNPs with a

model only consisting of the two parameters for the main effects of the SNPs, where a single

genetic mode of inheritance assumed for each SNP (e.g. additive, dominant, or recessive).

In this work we use additive marginal effects for both SNPs. The p-values can be computed

by approximation to a χ2 distribution with one d.f. We refer to this test as CLRPC2.

In this work we use the R (R Core Team 2014) implementation of these tests available

in the R package trio (Schwender et al. 2013) at http://cran.r-project.org.

SIMULATION STUDY

Data Generation To evaluate the relative performance of the tests described in the previ-

ous section in terms of type I error rate and power, we performed a series of simulation stud-

ies under a liability threshold model of disease. Using random mating and Hardy-Weinberg

Equilibrium assumptions we generated genotypes at two markers, each with a minor allele

frequencies of 0.5, for a random sample of N trios, with N=10K, 50K and 100K. To generate

yi, the liability of offspring i, we used the following regression model:

yi = β1 × g1i + β2 × g2i + γ × g1i × g2i + εi

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2015. ; https://doi.org/10.1101/021469doi: bioRxiv preprint 

http://cran. r-project.org
https://doi.org/10.1101/021469
http://creativecommons.org/licenses/by-nc/4.0/


where β1 and β2 are the main effects of each marker and γ is their interaction effect, εi ∼

N(0, σ2) a random error term with variance σ2 chosen such that both markers explain 10% of

the heritability of the liability. This large effect size is used to test for inflation of interaction

tests under main effects only models of phenotype.

In order to study the impact of ascertainment and disease prevalence in the performance

of the tests, we selected from the initial random sample of N trios the 1,000 offspring with

the highest phenotype values and their parents. The higher the value of N , the stronger

the ascertainment is and the lower the disease prevalence is, since the sample of 1,000 trios

represents a smaller fraction of the initial sample.

For each choice of parameters 10,000 data sets were generated and we applied the SI,

ImAP, SC, TC, as well as the two CLRPC tests to each data set. We also examined the

ImAP test without the normalization step (4), which we refer to as ImAP2. The ImAP2

test statistic is computed as the ImAP test statistic in (5) but the expected counts of each

genotype combination are computed using the product of the adjusted for main effects only

genotype counts P ′, as opposed to the product of the adjusted for main effects and normalized

counts P ∗ used for ImAP . The reason we show results for ImAP2 is to present the source

of bias in the ImAP test, i.e. the normalization step in (4).

In addition, we also examined the ImAP test without the adjustment for main effects

(3) and without the normalization step (4), which we refer to as ImAP3. Similarly to the

ImAP2 test statistic, the ImAP3 is computed as the ImAP test statistic in (5) but now the

expected counts of each genotype combination are computed using the product of P , i.e. the

genotype counts without main effect adjustment or normalization. Results for ImAP3 are

presented in order to study the impact of main effect adjustment when main effects are not

present.

Results on Type I Error Rate We first examined the type I error rate performance of the

tests under the null hypothesis of no main effects and no interaction effects (β1=β2=γ=0).
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The results in Table 2.a show that all tests with the exception of the ImAP tests are well

calibrated, with an average χ2 test statistic equal to the d.f. of the test. We then examined

the robustness of the tests when main effects, but no interaction effects exist (β1=β2=0.1

and γ=0). The results displayed in Table 2.b show that all tests suffered some degree of

inflation. This inflation is driven by the fact that marginally associated SNPs will become

correlated in ascertained data (Zaitlen et al. 2012; Zaitlen et al. 2012). Ascertainment

based inflation will increase as the disease prevalence decreases.

Interestingly, the TC test is the least biased of these tests for the highest prevalence

disease and the most biased for the lowest prevalence disease. This known source of bias is

relatively minor compared to the genome-wide testing threshold and therefore unlikely to

result in false-positive interaction results. However, the ImAP test is severely inflated under

this marginal effects only model and is very likely to produce false positives. As noted in the

previous section, this inflation is driven by the normalization procedure as evidenced by the

fact that without normalization (ImAP2), the test is similar to the other tests considered.

[Table 2 about here.]

It is well known that the ImAP tests are not χ2 distributed and so we computed the

permutation-based p-values for the ImAP , ImAP2, and ImAP3 test statistics as described

in Ackermann and Beyer (2012). The type I error rate for each of the three test based on

the permutation p-values are listed in Table 3. Under the null hypothesis of no interaction

and the absence of main effects, all three tests are well calibrated (Table 3.a). In the presence

of main effects, ImAP and ImAP3 are very inflated. ImAP3 is inflated due to the presence of

main effects. ImAP2 adjusts to some degree for the presence of main effects and has a much

lower type I error rate. However, in the recommended ImAP test, the normalization step is

performed which leads to an increased type I error rate even after performing permutations.

[Table 3 about here.]
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Population structure can induce correlation between distant SNPs. In order to examine

the effects of structure on the interaction tests we performed another a set of simulations

in a pseudo-admixed population. We assumed minor allele frequencies of 0.5 and 0.1 in

populations one and two respectively. For each mother and father we drew genome-wide

ancestry uniformly on the interval [0.1,0.9]. We then drew local ancestry from a binomial

according to the genome-wide ancestry. Finally, we drew genotypes based on the minor allele

frequencies for each population conditional on the local ancestry at each SNP. The rest of

the simulation proceeded as above.

The results of the pseudo-admixed population simulations under the null hypothesis of

no interaction effect are presented in Table 4. As expected all interactions tests are inflated

in structured populations. However, the CLRPC test is less inflated than all others and is

therefore the recommended test when dealing with structured populations.

[Table 4 about here.]

Results on Power Tables 5 and 6 show the mean χ2 and power results respectively under

the alternative hypothesis of interaction effect, i.e. γ=0.1, for both absence of main effects,

i.e. β1=β2=0, and presence of main effects, i.e. β1=β2=.1. In order to compare the relative

performance of the tests, we selected a significance threshold α such that the power of the

SI test was 50%. For all tests power increases as disease prevalence decreases since a larger

genetic burden is required to exceed the liability threshold.

The TC test is the most powerful test with a 40%, 70%, and 85% gain in test statistic

relative to the SC test with a concomitant gain in power. The pseudo-control based inter-

action tests did not perform as well as the TC, SC and SI interaction tests. The SC test

outperformed the SI tests due to the reduction in d.f and the additive generative model for

the phenotype used in these simulations. The ImAP test is disqualified due to inflation

introduced by the normalization. The ImAP2, which did not suffer this inflation, is under-

powered relative to the other tests. By comparing ImAP2 to ImAP3 we can see that the
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reason ImAP2 is under-powered is mainly because of the ‘over-adjustment’ for main effects.

ImAP3 is also disqualified as a proper test because it is severely inflated under the null

hypothesis in the presence of main effects.

[Table 5 about here.]

[Table 6 about here.]

DISCUSSION

In this work we develop the TC test, a new one d.f. statistical interaction test for use in

trio studies that leverages information form the parental genotypes. We compare our test

with existing tests for epistasis and show via simulations that the TC test properly controls

the type I error in the absence of main effects and is similarly biased to other tests for low-

prevalence diseases. Our test substantially outperforms all other tests of interaction in trio

studies. The gain in power under standard models of phenotype is large, with the SC test

requiring up to twice the number of trios to obtain the power of our test.

Ackermann and Beyer (2012) showed that in the absence of main effects the sig-

nificance of the ImAP test statistic for each marker pair can be properly assessed via a

permutation approach. We showed here that the permutation approach used to calibrate

the ImAP test statistic in the absence of main effects will not address the inflation caused in

the presence of main effects. We identify as a source of inflation the normalization step in (4),

which alters the correlation structure of the expected genotype probabilities and introduces

bias in the test statistic.

All methods considered here will be slightly inflated due to ascertainment for low preva-

lence diseases. However, this inflation is minimal and not enough to pass a genome-wide

significance threshold. Population structure can induce long range LD inflating correlation

based tests. Permutations based on pseudo-controls can account for structure (Epstein

et al. 2012) if inflation is observed in the study. The logistic regression based pseudo-control
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method can directly account for population stratification and can flexibly model one d.f. up

to four d.f. tests of interaction (Cordell et al. 2004). However, this test was the least

powerful in our simulations and will lose power when there is assortative mating for the

phenotype of interest (Klei et al. 2012).

In this work we used a liability threshold model (i.e. probit model) with and additive

by additive interaction term to simulate disease phenotypes. Our previous work suggests

that replacing this with a logit model will not have substantial effect on outcomes (Zaitlen

et al. 2012). There exist a myriad of alternative models and assumptions each of which

can alter the definition of interaction and the relative power of statistical tests (Cordell

2002; Hallgŕımsdóttir and Yuster 2008). For example if the true model is four d.f.,

e.g. contains additive by dominance effects, our test, which only models additive by additive

effects, may no longer be the most powerful test. Because the ImAP test is inflated in the

presence of main effects, a powerful and unbiased four d.f. test leveraging trios remains an

open research question as does a one d.f. allelic test.

While we developed a correlation based test leveraging the parental genotypes, it also is

possible to construct a likelihood based approach for interaction conditional on parental geno-

types. This requires an assumption about the underlying disease model (e.g. logit/probit

model). Such assumptions can lead to false conclusions of epistasis when the assumed model

is incorrect (Clayton 2012). However, these tests can be more powerful when the model

choices are similar to the real disease model.

Similar to commonly used tests for marginal effects, the interaction tests presented here

are inappropriate for rare variants. In the marginal case it is recommended to use a Fisher’s

Exact Test when the minor allele frequency is small. The definition of rare depends on the

sample size of the study, as the number of observations of the rare allele is the quantity of

interest. For interaction tests one must use a threshold on the product of the minor allele

frequencies of pairs of markers.

There has been a renewed interest in trio cohorts with affected offspring for the purposes of
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identifying denovo mutations and parent of origin effects (O’Roak et al. 2011; Arjomandi

et al. 2011; O’Roak et al. 2012; Neale et al. 2012; Sanders et al. 2012). While these

collections have identified many denovo mutations, they have not yet been examined for

the presence of interactions and our test is therefore of immediate benefit to these rapidly

growing trio cohorts.
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SUPPLEMENTARY TEXT

Let p0 = [p1(0), . . . , pn(0)], p1 = [p1(1), . . . , pn(1)], and p2 = [p1(2), . . . , pn(2)] vectors of

the expected probability of genotypes 0, 1, and 2 for all offspring at a marker as calculated

using the probabilities in Table 1 and let R =
[
ρ(p1,p0) 1

ρ(p2,p0) ρ(p2,p1)

]
be the matrix of pairwise

correlations between p0, p1, and p2. Similarly, let p′0, p
′
1, and p′2 the vectors of the expected

probabilities after main effects adjustment in (3), with R′ their correlation matrix; and p∗0, p
∗
1,

and p∗2 the vectors of expected probabilities after main effects adjustment and normalization

in (4), with R∗ their correlation matrix.

We showed in Section 3 that under the null hypothesis of no interaction effect but pres-

ence of main effects the ImAP tests statistic is inflated. We also showed that the ImAP

permutation procedure does not address this inflation. Since ImAP2, the test without the

normalization step, is not inflated under this scenario, we concluded that the normaliza-

tion of the expected genotype probabilities in 4 is causing the inflation. We mention in the

previous section that, in the presence of main effects, the normalization in (4) alters the

correlation of the genotype probabilities used to compute the expected joint distribution of

the markers in the cases but not in the pseudo-controls. To illustrate this, we compare the

R, R′ and R∗ matrices of the cases and pseudo-controls generated under the null hypothesis

of no interaction and main effects, i.e. γ = β1 = β2 = 0, with the matrices for the cases

and the pseudo-controls under the null hypothesis of no interaction effect, i.e. γ = 0, and

presence of main effects, i.e. β1 = β2 = .1. These matrices are listed in Table 7.

In the absence of main effects R = R′ and R ≈ R∗ (Table 7.a). On the other hand, in

the presence of main effects the two matrices are similar for the pseudo-controls but are very

different for the cases. The largest difference being between ρ(p1,p0) and ρ(p
∗
1,p

∗
0), correla-

tion of −0.240 before normalization and −0.135 after normalization, and between ρ(p1,p2)

and ρ(p
∗
1,p

∗
2), correlation of −0.633 before normalization and −0.719 after normalization.

[Table 7 about here.]
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Table 1: Expected genotype probabilities of an offspring given the parental genotypes ac-
cording to Mendelian inheritance law.

Parent 1 Parent 2 Offspring
0 1 2

0 0 1 .00 .00
0 1 .50 .50 .00
0 2 .00 1 .00
1 1 .25 .50 .25
1 2 .00 .50 .50
2 2 .00 .00 1
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Table 2: Mean test statistic with standard errors (se) of each test under the null hypothesis
of no interaction effect, i.e. γ = 0. Each entry represents an average over 10,000 simulated
data sets.

Tests d.f. Mean Test Statistic (se)
N=10K N=50K N=100K

(a) β1 = β2 = 0
SI 4 4.007 (.028) 3.947 (.028) 3.971 (.028)
ImAP 4 3.784 (.024) 3.752 (.024) 3.779 (.024)
ImAP2 4 3.442 (.024) 3.414 (.024) 3.435 (.024)
ImAP3 4 5.962 (.030) 5.904 (.030) 5.964 (.030)
LRPC1 4 4.012 (.028) 3.977 (.028) 4.005 (.028)
SC 1 0.995 (.014) 0.976 (.014) 1.009 (.014)
LRPC2 1 0.997 (.014) 0.979 (.014) 1.026 (.014)
TC 1 0.994 (.014) 0.975 (.014) 1.009 (.014)

(b) β1 = β2 = .1
SI 4 5.637 (.038) 5.533 (.037) 5.485 (.036)
ImAP 4 22.183 (.036) 35.700 (.042) 41.011 (.044)
ImAP2 4 4.509 (.030) 4.615 (.031) 4.615 (.030)
ImAP3 4 84.660 (.129) 154.454 (.185) 185.087 (.207)
LRPC1 4 5.279 (.036) 5.280 (.036) 5.248 (.036)
SC 1 2.747 (.030) 2.642 (.029) 2.628 (.029)
LRPC2 1 2.224 (.026) 2.188 (.026) 2.174 (.026)
TC 1 0.958 (.013) 2.415 (.027) 3.949 (.036)

24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2015. ; https://doi.org/10.1101/021469doi: bioRxiv preprint 

https://doi.org/10.1101/021469
http://creativecommons.org/licenses/by-nc/4.0/


Table 3: Permutation-based type I error rate for the ImAP, ImAP2 and ImAP3 tests under
the null hypothesis of no interaction effect, i.e. γ = 0. Each entry is based on 1,000 permuted
data sets.

Tests d.f. Type I Error Rate (%)
N=10K N=50K N=100K

(a) β1 = β2 = 0
ImAP 4 4.204 4.905 5.706
ImAP2 4 4.404 4.505 5.506
ImAP3 4 4.905 4.805 5.706

(b) β1 = β2 = .1
ImAP 4 100.000 100.000 100.000
ImAP2 4 9.209 11.612 12.212
ImAP3 4 100.000 100.000 100.000
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Table 4: Mean test statistic with standard errors (se) of each test under the null hypothesis
of no interaction effect, i.e. γ = 0, in the presence of admixture.

Tests d.f. Mean Test Statistic (se)
N=10K N=50K N=100K

(a) β1 = β2 = 0
SI 4 5.845 (.042) 5.867 (.042) 5.844 (.043)
ImAP 4 5.119 (.027) 5.127 (.027) 5.125 (.027)
ImAP2 4 3.722 (.027) 3.736 (.027) 3.736 (.027)
ImAP3 4 23.479 (.080) 23.546 (.079) 23.449 (.081)
LRPC1 4 4.486 (.033) 4.504 (.033) 4.505 (.033)
SC 1 2.713 (.032) 2.700 (.032) 2.693 (.032)
LRPC2 1 1.488 (.023) 1.486 (.024) 1.498 (.023)
TC 1 2.710 (.032) 2.700 (.032) 2.691 (.032)

(b) β1 = β2 = .1
SI 4 4.608 (.033) 4.694 (.034) 4.779 (.035)
ImAP 4 26.064 (.066) 43.129 (.101) 50.546 (.117)
ImAP2 4 4.811 (.036) 4.946 (.036) 5.039 (.036)
ImAP3 4 101.147 (.232) 171.405 (.439) 204.424 (.537)
LRPC1 4 6.351 (.050) 6.466 (.049) 6.561 (.051)
SC 1 1.489 (.022) 1.566 (.023) 1.669 (.024)
LRPC2 1 3.300 (.047) 3.400 (.046) 3.510 (.048)
TC 1 1.741 (.024) 3.255 (.039) 4.487 (.048)
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Table 5: Mean test statistic with standard errors (se) of each test under the alternative hy-
pothesis of interaction effect, γ = .1. Each entry represents an average over 10,000 simulated
data sets.

Tests d.f. Mean Test Statistic (se)
N=10K N=50K N=100K

(a) β1 = β2 = 0
SI 4 43.356 (.135) 73.110 (.194) 83.683 (.215)
ImAP 4 45.793 (.086) 82.914 (.110) 96.976 (.112)
ImAP2 4 28.505 (.095) 50.474 (.138) 59.404 (.154)
ImAP3 4 121.249 (.175) 267.965 (.292) 341.964 (.339)
LRPC1 4 32.819 (.111) 51.578 (.143) 57.094 (.148)
SC 1 37.008 (.118) 62.520 (.158) 70.697 (.166)
LRPC2 1 27.244 (.103) 45.843 (.137) 51.616 (.145)
TC 1 51.979 (.133) 106.396 (.184) 130.945 (.196)

(b) β1 = β2 = .1
SI 4 11.500 (.064) 18.258 (.087) 20.825 (.094)
ImAP 4 28.471 (.053) 51.594 (.069) 61.041 (.073)
ImAP2 4 8.385 (.048) 13.517 (.066) 15.700 (.073)
ImAP3 4 102.558 (.156) 212.881 (.245) 266.498 (.281)
LRPC1 4 9.453 (.055) 14.096 (.070) 15.739 (.074)
SC 1 7.850 (.054) 13.976 (.074) 16.231 (.080)
LRPC2 1 5.842 (.046) 10.204 (.062) 11.798 (.066)
TC 1 16.486 (.078) 40.572 (.119) 53.243 (.133)
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Table 6: Power (%) of each test under the alternative hypothesis of interaction effect, γ = .1.
Results are based on 10,000 simulated data sets.

Tests d.f. Power (%)
N=10K N=50K N=100K

(a) β1 = β2 = 0
SI 4 50.11 50.02 50.21
ImAP 4 64.04 85.31 91.93
ImAP2 4 8.42 7.30 8.11
ImAP3 4 100.00 100.00 100.00
LRPC1 4 19.37 8.98 5.85
SC 1 64.12 54.60 51.04
LRPC2 1 8.36 4.07 2.86
TC 1 94.58 99.72 99.98

(b) β1 = β2 = .1
SI 4 50.01 49.30 48.96
ImAP 4 100.00 100.00 100.00
ImAP2 4 27.99 25.76 25.42
ImAP3 4 100.00 100.00 100.00
LRPC1 4 36.57 29.43 26.50
SC 1 68.73 68.59 66.72
LRPC2 1 14.72 13.69 12.00
TC 1 96.57 99.93 100.00
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Table 7: Correlation matrices of the expected genotype probabilities R (first column), the
expected genotype probabilities after adjustment for main effects R

′
(second column), and

the expected genotype probabilities after adjustment for main effects and normalization R∗

(second column). Results are based on mean over 10,000 simulated data sets. PC, pseudo-
controls.

(a) β1 = β2 = 0 , γ = 0

R Cases

0 1

1 -0.446
2 -0.601 -0.447

R
′

Cases

0 1

1 -0.446
2 -0.601 -0.447

R∗ Cases

0 1

1 -0.447
2 -0.600 -0.447

R PC

0 1

1 -0.445
2 -0.600 -0.449

R
′

PC

0 1

1 -0.445
2 -0.600 -0.449

R∗ PC

0 1

1 -0.445
2 -0.599 -0.449

(b) β1 = β2 = .1 , γ = 0

R Cases

0 1

1 -0.240
2 -0.600 -0.633

R
′

Cases

0 1

1 -0.240
2 -0.600 -0.633

R∗ Cases

0 1

1 -0.135
2 -0.590 -0.719

R PC

0 1

1 -0.239
2 -0.600 -0.632

R
′

PC

0 1

1 -0.239
2 -0.600 -0.632

R∗ PC

0 1

1 -0.240
2 -0.600 -0.632
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